

A Novel Dual Ascent Algorithm for Solving the Min-Cost Flow Problem

Ruben Becker, Maximilan Fickert and Andreas Karrenbauer

Max Planck Institute for Informatics

January 11, 2016

The Min-Cost Flow Problem

Given **directed** graph G = (V, A) with

- arc costs $c \in \mathbb{Z}^m$, arc capacities $u \in (\mathbb{N} \cup \{\infty\})^m$
- node **demands** $b \in \mathbb{Z}^n$ with $\mathbb{1}^T b = 0$

A flow
$$x \in \mathbb{R}^m$$
 is **feasible**, if
• for all $v \in V$:
 $x(\delta^{in}(v)) - x(\delta^{out}(v)) = b_v$,
• $0 \le x \le u$

The Min-Cost Flow Problem

Output feasible flow $x^* \in \mathbb{R}^m$ with $c^T x^* \leq c^T x$ for all feasible x or infeasible/unbounded.

The Dual Ascent Algorithm 0000

Experimental Evaluation 0000

LP-Formulation and Dual Problem

Node-Arc Incidence Matrix $A \in \mathbb{R}^{n \times m}$

$$A_{\boldsymbol{v}\boldsymbol{a}} = \begin{cases} -1 & \text{if } \boldsymbol{a} = (\boldsymbol{v}, \ldots) \\ 1 & \text{if } \boldsymbol{a} = (\ldots, \boldsymbol{v}) \\ 0 & \text{otherwise.} \end{cases}$$

etc.

The Dual Ascent Algorithm 0000

Previous Work

Classical Combinatorial

- $O(m \log U \cdot SP_+(n, m, C))$ Edmonds and Karp, 1972
- $O(m^2 \log n \cdot \mathsf{MF}(n, m))$ Tardos, 1985
- O(nm log log U · log(nC)) Ahuja, Goldberg, Orlin and Tarjan, 1992

Interior Point Methods

- $O(n^2 \sqrt{m} \log(n \max\{U, C\}))$ Vaidya, 1989
- O(nm²L) combinatorial
 Wallacher and Zimmermann, 1992
- expected $\tilde{O}(m^{3/2} \log U)$ Daitch and Spielman, 2008
- expected $\tilde{O}(m\sqrt{n}\log^2 U)$, Lee and Sidford, 2014
- In theory the interior point methods dominate over the combinatorial approaches.
- In practice the combinatorial algorithms perform quite well.

Preliminaries and Invariants

Let
$$y \in \mathbb{R}^n$$
 and $x \in \mathbb{R}^m_{>0}$, define

- reduced costs: $c_a^y := c_a + y_v y_w$
- residual demands:

$$b_{v}^{\mathsf{x}} = b_{v} - \sum_{a \in \delta_{v}^{\mathsf{in}}} \mathbf{x}_{a} + \sum_{a \in \delta_{v}^{\mathsf{out}}} \mathbf{x}_{a}$$

Complementary Slackness Conditions

$$\begin{array}{ccc} \boldsymbol{c}_{\boldsymbol{a}}^{\boldsymbol{y}} > 0 & \Longrightarrow & \boldsymbol{x}_{\boldsymbol{a}} = 0 \\ \boldsymbol{c}_{\boldsymbol{a}}^{\boldsymbol{y}} < 0 & \Longrightarrow & \boldsymbol{x}_{\boldsymbol{a}} = \boldsymbol{u}_{\boldsymbol{a}} & \text{for all } \boldsymbol{a} \in \boldsymbol{A}. \\ 0 < \boldsymbol{x}_{\boldsymbol{a}} < \boldsymbol{u}_{\boldsymbol{a}} & \Longrightarrow & \boldsymbol{c}_{\boldsymbol{a}}^{\boldsymbol{y}} = 0 \end{array}$$

Invariants of the Algorithm

- fulfills the capacity constraints,
- (y, z) is **dual feasible** and
- complementary slackness holds.

The Dual Ascent Algorithm 0000

Experimental Evaluation 0000

Shift Potentials Along a Cut

this preserves complementary slackness

• yields
$$m{c}^{\mathcal{Y}'}_{a}=0$$
 for at least one $a\in \delta^{ ext{out}}_{\mathcal{G}^{ ext{x}}}(\mathcal{S})$

•
$$b^T y' - u^T z^{y'} \ge b^T y - u^T z^{y}$$

max planck institut informatik

• If $b^{x}(S) \ge 0$, a symmetric approach works.

The Algorithm

Dual Step – Improve Optimality of y

- Construct nested cuts $\{s\} = S_1 \subset S_2 \subset \ldots \subset S_n = V$.
- The picked arcs form a spanning tree T of G^x

with $c_a^{y'} = 0$ for all $a \in T$.

Primal Step – Improve Feasibility of x

- Send maximum flow on T from the sources to the sinks.
- Reduces $||b^{\times}||_1$ by at least 2.

Theorem

The algorithm terminates and returns a correct result in $O(||b||_1(m + n \log n))$ time.

The Dual Ascent Algorithm

Experimental Evaluation 0000

Why Would This Be a Good Idea?

- Classical algorithms like Successive Shortest Path send flow along one path in one iteration.
- Our Algorithm can send flow

max planck institut

along one spanning tree in one iteration.

• When forming the spanning tree, it takes sign $b^{x}(S)$ into account.

Experimental Runtime Analysis

Generate 2D Grid Graphs of fixed size

- draw $\boldsymbol{c} \in [-\boldsymbol{C}, \boldsymbol{C}]^m$ and $\boldsymbol{u} \in [0, \boldsymbol{U}]^m$ uniformly at random
- generate demands by saturating negative cost arcs
- there is a linear dependence between U and $||b||_1$

seems to be no significant influence of C on the run-time
 dependence of the run-time proportional to ||b||₁^{1/2}

Variants of the Algorithm

Primal Update

- rbn: max-flow on T from sources to sinks
- defupt: greedily send residual demand up the tree T

Interrupting Dual Step

- def0: interrupt dual step if residual demand of S is zero
- sc: interrupt dual step if sign of residual demand of S changes

Also evaluated: choice of starting node, different priority queues, etc.

Comparison with Other Algorithms

	our	ssp	ns	cos
$netgen_sr$	1.34 ± 0.02	1.42 ± 0.01	1.25 ± 0.02	$\textbf{1.17} \pm 0.02$
netgen_8	1.37 ± 0.02	1.80 ± 0.02	1.69 ± 0.02	$\textbf{1.22}\pm0.01$
goto_8	1.66 ± 0.04	2.03 ± 0.02	2.17 ± 0.03	$\textbf{1.53} \pm 0.02$
$road_paths$	1.33 ± 0.03	1.40 ± 0.04	1.74 ± 0.03	1.50 ± 0.02
road_flow	1.42 ± 0.03	1.43 ± 0.04	1.76 ± 0.04	1.46 ± 0.03

Table : Exponents of the run-time dependence on m.

- The algorithm is better than **ns** on **all but the dense graph class**.
- It beats ssp on all instance classes.
- It beats all implementations on the road instances.

Thanks for listening!

