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The Min-Cost Flow Problem

Given directed graph G = (V ,A) with

arc costs c ∈ Zm, arc capacities u ∈ (N ∪ {∞})m

node demands b ∈ Zn with 1Tb = 0
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A flow x ∈ Rm is feasible, if

for all v ∈ V :
x(δin(v))− x(δout(v)) = bv ,

0 ≤ x ≤ u

The Min-Cost Flow Problem

Output feasible flow x∗ ∈ Rm with cT x∗ ≤ cT x for all feasible x
or infeasible/unbounded.
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LP-Formulation and Dual Problem
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Node-Arc Incidence Matrix A ∈ Rn×m

Ava =


−1 if a = (v , )

1 if a = ( , v)

0 otherwise.

Primal Dual LP pair:

min{cT x : Ax = b and 0 ≤ x ≤ u}
= max{bT y − uT z : AT y − z ≤ c and z ≥ 0}

Dual Constraints: yw − yv − za ≤ ca
za ≥ 0

Dual Ascent: – Start with y = 0 and x = 0
– Dual Step: improve optimality of y
– Primal Step: improve feasibility of x

for all a = (v ,w) ∈ A
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Previous Work

Classical Combinatorial

O(m logU · SP+(n,m,C))
Edmonds and Karp, 1972

O(m2 log n ·MF(n,m))
Tardos, 1985

O(nm log logU · log(nC))
Ahuja, Goldberg, Orlin and
Tarjan, 1992

etc.

Interior Point Methods

O(n2√m log(nmax{U,C}))
Vaidya, 1989

O(nm2L) combinatorial
Wallacher and Zimmermann, 1992

expected Õ(m3/2 logU)
Daitch and Spielman, 2008

expected Õ(m
√
n log2 U),

Lee and Sidford, 2014

In theory the interior point methods
dominate over the combinatorial approaches.

In practice the combinatorial algorithms perform quite well.
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Preliminaries and Invariants

Let y ∈ Rn and x ∈ Rm
≥0, define

reduced costs: cya := ca + y v − yw

residual demands: bxv = bv −
∑

a∈δinv xa +
∑

a∈δoutv
xa

Complementary Slackness Conditions

cya > 0 =⇒ xa = 0

cya < 0 =⇒ xa = ua for all a ∈ A.

0 < xa < ua =⇒ cya = 0

Residual Network G x

v w
ca, ua

with flow xa

v w

ca, ua − xa

−ca, xa

Invariants of the Algorithm

x fulfills the capacity constraints,

(y , z) is dual feasible and

complementary slackness holds.
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Shift Potentials Along a Cut

S

V \ S

δout
G x (S)δin

G x(S)

v
w

+∆

maximize bT y − uT z
yw − y v − za ≤ ca

za ≥ 0

cya := ca + y v − yw

zya := max{0,−cya}

bx (S) < 0

bx (V \ S) > 0

S

∆ := mina=(v ,w)∈δout
Gx (S){cya}

this preserves complementary slackness

yields cy
′

a = 0 for at least one a ∈ δoutG x (S)

bT y ′ − uT zy
′ ≥ bT y − uT zy

If bx(S) ≥ 0, a symmetric approach works.
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The Algorithm

Dual Step – Improve Optimality of y

Construct nested cuts {s} = S1 ⊂ S2 ⊂ . . . ⊂ Sn = V .

The picked arcs form a spanning tree T of G x

with cy
′

a = 0 for all a ∈ T .

Primal Step – Improve Feasibility of x

Send maximum flow on T from the sources to the sinks.

Reduces ‖bx‖1 by at least 2.

Theorem

The algorithm terminates and returns a correct result
in O(‖b‖1(m + n log n)) time.
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Why Would This Be a Good Idea?
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Classical algorithms like Successive Shortest Path
send flow along one path in one iteration.

Our Algorithm can send flow
along one spanning tree in one iteration.

When forming the spanning tree, it takes sign bx(S) into account.
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Experimental Runtime Analysis

Generate 2D Grid Graphs of fixed size

draw c ∈ [−C ,C ]m and u ∈ [0,U]m uniformly at random

generate demands by saturating negative cost arcs

there is a linear dependence between U and ‖b‖1
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seems to be no significant influence of C on the run-time

dependence of the run-time proportional to ‖b‖1/21
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Variants of the Algorithm

Primal Update

rbn: max-flow on T
from sources to sinks

defupt: greedily send
residual demand up the tree T
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Interrupting Dual Step

def0: interrupt dual step
if residual demand of S is zero

sc: interrupt dual step if sign of
residual demand of S changes
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no breaking
def0
sc

Also evaluated: choice of starting node, different priority queues, etc.
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Comparison with Other Algorithms

our ssp ns cos

netgen sr 1.34 ± 0.02 1.42 ± 0.01 1.25 ± 0.02 1.17 ± 0.02

netgen 8 1.37 ± 0.02 1.80 ± 0.02 1.69 ± 0.02 1.22 ± 0.01

goto 8 1.66 ± 0.04 2.03 ± 0.02 2.17 ± 0.03 1.53 ± 0.02

road paths 1.33 ± 0.03 1.40 ± 0.04 1.74 ± 0.03 1.50 ± 0.02

road flow 1.42 ± 0.03 1.43 ± 0.04 1.76 ± 0.04 1.46 ± 0.03

Table : Exponents of the run-time dependence on m.

The algorithm is better than ns on all but the dense graph class.

It beats ssp on all instance classes.

It beats all implementations on the road instances.
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Thanks for listening!

January 11, 2016 12/12


	The Problem
	The Dual Ascent Algorithm
	Experimental Evaluation

