
Improvements to Keyboard Optimization with
Integer Programming

Andreas Karrenbauer1, Antti Oulasvirta1,2,3

1Max Planck Institute for Informatics, 2Saarland University, 3Aalto University

ABSTRACT
Keyboard optimization is concerned with the design of key-
boards for different terminals, languages, user groups, and
tasks. Previous work in HCI has used random search based
methods, such as simulated annealing. These “black box”
approaches are convenient, because good solutions are found
quickly and no assumption must be made about the objective
function. This paper contributes by developing integer pro-
gramming (IP) as a complementary approach. To this end, we
present IP formulations for the letter assignment problem and
solve them by branch-and-bound. Although computationally
expensive, we show that IP offers two strong benefits. First,
its structured non-random search approach improves the out-
comes. Second, it guarantees bounds, which increases the
designer’s confidence over the quality of results. We report
improvements to three keyboard optimization cases.

Author Keywords
User interface optimization; Integer programming; Keyboard
layouts; Branch-and-bound; Random search methods.

ACM Classification Keywords
D.2.2. Software: Design tools and techniques: UIs

INTRODUCTION
This paper advances the optimization of text entry methods
for human performance. In particular, we look at the letter as-
signment problem, or the problem of keyboard layouts. This
problem is known to be NP-complete [6] and computational
solutions have received increasing attention. Active research
areas include the optimization of keyboards for various ter-
minals, languages, and user groups (e.g., [4, 9, 20, 2, 8, 25]).

Given the amount of interest, it is important to try to find
improvements to optimization methods. Although UI opti-
mization is presently focusing on keyboards, advances in the
keyboard design case can be useful more generally to UI de-
sign problems concerned with layouts. Examples of layout
optimization include menus [2] and widgets [10].

This paper addresses a significant limitation of the presently
used class of methods. So far only random search methods

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UIST 2014, October 5–8, 2014, Honolulu, HI, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3069-5/14/10 ...$15.00.
http://dx.doi.org/10.1145/2642918.2647382

have been used. They iteratively sample the solution space
[22] and consult a model of users’ performance weighted by
a frequency distribution of their actions. Common methods
include local search and simulated annealing. This “black
box” approach is convenient, because good solutions can be
found quickly and no assumption must be made about the ob-
jective function. The drawback is that such methods offer no
guarantee for finding the global optimum, nor do they inform
distance to it. Even if the global optimum was found, the
designer can never know this for sure. Moreover, designers
have no objective criterion for stopping the optimization and
no confidence that the best-found design cannot be beaten.

This paper contributes by studying exact methods as a com-
plementary approach. They use a structured (non-random)
search approach that guarantees the optimal solution in fi-
nite time. Identifying the globally optimal design is desir-
able particularly for commonly used UIs where even small
changes can have a large impact. Moreover, during search,
exact methods estimate bounds. In other words, they inform
the designer that the best-found solution is within a certain
percent from the optimum. This increases confidence and
pre-empts fruitless search.

Given these benefits, why were exact methods not previously
used in HCI? Until a decade ago it was easy to ignore them
because global optimization of assignment problems with
more than 20 items was held impossible. The simplest for-
mulation of the virtual keyboard problem with 26 keyslots
has a search space of 4 ∗ 1026. However, efficiency has im-
proved from 1988 to 2004 by a factor of 5,280,000 [5]. It is
thus now possible to solve more meaningful problems also in
HCI.

The present paper is a proof-of-concept study targeting key-
board design. Although our longer-term goal is to develop
exact methods for a wider class of UI design tasks, keyboards
offer a solid starting point for our research. It is the most ex-
tensively studied case of UI optimization and allows bench-
marking the benefits. Moreover, even slight improvements in
keyboard layouts not only improve productivity [4] but can
also enhance ergonomics and learnability [17]. Furthermore,
the case is analytically favorable, because the task and the ob-
jective function involved are relatively well-understood and
straightforward.

We formulate various letter assignment tasks as integer pro-
gramming (IP) problems [24]. Since there is no unique for-
mulation, we investigate a few models w.r.t. trade-offs such
as computational efficiency, memory requirements, and the
strength of bound. To solve them, we build on a standard so-

1

lution called branch-and-bound. Here the idea is to structure
the search space as a tree and construct an “oracle” that pro-
vides bounds that tell which subtrees (branches) to disregard
(prune). We show techniques for branching and bounding that
are sufficiently efficient to improve over the state-of-the-art in
keyboard optimization. We then demonstrate these capabili-
ties across three keyboard optimization cases from previous
literature. Our approach is directly usable in the available IP
solvers such as CPLEX and Gurobi.

BACKGROUND: THE LETTER ASSIGNMENT PROBLEM
Given n letters and n keyslots, the task of the letter assign-
ment problem is to minimize the average cost ck` of selecting
letter ` after k weighted by the bigram probability pk`:

min
∑
k

∑
`

pk` · ck` (1)

It is an instance of the Koopmans-Beckman Problem [15, 6],
which is NP-hard. As we will see later, this problem can be
modeled with a quadratic function on binary variables. Thus,
it belongs to a broad class of problems called quadratic as-
signment problem (QAP) where the goal is to minimize the
total pair-wise interaction cost [22, 24].

Except for a few papers using heuristic cost functions (e.g.,
[9]), the Fitts-bigram energy is used (see also [4]). Here, the
probabilities p`k are given by a bigram distribution of repre-
sentative corpus of text. The cost c`k is given by Fitts’ law
(e.g., [19]):

MT = a + b log2

(
Dk`

W`
+ 1

)
, (2)

where D`k is distance between the two keys containing ` and
k, and W` is the width of the button that contains `. Fitts law
is best understood as an estimate of movement performance
achievable by skilled users. The cost for repeating the same
letter is assumed to be constant, i.e. c`` = c. Since the op-
timum assignment is not affected by the choice of a, b, c, the
task collapses to distance minimization [25]. We later also
consider a task that is not about distance minimization: touch
typing with ten fingers on a physical keyboard.

Previous Work Using Random Search Methods
Previous work has exclusively used random search methods
to solve this problem. These methods iteratively randomly
sample the neighborhood of a given solution. The variants
differ in sampling strategy and update procedure.

1) Local search starts from a random position in the search
space and randomly samples its neighborhood. A recent ex-
ample is the 26 letter trapezoidal keyboard of Dunlop et al.
[8]. 2) Metropolis–Hastings algorithm is a variant of local
search that uses a probabilistic decision criterion that allows it
to escape from local minima. A known example is the hexag-
onal keyboard of Zhai et al. optimized for stylus tapping on
PDAs [25]. 3) Simulated annealing is an adaptation of the
Metropolis–Hastings algorithm that uses a cooling schedule
that is an analogue with thermodynamic free energy. A re-
cent example is the split keyboard of Oulasvirta et al. op-
timized for two-thumb typing performance [20]. 4) Genetic

algorithms represent layouts as “genotypes” that are compet-
itively evolved by mutations and cross-overs. A recent exam-
ple is the physical keyboard layout of Goettl et al. optimized
using a heuristic cost model [11]. 5) Ant colony optimization
is based on a biological metaphor of an ant colony cooper-
atively foraging for food. The method was recently used to
improve the hexagonal keyboard of Zhai et al. [2].

OVERVIEW OF THE APPROACH
We formulate the QAP as an integer programming (IP) prob-
lem in order to then study it using a standard solution: branch-
and-bound. The QAP has been studied extensively in the dis-
crete optimization community. The letter assignment prob-
lem was among the earliest problems studied within this con-
text [21]. We here provide an overview of the approach and
present technical details of our solution in the next section.
A detailed review of the work is beyond the scope of this pa-
per. The interested reader is referred to the survey of Loiola
et al. [18].

The basic idea of IP is to describe the design space by equa-
tions and inequalities, also called constraints. The task of an
Integer Programming Problem is to decide whether there is a
solution that satisfies all constraints and that assigns only inte-
gers to the variables. This problem is also called Integer Fea-
sibility Problem. Already the restriction to linear constraints
and moreover to binary variables is NP-complete.1 Though
this sounds discouraging, it also shows the great modeling
power that comes with IP: there are IP models for every prob-
lem in NP. Moreover, there are efficient solvers that solve in-
teger programs much faster than a brute force search in prac-
tice. A key concept is a divide-and-conquer strategy called
branch-and-bound, which we will briefly discuss after mod-
eling the letter assignment problem as an IP. To this end, we
present how to model keypress times as a quadratic function.

Formulation of the QAP as IP
The letter assignment problem can be reformulated as an IP
problem with a quadratic objective function [6]. Let x`j be a
binary variable which is 1 if letter ` is assigned to keyslot j
and 0 otherwise. Hence, we obtain ck` =

∑
i

∑
j tij ·xki ·x`j ,

where tij represents the movement time from key i to key j,
e.g. as in Eq. (2). By substituting ck` in Eq. (1), the goal
becomes to find the

min

n∑
i=1

n∑
j=1

n∑
k=1

n∑
`=1

pk`tijxkix`j (3)

subject to
n∑

`=1

x`j = 1 ∀j ∈ {1, . . . , n} (4)

n∑
j=1

x`j = 1 ∀` ∈ {1, . . . , n} (5)

x`j ∈ {0, 1} ∀`, j ∈ {1, . . . , n} (6)

1Note that the keyboard optimization problem is trivially feasible:
The hardness comes in when we ask whether there is a layout of at
most a certain cost.

2

1

2 3

1 0

1 0 1 0

lb=100 ms ub=300 ms

lb=200 ms ub=300 ms lb=250 ms ub=275 ms
Xa,1

Xb,1 Xc,2
lb=290 ms ub=275 ms

B"A"

Figure 1: Branch-and-bound divides the search space (all
keyboard layouts) into a tree (branch) that can be pruned
based on (A) infeasibility of solutions and (B) bounds. lb
and ub refer to the best known lower and upper bounds for
the subtree rooted at the corresponding node.

In other words, each slot must contain exactly one letter due
to the constraints (4) and each letter must be assigned to ex-
actly one slot because of the constraints (5). The so-called
integrality constraints (6) reflect the restriction to binary so-
lutions as required at the beginning of this subsection.

Branch-and-Bound
Branch-and-bound solves the QAP by performing an implicit
exhaustive search. We imagine the search as a tree, where we
make a decision at each node to partition the search space.
Figure 1 provides an overview.

For the sake of presentation, we first describe a simple
branching strategy, which fixes one variable in each iteration.
At each node of the tree, we select a letter and assign it to an
empty slot, e.g. letter ’a’ to slot 1 at node 1 in Fig. 1. Such a
decision is represented by one of the two children of a node,
whereas the other child means the opposite, i.e. we forbid this
letter-slot-combination for the corresponding subtree.

Suppose that we have already found a feasible binary solu-
tion with an objective value of z, for example by a random
assignment of the letters to the keyslots, by some heuristics,
or by branching down to a leave of the tree. If we now had an
“oracle” that told us at some node that all feasible integral so-
lutions in the subtree rooted at this node have objective values
of at least z, then we could simply discard this entire subtree
because it will not offer an improvement. This leads to two
kinds of pruning that can be done: 1) based on infeasibility,
e.g., two letters cannot be assigned to the same slot as shown
in case A in Fig. 1, and 2) on bounds, e.g., as illustrated in
case B in Fig. 1 where the lower bound is worse than the ob-
jective value of the incumbent.

It remains to show that there are effective methods to compute
good lower bounds for the integer solutions in a subtree.

Relaxation
There is a systematic approach to obtain lower bounds for an
IP when the objective function and all constraints are linear.
Before we show how to obtain such a setting in our case, we
illustrate its benefits for branch and bound.

P c
x̄

x∗

Figure 2: The gray area together with its boundary shows the
linear relaxation, which contains the feasible integral solu-
tions (white). x∗ is the optimum solution over the relaxation
w.r.t. the linear objective function cTx, whereas x̄ is the opti-
mum among all integral solutions.

A system of linear constraints describes a closed convex set,
which is bounded in our case (illustrated by the gray area in
Fig. 2). The integral points are shown as small disks, which
are white when they satisfy the linear constraints and thus cor-
respond to feasible solutions for the IP. Since the set of fea-
sible IP solutions is contained in the set of points that satisfy
the linear constraints, the latter is called Linear Programming
relaxation or LP relaxation. Moreover, this overestimation of
the feasible solutions implies that the minimum of a function
over the IP solutions is at least the minimum taken over the
relaxation. Hence, an optimum solution over the relaxation
yields a mathematical guarantee for the objective value of any
IP solution. The difference between the optimum objective
value of the IP and of the LP relaxation is called integrality
gap.

Finding an optimum of the LP relaxation is a convex opti-
mization problem, which can be solved efficiently, e.g. by In-
terior Point Methods (cf. Chapter 9 in [3]). If a variable of
an optimum LP solution, say x∗•, is not integer, it can be used
for branching, which splits the problem into two independent
subproblems. That is, the set of feasible solutions is divided
into disjoint pieces. In the example of Fig. 2, these are the
parts on and below the bottom dashed line, on and above the
top dashed line, and the strip between the two dashed lines,
where the latter does not contain integer points in its interior
and thus can be discarded in the search. This yields two new
child nodes in the branching tree with the new constraints
x• ≤ bx∗•c and x• ≥ dx∗•e, respectively. If all variables
are constrained between 0 and 1 as in the QAP, this amounts
to setting the branching variable to either 0 or 1 in the re-
spective subproblems. The interested reader is referred to the
textbook [24] for further details about this method.

LINEARIZATIONS
We present two linear formulations that are equivalent to the
QAP. However, they differ when the integrality constraints
x`j ∈ {0, 1} are relaxed to 0 ≤ x`j ≤ 1.

In a nutshell, the first formulation yields stronger lower
bounds, but requires much more space and takes longer to
solve in each node of the branch-and-bound tree. The sec-

3

ond one is much smaller and quicker to solve, but the lower
bounds are very weak. We propose to solve both IPs in par-
allel to use the former to obtain good lower bounds, and
the latter one to quickly explore the search space allowing
the solver’s built-in heuristics to improve the upper bound
rapidly.

Reformulation-Linearization Technique
The basic idea is to substitute all non-linear terms by new
variables and thus obtain a linear objective function. That
is, we introduce yijk` := xki · x`j . To obtain linear con-
straints, Adam and Johnson [1] observed that

∑
k yijk` =

x`j ·
∑

k xki = x`j . The intuition behind these additional
constraints is based on the following observations. If x`j = 0
then all products that contain x`j and thus all the correspond-
ing y-variables must be 0 as well. Since slot i contains exactly
one letter, yijk` is 1 for exactly one k and 0 otherwise, pro-
vided that x`j = 1. A similar arguments holds for the sum
over all slots i. Moreover, the products xki · x`j are non-
negative and commutative. This yields the IP formulation

min

n∑
i=1

n∑
j=1

n∑
k=1

n∑
`=1

pk`tijyijk` (7)

subject to

n∑
`=1

x`j = 1 ∀j ∈ {1, . . . , n} (8)

n∑
j=1

x`j = 1 ∀` ∈ {1, . . . , n} (9)

x`j ∈ {0, 1} ∀`, j ∈ {1, . . . , n} (10)
n∑

k=1

yijk` = x`j ∀i, j, ` ∈ {1, . . . , n} (11)

n∑
i=1

yijk` = x`j ∀j, k, ` ∈ {1, . . . , n} (12)

0 ≤ yijk` = yji`k ∀i, j, k, ` ∈ {1, . . . , n} (13)

such that all binary solutions are feasible assignments and
their cost is the same as in the quadratic case. It is also called
level-1 Reformulation-Linearization Technique (RLT1). As
the name suggests there are also higher levels of this tech-
niques considered in literature (up to 3), but their size grows
with a higher polynomial in n. Thus their memory require-
ments are much more demanding and as of yet impractical for
n > 27 [12]. Since even the size of RLT1 is quite challenging
for optimizing layouts with n = 34 characters, we do not yet
consider RLT2 and RLT3 in this work.

Kaufman-Broeckx Linearization
We also investigate a formulation by Kaufman and Broeckx
[14] that is minimal in terms of new variables. That is, instead
of the n4 variables yki`j only n2 variables

w`j = x`j

n∑
k=1

n∑
i=1

pk`tijxki

are introduced. Thus the objective function becomes

min

n∑
`=1

n∑
j=1

wij .

If x`j = 1, then the contribution of w`j to the objective is a
linear function, and it is 0 if x`j = 0. Hence, it suffices to add
the constraints

w`j ≥ 0

w`j ≥
n∑

k=1

n∑
i=1

pk`tijxki − aij · (1− x`j)

with a`j =
∑n

k=1

∑n
i=1 pk`tij . In fact, any upper bound on∑n

k=1

∑n
i=1 pk`tij will do for a`j such that the right-hand

side is at most 0 whenever x`j = 0 because in any optimum
solution w`j will be tight at the maximum of both right-hand
sides.

This formulation is much smaller in size and thus much eas-
ier to solve than RLT1, but the achieved lower bounds are
much weaker. It can be strengthened by replacing the non-
negativity constraints with the Gilmore-Lawler Bound [16].

Case: Symmetric Cost Function
We start by considering the Fitts-bigram energy case given in
Eq. 1. It covers virtual keyboards operated by moving a sin-
gle end-effector (e.g., stylus, finger, mouse) (e.g., [4, 8, 19,
25]). In this case, the instance becomes entirely symmetric
by replacing the probabilities with p′k` := (pk` + p`k)/2. We
thereby obtain a symmetric quadratic form as objective func-
tion. This symmetry can be exploited to reduce the size of the
formulations by a constant factor.

Case: Non-symmetric Cost Function
We encounter a non-symmetric cost function in cases where
the time cost of returning from slot ` to k is not equivalent
to that from k to `. An example that we later examine is the
ten-finger typing case. Here, typing “F” after ”I” receives a
different predicted movement time than typing “I” after “F.”
In these cases, we use the formulations as described above.

RESULTS
To evaluate the approach, we consider three previously stud-
ied cases of keyboard optimization. Our goal is not to “com-
pete” against random search. Rather the studies should be
understood as proofs-of-concept for the two main advantages
of IP: improved chance of finding the global optimum and the
estimation of bounds.

Figure 3 shows the winner layouts and provides an overview
of the optimization tasks. The cases differ in 1) keyboard lay-
out, 2) the size of search space, 3) objective function, and 4)
the existence of previous optimized layouts. In all cases, we
minimize movement time and assume constant button width
and no whitespace between buttons. Two of the keyboard
types (a, c) are actually in use by billions of users.

For each case, we used one computer with 32 Intel Xeon
2.70Ghz processors (16 physical, 32 virtual cores) and
256GB RAM. Both formulations for a case were solved in

4

parallel as proposed. Gurobi 5.6 was used with the Interior
Point Method to solve the root relaxation. The results re-
ported here were obtained within two days.

Case 1: 26 Letter Trapezoid Layout for Touchscreens
This case considers the trapezoid-shaped virtual keyboard
common on smartphones with touchscreens. The search
space is 4 × 1026. A previous case of this layout is given
in the multi-objective case of Dunlop and Levine [8].

Our objective function uses the Zhai-Hunter-Smith variant of
Fitts’ law [25] (a = 0.0, b = 0.084, c = 0.127). The bigram
distribution updates previously used distributions. We com-
bined two distributions representative of modern text entry
with smartphones, weighed 50/50: the mobile email set [23]
and the NUS SMS corpus [7]. We assume that the spacebar
is fixed to the elongated key on the bottom. The baselines are
Qwerty (33.65 wpm) and the Dvorak Simplified Keyboard
(DSK) (33.97 wpm). Computation was carried out using the
symmetric case described above.

The winner keyboard, presented in Figure 3 was computed
within 34 hours. The predicted wpm for the winner keyboard
is 43.10, which is within 4% of the global optimum. It is an
improvement of 28% over Qwerty.

Case 2: The Zhai-Hunter-Smith Hexagonal Layout
Our second case considers the hexagonal layout familiar from
the work of Zhai et al. [25]. The search space is 9 × 1030.
This is a keyboard operated on PDAs by using a stylus.

In our task, 29 characters are considered as shown in Figure
3. For direct comparison of results, we use the same objec-
tive function of Zhai et al. It was also used in a follow-up
paper by Bailly et al. that found the improved Justhci lay-
out [2]. The alphabetical, Metropolis [25], and Justhci [2]
keyboards achieve predicted rates of 32.37, 42.02, and 42.38
wpm, respectively. For IP solution, we use the symmetric
case described above.

The winner keyboard, presented in Figure 3 was computed
within 15 hours and lies within 7% of the global optimum.
Unlike in Justhci and Metropolis, the spacebar is not in the
middle. In comparison to Metropolis, not only letters E, A ,
I, but also O, is close to the spacebar. The predicted wpm is
42.65. It is an improvement of 0.6% over justhci, 1.5% over
metropolis, and 32 % over the alphabetical layout.

Case 3: 3-Row Physical Keyboard for Ten-Finger Typing
Our third case considers the full 34 character 3-row physi-
cal keyboard. The case is motivated as there are aspirations
to challenge Qwerty and optimize layouts for different lan-
guages [9]. Our task involves the 26 letters and the 8 most fre-
quent characters in our corpus. The search space is 3× 1038.

As the movement model, we use a previously ignored re-
gression model of ten-finger typing [13]. The Hiraga model
considers various effects of expert touch typists: finger and
hand differences, and effects of moving fingers up/down on
the key columns. More precisely, it predicts movement time
tij (msec) from keyslot i to j as

tij = 185.8−40h+18.3r−11.0f +0.154R+1.07F, (14)

where h, r, f , are parameters describing hand transition, row
transition, and finger transition, respectively, and R and F are
weights for row and fingers. See the original paper for values.
The caveat of this model is that the parameters were obtained
based on a single expert typist. However, its predictions for
the difference between Qwerty and DSK matches well with
empirical literature [17]. We are not aware of validating evi-
dence for the existing heuristic models (e.g., [9, 11]).

As the frequency distribution, we use a selection of chat
room data, mobile email, newspaper English, SMS data, and
Tweets, with uniform weighing2. Our baselines are the al-
phabetical, Qwerty, and DSK layouts, which receive 74.49,
73.21, and 76.59 wpm, respectively. For solution, we used
the non-symmetric approach described above.

The winner keyboard, presented in Figure 3, was found
within 7 minutes. The predicted wpm for the keyboard is
78.36. It is an improvement of 7.0% over Qwerty, and 2.3%
over DSK. This is computed to within 0.95% of the global op-
timum. We consider this a significant achievement given the
size of the search space. The layout has a prominent DSK-
like feature: the letters on the middle row have a large overlap
with those in DSK. Another interesting feature is that space-
bar and period are next to each other.

DISCUSSION
Our long-term goal is a general framework for using IP in
UI optimization together with random search methods. The
challenge is that although IP is already a general optimiza-
tion approach, performance is heavily dependent on the mod-
eling of case-specific properties and the choice of methods.
The results presented in this paper for keyboards are promis-
ing. Our techniques allowed for solving the “classic” 26 letter
Fitts-bigram case to a (guaranteed) 4 % range from optimality
and approaching optimality to a 1 % in the case of physical
keyboards, even if the search space was much larger. To our
knowledge, this is the first time that optimality bounds have
been presented in user interface optimization in HCI.

In the future, IP should be extended to cover other important
factors in keyboard optimization. One of them is error correc-
tion: Here the task is to make the local neighborhood of a key
as statistically unambigous as possible [8]. Another is predic-
tive text entry: Here the task is to assign letters on a reduced-
key grid in order to minimize the number of keypresses per
character. The third challenge is to consider how users at
various level of expertise should be taken into account. In
contrast, existing cost functions consider only expert perfor-
mance. The fourth is the varying size of keys. Here the chal-
lenge is to optimize not only the positions of letters but also
their individual size [25]. We presently see no reason why
IP could not be extended to cover these problems. However,
success will depend analytical work to find efficient models
for IP solvers.

We support further research efforts by offering instructions
on our project homepage for further cases in keyboard opti-
mization. The page informs how to replicate our results and

2All distributions and case data are released on the project hompage.

5

Q! J! P! U! R! L! D! C! K!

X! B! M! O! E! A! N! G!

F! Y! S! T! H! I!

Z!

V!

W!

space!

(a) Virtual trapezoidal: Pred. 43.10 wpm

M! I! N! O! U! V!

,! S! ! E! R! P! Q!

Y! T! A! L! B! X!

W! H! C! K! Z!

.! D! G! F! J!

(b) Virtual hexagonal: Pred. 42.65 wpm

K! -! ,! ?! !! :! J! V! Q!

H! U! I! E! A! R! N! T!

P! B! O! .! W! L!

;!

C!

M!

space!

Z! X!

D! S!

F! G!Y!

(c) Physical 3-row standard: Pred 78.36 wpm

Figure 3: The best keyboard designs identified for three keyboard optimization tasks.

extend the models to other problems by using familiar logical
terms and clauses.

CONCLUSION
Because keyboard design problems often include enormous
search spaces, it is important to research efficient and appro-
priate optimization methods. This paper has presented an
integer programming (IP) approach and applied it to three
cases of keyboard layout optimization. The results are fa-
vorable, showing clear improvements achieved over previous
baselines. Moreover, IP can inform the designer on how far
from the optimum a given design is, or how much a partic-
ular decision is going to cost. Our results show that some
very large problems can be computed to a 1% margin from
optimality. We emphasize that IP is complementary to other
approaches. That is, we may run them in parallel and layouts
might be injected as new incumbents in the branch-and-bound
process. Moreover, standard solvers like CPLEX and Gurobi
offer APIs to interact with the search via callbacks. In turn,
heuristic approaches benefit from IP because the latter reports
a guarantee for the quality of the solution. In the future, we
aim to extend this approach to other layout problems in HCI.

ACKNOWLEDGEMENTS
This research was funded by the Max Planck Center
for Visual Computing and Communication and the Clus-
ter of Excellence for Multimodal Computing and Inter-
action at Saarland University. Code and data are re-
leased on the project homepage at http://resources.mpi-
inf.mpg.de/keyboardoptimization/.

REFERENCES
1. Adams, W. P., and Johnson, T. A. Improved linear programming-based

lower bounds for the quadratic assignment problem. DIMACS 16
(1994), 43–75.

2. Bailly, G., et al. Menuoptimizer: Interactive optimization of menu
systems. In Proc. UIST, ACM (2013), 331–342.

3. Bertsimas, D., and Tsitsiklis, J. Introduction to Linear Optimization,
1st ed. Athena Scientific, 1997.

4. Bi, X., Smith, B. A., and Zhai, S. Multilingual touchscreen keyboard
design and optimization. Human–Computer Interaction 27, 4 (2012),
352–382.

5. Bixby, R., and Rothberg, E. Progress in computational mixed integer
programming. Annals of Operations Research 149, 1 (2007), 37–41.

6. Burkard, R. E., and Offermann, D. M. J. Entwurf von
schreibmaschinentastaturen mittels quadratischer zuordnungsprobleme.
Zeitschrift für Operations Research 21, 4 (1977), B121–B132.

7. Chen, T., and Kan, M.-Y. Creating a live, public short message service
corpus: The nus sms corpus. Language Resources and Evaluation 47, 2
(2013), 299–335.

8. Dunlop, M., and Levine, J. Multidimensional pareto optimization of
touchscreen keyboards for speed, familiarity and improved spell
checking. In Proc. CHI, ACM (2012), 2669–2678.

9. Eggers, J., et al. Optimization of the keyboard arrangement problem
using an ant colony algorithm. European Journal of Operational
Research 148, 3 (2003), 672–686.

10. Gajos, K., and Weld, D. S. Supple: automatically generating user
interfaces. In Proc. IUI, ACM (2004), 93–100.

11. Goettl, J. S., Brugh, A. W., and Julstrom, B. A. Call me e-mail:
arranging the keyboard with a permutation-coded genetic algorithm. In
Proc. Applied Computing, ACM (2005), 947–951.

12. Hahn, P. M., et al. A level-3 reformulation-linearization
technique-based bound for the quadratic assignment problem.
INFORMS J. on Computing 24, 2 (Apr. 2012), 202–209.

13. Hiraga, Y., et al. An assignment of key-codes for a japanese character
keyboard. In Proc. Computational Linguistics, ACL (1980), 249–256.

14. Kaufman, L., and Broeckx, F. An algorithm for the quadratic
assignment problem using bender’s decomposition. European Journal
of Operational Research 2, 3 (1978), 207–211.

15. Koopmans, T. C., and Beckmann, M. Assignment problems and the
location of economic activities. Econometrica: Journal of the
Econometric Society (1957), 53–76.

16. Lawler, E. L., and Wood, D. E. Branch-and-bound methods: A survey.
Operations research 14, 4 (1966), 699–719.

17. Lewis, J., Potosnak, K., and Magyar, R. Keys and keyboards.
Handbook of Human-Computer Interaction (1997), 1285–1315.

18. Loiola, E. M., de Abreu, N. M. M., Boaventura-Netto, P. O., Hahn, P.,
and Querido, T. A survey for the quadratic assignment problem (2007).
657–690.

19. MacKenzie, I. S., and Zhang, S. X. The design and evaluation of a
high-performance soft keyboard. In Proc. CHI, ACM (1999), 25–31.

20. Oulasvirta, A., et al. Improving two-thumb text entry on touchscreen
devices. In Proc. CHI, ACM (2013), 2765–2774.

21. Pollatschek, M., Gershoni, N., and Radday, Y. Optimization of the
typewritter keyboard by computer simulation. Angewandte Informatik
10 (1976), 438–439.

22. Rao, S. S. Engineering optimization. John Wiley & Sons, 2009.

23. Vertanen, K., and Kristensson, P. O. A versatile dataset for text entry
evaluations based on genuine mobile emails. In Proc. MobileHCI’11,
ACM (2011), 295–298.

24. Wolsey, L. A. Integer Programming, vol. 42. Wiley New York, 1998.

25. Zhai, S., Hunter, M., and Smith, B. A. Performance optimization of
virtual keyboards. Human–Computer Interaction 17, 2-3 (2002),
229–269.

6

	Introduction
	Background: The Letter Assignment Problem
	Previous Work Using Random Search Methods

	Overview of the Approach
	Formulation of the QAP as IP
	Branch-and-Bound
	Relaxation

	Linearizations
	Reformulation-Linearization Technique
	Kaufman-Broeckx Linearization

	Case: Symmetric Cost Function
	Case: Non-symmetric Cost Function

	Results
	Case 1: 26 Letter Trapezoid Layout for Touchscreens
	Case 2: The Zhai-Hunter-Smith Hexagonal Layout
	Case 3: 3-Row Physical Keyboard for Ten-Finger Typing

	Discussion
	Conclusion
	Acknowledgements
	REFERENCES

