A Novel Dual Ascent Algorithm for Solving the Min-Cost Flow Problem

Ruben Becker, Maximilan Fickert and Andreas Karrenbauer

Max Planck Institute for Informatics

January 11, 2016
The Min-Cost Flow Problem

Given **directed** graph \(G = (V, A) \) with

- **arc costs** \(c \in \mathbb{Z}^m \), **arc capacities** \(u \in (\mathbb{N} \cup \{\infty\})^m \)
- **node demands** \(b \in \mathbb{Z}^n \) with \(1^T b = 0 \)

A flow \(x \in \mathbb{R}^m \) is **feasible**, if

- for all \(v \in V \):
 \[x(\delta^{\text{in}}(v)) - x(\delta^{\text{out}}(v)) = b_v, \]
- \(0 \leq x \leq u \)

Output feasible flow \(x^* \in \mathbb{R}^m \) with \(c^T x^* \leq c^T x \) for all feasible \(x \)

or infeasible/unbounded.
LP-Formulation and Dual Problem

The Problem

The Dual Ascent Algorithm

Experimental Evaluation

Node-Arc Incidence Matrix $A \in \mathbb{R}^{n \times m}$

\[A_{va} = \begin{cases}
-1 & \text{if } a = (v, __)
\end{cases} \]

\[1 & \text{if } a = (_, v)
\]

\[0 & \text{otherwise} \]

\[\begin{align*}
\text{Primal Dual LP pair:} \\
& \min \{ c^T x : Ax = b \text{ and } 0 \leq x \leq u \} \\
& = \max \{ b^T y - u^T z : A^T y - z \leq c \text{ and } z \geq 0 \} \\
\text{Dual Constraints:} & \quad y_w - y_v - z_a \leq c_a \\
& \quad z_a \geq 0 \\
\text{Dual Ascent:} & \quad \text{Start with } y = 0 \text{ and } x = 0 \\
& \quad \text{Dual Step: improve optimality of } y \\
& \quad \text{Primal Step: improve feasibility of } x
\end{align*} \]
Previous Work

Classical Combinatorial
- $O(m \log U \cdot SP_+(n, m, C))$
 Edmonds and Karp, 1972
- $O(m^2 \log n \cdot MF(n, m))$
 Tardos, 1985
- $O(nm \log \log U \cdot \log(nC))$
 Ahuja, Goldberg, Orlin and Tarjan, 1992
- etc.

Interior Point Methods
- $O(n^2 \sqrt{m} \log(n \max\{U, C\}))$
 Vaidya, 1989
- $O(nm^2L)$ combinatorial
 Wallacher and Zimmermann, 1992
- expected $\tilde{O}(m^{3/2} \log U)$
 Daitch and Spielman, 2008
- expected $\tilde{O}(m \sqrt{n} \log^2 U)$,
 Lee and Sidford, 2014

- In **theory the interior point methods**
 dominate over the combinatorial approaches.

- In **practice the combinatorial algorithms** perform quite well.
Preliminaries and Invariants

Let \(y \in \mathbb{R}^n \) and \(x \in \mathbb{R}_{\geq 0}^m \), define

- **reduced costs:**
 \[c^y_a := c_a + y_v - y_w \]

- **residual demands:**
 \[b^x_v = b_v - \sum_{a \in \delta^\text{in}_v} x_a + \sum_{a \in \delta^\text{out}_v} x_a \]

Complementary Slackness Conditions

\[c^y_a > 0 \implies x_a = 0 \]
\[c^y_a < 0 \implies x_a = u_a \quad \text{for all } a \in A. \]
\[0 < x_a < u_a \implies c^y_a = 0 \]

Residual Network \(G^x \)

- \(c_a, u_a \) with flow \(x_a \)
- \(c_a, u_a - x_a \)
- \(-c_a, x_a \)

Invariants of the Algorithm

- \(x \) fulfills the capacity constraints,
- \((y, z)\) is dual feasible and
- complementary slackness holds.
Shift Potentials Along a Cut

\[b^x(S) < 0 \quad b^x(V \setminus S) > 0 \]

\[\delta^{\text{in}}_{G^x}(S) \quad \delta^{\text{out}}_{G^x}(S) \]

\[\max b^T y - u^T z \]

\[y_w - y_v - z_a \leq c_a \]

\[z_a \geq 0 \]

\[c^y_a := c_a + y_v - y_w \]

\[z^y_a := \max\{0, -c^y_a\} \]

\[\Delta := \min_{a=(v,w) \in \delta^{\text{out}}_{G^x}(S)} \{c^y_a\} \]

- this preserves complementary slackness
- yields \(c^y_a' = 0 \) for at least one \(a \in \delta^{\text{out}}_{G^x}(S) \)
- \(b^T y' - u^T z^y' \geq b^T y - u^T z^y \)
- If \(b^x(S) \geq 0 \), a symmetric approach works.
The Problem
The Dual Ascent Algorithm
Experimental Evaluation

The Algorithm

Dual Step – Improve Optimality of y

- Construct **nested cuts** $\{s\} = S_1 \subset S_2 \subset \ldots \subset S_n = V$.
- The picked arcs form a **spanning tree** T of G^x with $c^y_a = 0$ for all $a \in T$.

Primal Step – Improve Feasibility of x

- Send maximum flow on T from the sources to the sinks.
- Reduces $\|b^x\|_1$ by at least 2.

Theorem

The algorithm terminates and returns a correct result in $O(\|b\|_1(m + n \log n))$ time.
Why Would This Be a Good Idea?

- Classical algorithms like Successive Shortest Path send flow along one path in one iteration.
- Our Algorithm can send flow along one spanning tree in one iteration.
- When forming the spanning tree, it takes sign $b^x(S)$ into account.
Experimental Runtime Analysis

Generate 2D Grid Graphs of fixed size

- draw $c \in [\neg C, C]^m$ and $u \in [0, U]^m$ uniformly at random
- generate demands by saturating negative cost arcs
- there is a linear dependence between U and $\|b\|_1$

- seems to be no significant influence of C on the run-time
- dependence of the run-time proportional to $\|b\|_1^{1/2}$
Variants of the Algorithm

Primal Update
- **rbn**: max-flow on T from sources to sinks
- **defupt**: greedily send residual demand up the tree T

Interrupting Dual Step
- **def0**: interrupt dual step if residual demand of S is zero
- **sc**: interrupt dual step if sign of residual demand of S changes

Also evaluated: choice of starting node, different priority queues, etc.
Comparison with Other Algorithms

<table>
<thead>
<tr>
<th></th>
<th>our</th>
<th>ssp</th>
<th>ns</th>
<th>cos</th>
</tr>
</thead>
<tbody>
<tr>
<td>netgen_sr</td>
<td>1.34 ± 0.02</td>
<td>1.42 ± 0.01</td>
<td>1.25 ± 0.02</td>
<td>1.17 ± 0.02</td>
</tr>
<tr>
<td>netgen_8</td>
<td>1.37 ± 0.02</td>
<td>1.80 ± 0.02</td>
<td>1.69 ± 0.02</td>
<td>1.22 ± 0.01</td>
</tr>
<tr>
<td>goto_8</td>
<td>1.66 ± 0.04</td>
<td>2.03 ± 0.02</td>
<td>2.17 ± 0.03</td>
<td>1.53 ± 0.02</td>
</tr>
<tr>
<td>road_paths</td>
<td>1.33 ± 0.03</td>
<td>1.40 ± 0.04</td>
<td>1.74 ± 0.03</td>
<td>1.50 ± 0.02</td>
</tr>
<tr>
<td>road_flow</td>
<td>1.42 ± 0.03</td>
<td>1.43 ± 0.04</td>
<td>1.76 ± 0.04</td>
<td>1.46 ± 0.03</td>
</tr>
</tbody>
</table>

Table: Exponents of the run-time dependence on m.

- The algorithm is better than `ns` on **all but the dense graph class**.
- It beats `ssp` on **all instance classes**.
- It beats all implementations on the **road instances**.
Thanks for listening!