
A Novel SDP Relaxation for the Quadratic
Assignment Problem using Cut Pseudo Bases

Maximilian John and Andreas Karrenbauer

Max Planck Institute for Informatics, Saarbrücken, Germany,
firstname.lastname@mpi-inf.mpg.de

Abstract The quadratic assignment problem (QAP) is one of the hard-
est combinatorial optimization problems. Its range of applications is
wide, including facility location, keyboard layout, and various other do-
mains. The key success factor of specialized branch-and-bound frame-
works for minimizing QAPs is an efficient implementation of a strong
lower bound. In this paper, we propose a lower-bound-preserving trans-
formation of a QAP to a different quadratic problem that allows for
small and efficiently solvable SDP relaxations. This transformation is
self-tightening in a branch-and-bound process.

Keywords: quadratic assignment, semidefinite program, lower bound,
branch and bound

1 Introduction

Assignment problems are some of the best-studied problems in combinatorial
optimization, the task being to find a one-to-one correspondence of n items and
n locations, i.e., an

x ∈ Πn :=

{
X ∈ Zn×n :

n∑
i=1

xik = 1∀k ∈ [n] and

n∑
k=1

xik = 1∀i ∈ [n]

}
,

such that the total cost of the assignment is minimized. If the objective function
is linear, i.e., of the form

∑
i,k cikxik, the optimum can be computed efficiently

due to Birkhoff’s theorem [1], e.g., with the Hungarian method [2] in O(n3),
or with the bipartite matching algorithm of Duan and Su [3] for integer costs
of at most C in O(n5/2 logC). However, the linear objective function restricts
the modeling power because it does not account for the interaction between the
items nor for the interactions between the locations. Therefore, Koopmans and
Beckmann investigated a variant of a quadratic objective function of the form∑
i,j,k,` cijk`xikxj` that also considers pair-wise dependencies of the input objects

[4]. In their variant, the cost factors into dependencies between items and depen-
dencies between locations, respectively. That is, cijk` = fij · dk`, or C = F ⊗D
in matrix notation using the Kronecker product. This variant of the QAP offers
various practical applications such as the facility location problem [5] or the key-
board layout problem [6]. Moreover, it generalizes the traveling salesman prob-
lem [7] and several further real-life combinatorial problems such as the wiring



2 M. John, A. Karrenbauer

problem [8] or hospital layout [9,10]. However, the QAP is very hard to solve
even for small instances (n ≥ 30). For example, the problem library QAPLIB
[11] still contains decades-old unsolved instances and ones that were solved only
recently by newly proposed techniques and/or the usage of massive computa-
tional power [12]. In the time of writing, its smallest unsolved instance consists of
just 30 items and locations. On the theoretical side, Queyranne showed that the
QAP is NP-hard to approximate within any constant factor, even if the cost can
be factorized to a symmetric block diagonal flow matrix and a distance matrix
describing the distances of a set of points on a line [13]. Detailed surveys on the
Quadratic Assignment Problem can be found in [14,15,16].

A systematic approach for solving a QAP is to compute relaxations in a
branch-and-bound framework. One of the earliest published lower bounds, the
Gilmore-Lawler bound [17,18] for the Koopmans-Beckmann variant, reduces the
problem to a linear assignment problem. However, it detoriates quickly with
increasing instance sizes [19]. On the other hand, already the first level of the
reformulation linearization techinque (RLT) by Frieze and Yadegar [20] produces
strong lower bounds. But this comes at the expense of introducing n4 many
binary variables yijk`, i.e., one for each quadratic term occurring in the objective
function. Thus, it takes a lot of resources (both in terms of CPU and RAM)
to solve LP-relaxations for instances of practical input size. In contrast, the
formulation of Kaufman and Broeckx [21] only contains O(n2) varables, and
thus, its LP-relaxation can be solved efficiently. Moreover, the primal heuristics of
state-of-the-art MIP-solvers are able to quickly produce strong incumbents with
this formulation. However, the lower bounds obtained by relaxing the integrality
constraints of this formulation are very weak such that they often do not even
surpass the trivial lower bound of

∑
i,j min{cijk` : k, ` ∈ [n]} in reasonable time,

which makes it impractical to use this formulation alone to close the gap between
upper and lower bounds in a branch-and-bound process.

Furthermore, there are various relaxations of the QAP as a semidefinite
program (SDP). For example, SDP-relaxations for the non-convex constraint
Y = X⊗X were introduced in [22,23]. Recent approaches (e.g., [24]) have shown
that these approaches can often efficiently produce good lower bounds for the
QAP and beat common linear relaxations. We follow a different approach since
we do not derive our SDP from this formulation, but transform the QAP to a
different quadratic problem beforehand. In that sense, our approach is somewhat
orthogonal to recent other SDP relaxations.

1.1 Our contribution

In this paper, we propose a novel SDP derived from a lower-bound-preserving
transformation of a QAP instance to an auxiliary quadratic minimization prob-
lem with only O(n log n) variables. SDP-relaxations with that few variables can
be solved efficiently with modern interior point methods for conic optimization
problems. Moreover, it is straight forward to integrate our relaxation in a branch-
and-bound framework. While branching on single assignment variables typically
results in very unbalanced branch-and-bound trees, our approach avoids this by



Novel SDP Relaxation for QAP using Cut Pseudo Bases 3

design. To this end, we introduce the concept of cut pseudo bases, which has
not been used — to the best of our knowledge — in this context before. Our
goal was to develop an approach that still works with limited computational
resources, e.g., on a laptop, for the cases when the lower bounds provided by
Kaufman-Broeckx are too weak and when it is already infeasible to solve the LP-
relaxation of RLT1. Furthermore, we present experimental results for instances
with n ≥ 25 in which we outperform both lower bounds mentioned above in
terms of efficiency and effectiveness. The bounds produced by our SDP always
exceed — just by construction — the trivial lower bound mentioned above.

2 A novel lower bound using SDP

Let n denote, throughout this paper, the respective number of items and loca-
tions. We assume for the sake of presentation that n is a power of 2. This is not
a restriction because we can pad n with dummy items and locations. Moreover,
the dummy items can be projected out easily in an implementation so that this
also does not harm its performance.

The derivation is done in two steps. First, we design a new quadratic program
that lower bounds the QAP and allows for a balanced branching tree. In the
second step, we relax the new problem to an SDP.

Concerning the goal of achieving balanced branching trees, we revisit the
well-known problem of branching on single assignment variables. Setting xik to
1 means fixing item i to location j, which is a very strong decision that affects
all other variables in the i-th row or k-th column, forcing them to 0. On the
other hand, if we set xik to 0, we just decide not to fix i to j. However, there
are still n− 1 other possible locations for i, so we basically did not decide much.
This yields highly imbalanced branching trees as it is much more likely to prune
in the 1-branches of a branch-and-bound process. This undesirable effect can
be avoided by the well-known idea of generalized upper-bound branching (see
Section 7 of [25]). Inspired by this, we consider a similar approach illustrated in
the following IP formulation with n auxiliary z-variables:

minimize
n∑

i,j,k,`=1

cijk`xikxjl

s.t.
n∑
i=1

xik = 1 ∀k ∈ [n]

n/2∑
k=1

xik = zi
n∑

k=n/2+1

xik = 1− zi ∀i ∈ [n]

xik ∈ {0, 1} ∀i, k ∈ [n]
zi ∈ {0, 1} ∀i ∈ [n].

If we branch on the z-variables instead of the assignment variables, our
branching tree is much more likely to be balanced because either choice is equally
strong. However, it is not sufficient to branch only on these z-variables because
too many degrees of freedom still remain open even after all z-variables are set.



4 M. John, A. Karrenbauer

If we want to completely determine the x-variables and thus be able to project
them out, we should introduce further binary z-variables. To this end, we intro-
duce cut pseudo bases.

2.1 Introduction of cut pseudo bases

The key idea of cut pseudo bases is the usage of cuts in the complete graph with
the locations as nodes. Consider a balanced subset of the nodes, i.e., one of size
n/2. Instead of assigning an item to a certain location, we now assign it to one of
the ”halves” of the location space. We repeat this cutting of the location space
until we reach a state where — after a finite number of assignments — every
item can be uniquely mapped to a single location. Moreover, we cut the space
in a balanced way, i.e., we require that each side of the cut is equally large. Let
us formalize these requirements.

Definition 1. A set of cuts over the location space such that

– all cuts are balanced,
– all singleton locations can be expressed by a linear combination of cuts, and
– it is inclusion-wise minimal

is called a cut pseudo base.

Clearly, the size of a cut pseudo base is log2 n when n is a power of 2 and
thus dlog2 ne in general by the padding argument. To illustrate the concept of a
pseudo base, consider the following example.

Example 1. Enumerate the n = 2k locations by 0, . . . , n − 1, and consider the
binary decomposition of these numbers. For every bit b = 0, . . . , k− 1, we define
a cut that separates all locations with numbers differing in the b-th bit. Then,
this collection of cuts forms a cut pseudo base.

Note that any arbitrary cut pseudo base can be transformed to the binary de-
composition pseudo base by a permutation of the locations. Hence, we will em-
ploy this cut pseudo base as a reference throughout this paper for the sake of
presentation and simplicity.

2.2 Exchanging assignment variables by cut variables

The cut pseudo bases introduced in the previous subsection are balanced by def-
inition, meaning that assigning an item to one side of a cut in the pseudo base is
just as effective as assigning it to the other side. However, the decision of whether
a particular item should be assigned to a fixed location is highly unbalanced, as
we have already discussed. Hence, our goal is to get rid of the assignment vari-
ables and introduce the cut variables instead. This will also benefit the number
of binary variables which decreases from n2 assignment variables to n log2 n cut
variables. Let (Sb)b∈[B] be an arbitrary but fixed cut pseudo base. Note that
B = dlog2 ne, otherwise, (Sb) cannot be a cut pseudo base. We introduce the



Novel SDP Relaxation for QAP using Cut Pseudo Bases 5

variables zbi ∈ {0, 1} for every cut Sb, indicating whether i is assigned to the 0-
or 1-side of the cut Sb, i.e., to the outside or the inside, respectively. We relate
them to the assignment variables in the following manner.

xij = 1⇔ ∀b ∈ [B] j ∈ zbi -side of cut Sb

We consider an arbitrary cut b in the following and omit the superscript b to
simplify the notation and thereby improve readability. Observe that

zizj + zi(1− zj) + (1− zi)zj + (1− zi)(1− zj) = 1

holds for any zi, zj ∈ R and that for a binary solution exactly one of the four
terms is 1, and the others vanish.

Thus, we obtain for any assignment x and the corresponding binary z-
variables that∑
i,j,
k,`
cijk`xikxj`

=
∑
i,j [zizj + zi(1− zj) + (1− zi)zj + (1− zi)(1− zj)]

∑
k,` cijk`xikxj`

≥
∑
i,j zizj ·min{

∑
k,` cijk`xikxj` : x ∈ Π(11)

ij }
+
∑
i,j zi(1− zj) ·min{

∑
k,` cijk`xikxj` : x ∈ Π(10)

ij }
+
∑
i,j(1− zi)zj ·min{

∑
k,` cijk`xikxj` : x ∈ Π(01)

ij }
+
∑
i,j(1− zi)(1− zj) ·min{

∑
k,` cijk`xikxj` : x ∈ Π(00)

ij }

where Π
(11)
ij denotes the set of all assignments in which i and j are both

assigned inside the cut, where Π
(10)
ij denotes the set of all assignments in which

i is assigned inside the cut and j is assigned to the outside, and so on. In the
following, we argue that this is indeed a valid lower bound. To this end, let

c
(αβ)
ij := min{

∑
k,` cijk`xikxj` : x ∈ Π(αβ)

ij } denote the optimum objective values
of the corresponding optimization problems for α, β ∈ {0, 1}, and observe that

c
(αβ)
ij only contributes to the right-hand side if zi = α and zj = β.

This yields an objective function that is free of x-variables. Furthermore, the
minimum of the original objective taken over all x ∈ Π is bounded from below
by the minimum over all z that determine an assignment.

At first glance, it seems that we have to solve 4n2 QAPs to compute the
coefficients for the new objective function. However, a close inspection of the

subproblems reveals that c
(αβ)
ij is determined by the minimum cijk` over all

k, ` such that the b-th bits of k and ` are α and β, respectively. This can be
computed efficiently for each pair ij by a single scan over all cijk`. Note that in
the Koopmans-Beckmann variant of a QAP, we have cijk` = fij ·dk`, and thus, it
suffices to scan over the distance pairs dk` of the locations k and `. Furthermore,
such a single scan can also take additional constraints into account, e.g., excluded
pairs due to a branching process. Hence, the lower bound of our approach is
self-tightening in a branch-and-bound process. In every branching step, we can
update our cost estimation for this particular setting of excluded pairs.



6 M. John, A. Karrenbauer

2.3 Towards an SDP

In order to obtain a reasonable SDP relaxation, we apply the typical transfor-
mation to map {0, 1}-variables to {−1, 1}-variables. That is, we use the linear
transformation zi = 1+yi

2 . This implies that 1− zi = 1−yi
2 . Plugging this into

c
(11)
ij zizj + c

(10)
ij zi(1− zj) + c

(01)
ij (1− zi)zj + c

(00)
ij (1− zi)(1− zj)

yields

1∑
α,β=0

c
(αβ)
ij · 1−(−1)

αyi
2 · 1−(−1)

βyj
2 =

1∑
α,β=0

c
(αβ)
ij · 1−(−1)

αyi−(−1)βyj+(−1)α+βyiyj
4

=
c
(11)
ij +c

(10)
ij +c

(01)
ij +c

(00)
ij

4 +
c
(11)
ij +c

(10)
ij −c

(01)
ij −c

(00)
ij

4 · yi

+
c
(11)
ij −c

(10)
ij +c

(01)
ij −c

(00)
ij

4 · yj +
c
(11)
ij −c

(10)
ij −c

(01)
ij +c

(00)
ij

4 · yiyj .

We separate and symmetrize the constant, linear, and quadratic terms such
that we can write the total sum over all i, j in matrix-vector notation as

yTCy + cT y + γ

with

Cij :=
c
(11)
ij + c

(11)
ji − c

(10)
ij − c(10)ji − c

(01)
ij − c(01)ji + c

(00)
ij + c

(00)
ji

8

ci :=
1

4

n∑
j=1

c
(11)
ij + c

(11)
ji + c

(10)
ij − c(10)ji − c

(01)
ij + c

(01)
ji − c

(00)
ij − c(00)ji

γ :=
1

4

n∑
i=1

n∑
j=1

c
(11)
ij + c

(10)
ij + c

(01)
ij + c

(00)
ij .

To relax the quadratic part in the objective using a semidefinite matrix, we
use a standard fact about the trace, i.e., yTCy = tr(yTCy) = tr(CyyT ). Thus,
we replace the quadratic term yTCy in the objective function by the Frobenius
product1 C • Y and hope that Y = yyT . However, such a rank-1-constraint is
not convex, and we relax it to Y < yyT , which means that Y − yyT is positive
semi-definite. Since the latter is a Schur complement, this condition is equivalent
to (

1 yT

y Y

)
< 0.

To accomplish this, we could augment the matrix Y by a 0-th row and column,
or we could also use an item that has already been fixed w.r.t. the side of the
cut b under consideration, e.g., use one of the dummy items introduced to fill

1 The Frobenius product A•B := tr(ATB) =
∑

i,j aijbij is the standard inner product
on the space of n× n matrices used in semi-definite programming.



Novel SDP Relaxation for QAP using Cut Pseudo Bases 7

up the number of items to a power of 2. That is, if yi = 1 is already fix for
some item i, we may require Yij = yj for all j and Y < 0. The former constraint
can be written as eie

T
j •Y − eTj y = 0, which modern SDP solvers such as Mosek

[26] directly allow without a transformation to an equivalent block-diagonal pure
SDP formulation. If yi = −1, we obtain the constraints eie

T
j • Y + eTj y = 0 for

all items j instead.
In the following, we list further constraints that we may add to the SDP to

improve the strength of the lower bound on the QAP. Recall that we omitted
any superscripts to identify the cut under consideration. However, we will argue
with the complete cut pseudo base in the following, so we use Y b for the matrix
corresponding to cut b and yb to identify the linear terms corresponding to this
cut. Similarly, we shall use Cb, cb, and γb to denote the corresponding parts in
the objective function. We emphasize again that the cut pseudo base in use is
fixed and contains B = dlog 2(n)e many cuts.

Domain of Y We make sure that every ybi ∈ {−1, 1}. For the linear variables,
we relax this constraint to ybi ∈ [−1, 1], but in the SDP, we can require something

stronger. By using the fact that
(
ybi
)2

= 1, we can add the constraint Y bii = 1
for all b ∈ [B], i ∈ [n]. Formally, we do this by the SDP constraint Ei • Y b = 1
where Ei has a 1 on index (i, i) and 0s everywhere else.

Injectivity of the assignment We ensure that the assignment is injective, i.e.,
that no two different keys are assigned to the same spot. In terms of y variables,
we require for all distinct i and j that ybi be different from ybj for at least one b.

We have ybi = ybj if and only if the corresponding entry in Y , namely Y bij , is 1.
Hence, we add the constraint

B∑
b=1

Y bij ≤ B − 1 ⇔

(
B∑
b=1

1

2
Y bij +

1

2
Y bji

)
≤ B − 1.

Note that in an integer optimal solution, the constraints above already ensure
all the properties, we want to have. However, we have found that it is beneficial
for the relaxed SDP to add the following constraint.

Zero row sums In the original formulation, injectivity implies that the number
of keys assigned to one side of a cut is as large as the number of keys assigned
to the opposite side. Recall that we are assuming n = 2k, and we have a cut
pseudo base. Hence, the implication above indeed holds. In terms of y variables,
this can be modeled as the constraint

n∑
j=1

ybj = 0

or as
n∑
j=1

Y bij =

n∑
j=1

ybi y
b
j = yib ·

n∑
j=1

ybj
!
= 0



8 M. John, A. Karrenbauer

in the SDP for an arbitrary fixed i ∈ [n]. Hence, taking the row sum of Y b in
this case yields the term we are looking for.

Total entry sum We have observed that we can condense the zero-sum-
constraints to a single one by exploiting the positive semidefiniteness of Y .

Lemma 1. Let Y ∈ Rn×n be positive semidefinite. If 11T • Y = 0, then for any

i ∈ [n], it holds that
n∑
j=1

Y bij = 0.

Proof. Observe that
0 = 11T • Y = 1TY 1.

Since Y is positive semidefinite, 1 is an eigenvector of Y with eigenvalue 0, which
implies that Y 1 = 01 = 0 and proves the claim.

Hence, instead of imposing n constraints for every single row of Y , we have
shown that one constraint is enough to fix all row sums to 0.

2.4 Alternative objective functions for the SDP

In the previous subsection, we first fixed some cut b and then derived a lower
bound on the minimum QAP objective value by minimizing an SDP relaxation.
That is, we obtain a valid lower bound by solving an SDP with the objective
function Cb • Y b + (cb)T yb + γb, subject to the constraints mentioned above.
However, considering only one cut of the pseudo base in the objective could be
weak because costs could be evaded by charging them to the other cuts of the
pseudo base that are not accounted for in the objective.

Averaging over the cut pseudo base Since the lower bound holds for arbi-
trary cuts b, it also holds for the average over all cuts in the cut pseudo base,
i.e., the objective becomes

1

B

B∑
b=1

Cb • Y b + (cb)T yb + γb.

There is no need to add further auxiliary variables or constraints that may harm
the numeric stability of an SDP-solver.

Taking the maximum An even stronger lower bound is obtained by taking the
maximum over the cuts of the pseudo base because the arithmetic mean never
exceeds the maximum. The standard way to model the maximum over the cut
pseudo base is to introduce a new linear variable - say z - and add log2 n many
constraints, ensuring that z is at least the cost of each cut in the pseudo base.
However, the Mosek solver (v7.1.0.53) often stalled with this objective function,
in contrast to the averaging objective.



Novel SDP Relaxation for QAP using Cut Pseudo Bases 9

bur ste kra tho nug tai had scr
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SDP

KB

RLT1

Instance

B
o

u
n

d
 n

o
rm

a
liz

e
d

 to
 b

e
s

t

Figure 1: Averaged QAPLIB instances after one hour of computation

We are now ready to plug this SDP into a branch-and-bound framework of
the QAP. Recall that we branch on the cut variables. However, as soon as we
encounter an integral solution, there is a one-to-one-correspondence between the
cut variables and the original assignment variables. This means, the cost of every
incumbent is calculated with the original formulation. Hence, the framework will
produce an optimal solution for any general QAP.

3 Evaluation

We compare our approach to two classical linearizations, the Kaufman-Broeckx
linearization [21] and the first level of the Reformulation Linearization Technique
(RLT1) [20]. We use the commercial state-of-the-art solver Gurobi (v6.5.1) [27]
to solve the linearizations, and we use Mosek (v7.1.0.53) [26] as the SDP solver.
All three approaches are embedded in a branch-and-bound framework. We will
report the best known lower bound produced by running the branch-and-bound
process for one hour.

We ran experiments on a compute server restricted to one Intel (R) Xeon
(R) E5-2680 2.50GHz core and a limited amount of 8 GB RAM running Debian
GNU/Linux 7 with kernel 3.18.27.1. The code was compiled with gcc version
4.7.2 using the -03 flag. The instances are taken from the QAPLIB home-
page [11]. The names of the instances are formed by the name of the author
(first three letters), the number of items, followed by a single letter identifier.
The test instances cover a wide range of QAP applications including keyboard
assignment, hospital layout and several further graph problems.

Figure 1 shows the average lower bound of the different approaches after one
hour of computation time. We decided to average the lower bounds of a certain
instance set because the single test cases within that set were similar and all
approaches behaved consistently there. One can see that RLT1 performs quite
well if we have enough computation power to compute bounds there (see tai or



10 M. John, A. Karrenbauer

12 14 15 16a 16b 17 18 20 21 22 24 25 27 28 30
0

1000

2000

3000

4000

5000

6000

7000

SDP

KB

RLT1

OPT

Number of items

B
o

u
n

d

Figure 2: The Nugent instances with 12 to 30 items after one hour of computa-
tion, RLT1 fails to solve n ≥ 15 within this time and resource limit.

had, for example). However, many test instances are too large for our computing
resources to compute even the RLT1 root relaxation. In these hard cases, our
approach outperforms both linear relaxations by several orders of magnitude.

The nug instances are a special instance set because this set contains test
cases of increasing size. Therefore, the behavior of the three approaches varies
throughout the different test cases and the average reported in Figure 1 cannot
reflect the overall behavior for nug. To this end, we report a detailed description
of the whole nug test set in Figure 2. This also shows how our framework scales
with increasing n. At the beginning, for small n, RLT1 can solve the instances
even to optimality, which meets our expectations. For instances of small size, the
advantages of our approach in efficiency are just too small to make up for the
loss of precision caused by the distance approximations. The trend changes as
soon as n grows above 16. The RLT1 formulations are already too large to solve
the root relaxation after one hour of computation with a single thread and the
bounds of the Kaufman-Broeckx relaxation are lower than ours. This confirms
the use-case that we proposed in the introduction of this paper.

4 Future Work

We plan to work on several heuristics to produce better incumbents during the
branching, e.g., using randomized rounding. The current version fully focuses on
producing good lower bounds. Adding good primal heuristics could improve the
framework further. Furthermore, it is still open whether our formulation can be
improved by further cutting planes. An idea is to add triangle inequalities. Since
these are potentially many additional constraints, we might consider the idea of
dynamic constraint activation, which does [28], for example.

Moreover, we plan to tackle some numerical stability issues in our framework.
Although our problem satisfies Slater’s condition, it is clear that the primal SDP



Novel SDP Relaxation for QAP using Cut Pseudo Bases 11

never contains an interior point (because the balanced constraints force at least
one eigenvalue to 0). Recent approaches (e.g., [22]) consider this problem and
reformulate the SDP they use such that both primal and dual problems are
strictly feasible in order to improve the numerical stability. We will investigate
whether it is possible to adapt this idea to our framework.

5 Acknowledgments and Supplementary Material

This research was funded by the Max Planck Center for Visual Computing and
Communication (www.mpc-vcc.org).

Additional information and detailed evaluation data are released on the
project homepage at http://resources.mpi-inf.mpg.de/qap/.

References

1. Birkhoff, D.: Tres observaciones sobre el algebra lineal. Universidad Nacional de
Tucuman Revista , Serie A 5 (1946) 147–151

2. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research
Logistics Quarterly 2 (1955) 83–97

3. Duan, R., Su, H.H.: A scaling algorithm for maximum weight matching in bipartite
graphs. In: Proceedings of the Twenty-third Annual ACM-SIAM Symposium on
Discrete Algorithms. SODA ’12, SIAM (2012) 1413–1424

4. Koopmans, T., Beckmann, M.J.: Assignment problems and the location of eco-
nomic activities. Cowles Foundation Discussion Papers 4, Cowles Foundation for
Research in Economics, Yale University (1955)

5. Nugent, C., Vollman, T., Ruml, J.: An experimental comparison of techniques for
the assignment of facilities to locations. Operations Research 16 (1968) 150–173

6. Burkard, R., Offermann, J.: Entwurf von Schreibmaschinentastaturen mittels
quadratischer Zuordnungsprobleme. Zeitschrift für Operations Research 21 (1977)
121–132

7. Rainer E. Burkard, Eranda Çela, Panos M. Pardalos and Leonidas S. Pitsoulis:
The Quadratic Assignment Problem (1998)

8. Steinberg, L.: The Backboard Wiring Problem: A Placement Algorithm. SIAM
Review 3 (1961) 37–50

9. Krarup, J., Pruzan, P.M.: Computer-aided layout design. In: Mathematical Pro-
gramming in Use. Springer Berlin Heidelberg, Berlin, Heidelberg (1978) 75–94

10. Elshafei, A.N.: Hospital layout as a quadratic assignment problem. Operational
Research Quarterly (1970-1977) 28 (1977) 167–179

11. Burkard, R.E., Karisch, S.E., Rendl, F.: Qaplib - a quadratic assignment problem-
library. J. of Global Optimization 10 (1997) 391–403

12. Anstreicher, K., Brixius, N., Goux, J.P., Linderoth, J.: Solving large quadratic as-
signment problems on computational grids. Mathematical Programming 91 (2014)
563–588

13. Queyranne, M.: Performance ratio of polynomial heuristics for triangle inequality
quadratic assignment problems. Operations Research Letters 4 (1986) 231 – 234



12 M. John, A. Karrenbauer

14. Pardalos, P.M., Rendl, F., Wolkowicz, H.: The quadratic assignment problem: A
survey and recent developments. In: In Proceedings of the DIMACS Workshop
on Quadratic Assignment Problems, volume 16 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, American Mathematical Society
(1994) 1–42

15. Commander, C.W.: A survey of the quadratic assignment problem, with applica-
tions. Morehead Electronic Journal of Applicable Mathematics 4 (2005) MATH–
2005–01

16. Loiola, E.M., de Abreu, N.M.M., Boaventura-Netto, P.O., Hahn, P., Querido, T.:
A survey for the quadratic assignment problem. European Journal of Operational
Research 176 (2007) 657 – 690

17. Gilmore, P.C.: Optimal and suboptimal algorithms for the quadratic assignment
problem. SIAM J. Appl. Math. 10 (1962) 305–313

18. Lawler, E.L.: The quadratic assignment problem. Management Science 9 (1963)
586–599

19. Li, Y., Pardalos, P.M., Ramakrishnan, K.G., Resende, M.G.C.: Lower bounds
for the quadratic assignment problem. Annals of Operations Research 50 (1994)
387–410

20. Frieze, A., Yadegar, J.: On the quadratic assignment problem. Discrete Applied
Mathematics 5 (1983) 89 – 98

21. Kaufman, L., Broeckx, F.: An algorithm for the quadratic assignment problem
using benders’ decomposition. European Journal of Operational Research 2 (1978)
204–211

22. Zhao, Q., Karisch, S.E., Rendl, F., Wolkowicz, H.: Semidefinite programming
relaxations for the quadratic assignment problem. Journal of Combinatorial Opti-
mization 2 (1998) 71–109

23. Povh, J., Rendl, F.: Copositive and semidefinite relaxations of the quadratic as-
signment problem. Discret. Optim. 6 (2009) 231–241

24. Peng, J., Mittelmann, H., Li, X.: A new relaxation framework for quadratic as-
signment problems based on matrix splitting. Mathematical Programming Com-
putation 2 (2010) 59–77

25. Wolsey, L.A.: Integer programming. Wiley-Interscience series in discrete mathe-
matics and optimization. J. Wiley & sons, New York (N.Y.), Chichester, Weinheim
(1998) A Wiley-Interscience publication.

26. MOSEK ApS: The MOSEK C optimizer API manual Version 7.1 (Revision 52).
(2016)

27. Gurobi Optimization, I.: Gurobi optimizer reference manual (2016)
28. Rendl, F., Rinaldi, G., Wiegele, A.: Solving max-cut to optimality by intersecting

semidefinite and polyhedral relaxations. Mathematical Programming 121 (2008)
307–335


