Coherent Spatiotemporal Filtering, Upsampling and Rendering of RGBZ Videos

Christian Richardt1,2 Carsten Stoll1 Neil A. Dodgson2
Hans-Peter Seidel1 Christian Theobalt1

1 Max Planck Institut für Informatik
2 University of Cambridge
Unfiltered depth map
Introduction & motivation

- our work tackles the noisy, low-resolution depth data: filter colour + depth to upsample and denoise depth
- capturing colour + depth enables a variety of compelling, previously impossible video effects
- prototype video camera + video processing algorithms = effective and robust capture of RGBZ video
- result: dynamic, temporally coherent scene geometry, calculated at interactive frame rates
Related work – geometry capture

- four main approaches to capture dynamic geometry:
 1. photometric stereo / shape-from-shading

[Malzbender et al. 2006]
Related work – geometry capture

- four main approaches to capture dynamic geometry:
 1. photometric stereo / shape-from-shading
 2. active stereo / structured light

[Lanman and Taubin 2009]
Related work – geometry capture

- four main approaches to capture dynamic geometry:
 1. photometric stereo / shape-from-shading
 2. active stereo / structured light
 3. structure-from-motion & stereo vision

[Scharstein and Szeliski 2003]
Related work – geometry capture

- four main approaches to capture dynamic geometry:
 1. photometric stereo / shape-from-shading
 2. active stereo / structured light
 3. structure-from-motion & stereo vision
 4. time-of-flight cameras

[Iddan and Yahav 2001]
Related work – depth upsampling

- Markov random fields
 [Diebel and Thrun 2006]
Related work – depth upsampling

- Markov random fields
 [Diebel and Thrun 2006]

- spatial-depth super-resolution
 [Yang et al. 2007]
Related work – depth upsampling

- Markov random fields
 [Diebel and Thrun 2006]

- spatial-depth super-resolution
 [Yang et al. 2007]

- joint-bilateral upsampling
 [Kopf et al. 2007]
Related work – depth upsampling

- Markov random fields
 [Diebel and Thrun 2006]
- spatial-depth super-resolution
 [Yang et al. 2007]
- joint-bilateral upsampling
 [Kopf et al. 2007]
- noise-aware filtering
 [Chan et al. 2008]
Related work – depth upsampling

- **Markov random fields**
 [Diebel and Thrun 2006]

- **spatial-depth super-resolution**
 [Yang et al. 2007]

- **joint-bilateral upsampling**
 [Kopf et al. 2007]

- **noise-aware filtering**
 [Chan et al. 2008]

- **time-of-flight + stereo**
 [Beder et al. 2007, Zhu et al. 2008]
Related work – depth upsampling

- Markov random fields
 [Diebel and Thrun 2006]
- spatial-depth super-resolution
 [Yang et al. 2007]
- joint-bilateral upsampling
 [Kopf et al. 2007]
- noise-aware filtering
 [Chan et al. 2008]
- time-of-flight + stereo
 [Beder et al. 2007, Zhu et al. 2008]
- upsampling dynamic range data
 [Dolson et al. 2010]
Related work – depth-based stylisation

- NPR camera
 [Raskar et al. 2004]

http://richardt.name/rgbz-camera/
Related work – depth-based stylisation

- NPR camera
 [Raskar et al. 2004]

- 2.5-D video stylisation
 [Snavely et al. 2006]
Related work – depth-based stylisation

- NPR camera
 [Raskar et al. 2004]

- 2.5-D video stylisation
 [Snavely et al. 2006]

- photometric surface enhancement
 [Malzbender et al. 2006]
Related work – depth-based stylisation

- NPR camera
 [Raskar et al. 2004]

- 2.5-D video stylisation
 [Snavely et al. 2006]

- photometric surface enhancement
 [Malzbender et al. 2006]

- Images with normals
 [Toler-Franklin et al. 2007]
Related work – depth-based stylisation

- **NPR camera**
 [Raskar et al. 2004]

- **2.5-D video stylisation**
 [Snavely et al. 2006]

- **Photometric surface enhancement**
 [Malzbender et al. 2006]

- **Images with normals**
 [Toler-Franklin et al. 2007]

- **Context-aware light source**
 [Wang et al. 2010]
Prototype camera hardware

- **depth sensor:**
 - MESA Imaging SR4000
 - 176 × 144 resolution

- **video camera:**
 - PointGrey Flea2
 - 1024 × 768 resolution

- **hardware synchronised**
Microsoft Kinect

- low-cost IR-based active stereo + colour camera in one case
- our approach is also applicable to the Kinect
- but our prototype gives us full hardware + software control
Points to address

- Resolution mismatch

176 × 144 ∆ 1024 × 768
Points to address

- Resolution mismatch
- Video alignment
Points to address

- Resolution mismatch
- Video alignment
- Noisy depth data
Points to address

- Resolution mismatch
- Video alignment
- Noisy depth data
- Half-occlusions

![Diagram showing background, foreground, depth camera, and video camera]

Christian Richardt et al.
http://richardt.name/rgbz-camera/
video processing pipeline

- video alignment
- invalidation & fill-in
- geometry filtering

RGBZ video effects

- video relighting
- video abstraction
- stereoscopic 3D
- stroke-based rendering
- background segmentation
Video alignment

depth map

colour image
Video alignment

depth map

colour image
Video alignment

depth map

colour image
Video alignment

depth map
colour image
Coherent Spatiotemporal Filtering, Upsampling and Rendering of RGBZ Videos

depth map

colour image

depth & map

colour & image

http://richardt.name/rgbz-camera/
Video alignment

depth map

colour image
Video alignment

depth map

colour image
Video alignment

depth map

colour image
Video alignment

depth map
colour image

http://richardt.name/rgbz-camera/
Video alignment

depth map

colour image
Geometry invalidation and fill-in

background

foreground

depth camera
colour camera
Geometry invalidation and fill-in

- background
- foreground

depth camera
colour camera

http://richardt.name/rgbz-camera/
Geometry invalidation and fill-in

background

foreground

depth camera

colour camera
Geometry invalidation and fill-in

background

foreground

depth camera

colour camera
Geometry invalidation and fill-in

- background
- foreground

- depth camera
- colour camera

http://richardt.name/rgbz-camera/
Geometry invalidation and fill-in
Geometry invalidation and fill-in

- Background
- Foreground
- Depth camera
- Colour camera
Geometry invalidation and fill-in

background

foreground

depth camera

colour camera
Geometry invalidation and fill-in

background

foreground

depth camera

colour camera
Geometry invalidation and fill-in
Geometry invalidation and fill-in

aligned geometry (before invalidation)
Geometry invalidation and fill-in

invalidated geometry (in orange)
Geometry invalidation and fill-in

single-resolution fill-in ($\sigma_s = 27$)

70.2 ms

92.8 ms
Geometry invalidation and fill-in

single-resolution fill-in ($\sigma_s = 10$)

10.4 ms

14.8 ms
Geometry invalidation and fill-in

single-resolution fill-in ($\sigma_s = 10$)

10.4 ms

14.8 ms
Geometry invalidation and fill-in

single-resolution fill-in ($\sigma_s = 10$)

10.4 ms

14.8 ms
Geometry invalidation and fill-in

our multi-resolution fill-in ($n = 3$, $g = 3$, $\sigma_s = 3$)

13.7 ms

15.1 ms
Geometry invalidation and fill-in

colour image (level $k = 0$)

invalidated (level $k = 0$)
Geometry invalidation and fill-in

colour image (level \(k = 1 \))

invalidated (level \(k = 1 \))
Geometry invalidation and fill-in

colour image (level $k = 2$)

invalidated (level $k = 2$)
Geometry invalidation and fill-in

colour image (level $k = 2$)

filled-in (level $k = 2$)
Geometry invalidation and fill-in

colour image (level $k = 1$)

invalidated (level $k = 1$)
Geometry invalidation and fill-in

colour image (level $k = 1$)
sparsely upsampled ($k = 1$)
Geometry invalidation and fill-in

![colour image (level k = 1)](image1)

![filled-in (level k = 1)](image2)
Geometry invalidation and fill-in

colour image (level \(k = 0\))

filled-in (level \(k = 0\))
Spatial-only geometry filtering

\[f_s(x, t) = \frac{\sum_{y \in N_x} w(x, y) \cdot d(y, t)}{\sum_{y \in N_x} w(x, y)} \]
Spatial-only geometry filtering

\[f_s(x, t) = \sum_{y \in N_x} w(x, y) \cdot d(y, t) \]
Spatial-only geometry filtering

\[f_s(x, t) = \sum_{y \in N_x} w_c(x, y) \cdot w_d(x, y) \cdot w_s(x, y) \cdot d(y, t) \]
Spatial-only geometry filtering

\[f_s(x, t) = \sum_{y \in N_x} w_c(x, y) \cdot w_d(x, y) \cdot w_s(x, y) \cdot d(y, t) \]

\[w_c(x, y) = \exp\left(-g_c \cdot \|i(x, t) - i(y, t)\|^2 / 2\sigma_c^2\right) \]
Spatial-only geometry filtering

\[f_s(x, t) = \sum_{y \in N_x} w_c(x, y) \cdot w_d(x, y) \cdot w_s(x, y) \cdot d(y, t) \]

- Colour weight:
 \[w_c(x, y) = \exp\left(-g_c \cdot \|i(x, t) - i(y, t)\|^2 / 2\sigma_c^2 \right) \]

- Distance weight:
 \[w_d(x, y) = \exp\left(- |d(x, t) - d(y, t)|^2 / 2\sigma_d^2 \right) \]
Spatial-only geometry filtering

\[
f_s(\mathbf{x}, t) = \sum_{y \in N_x} w_c(\mathbf{x}, y) \cdot w_d(\mathbf{x}, y) \cdot w_s(\mathbf{x}, y) \cdot d(y, t)
\]

- **colour weight**
 \[
w_c(\mathbf{x}, y) = \exp\left(-g_c \cdot \|i(\mathbf{x}, t) - i(y, t)\|^2 / 2\sigma_c^2\right)
\]

- **distance weight**
 \[
w_d(\mathbf{x}, y) = \exp\left(-\|d(\mathbf{x}, t) - d(y, t)\|^2 / 2\sigma_d^2\right)
\]

- **spatial weight**
 \[
w_s(\mathbf{x}, y) = \exp\left(-\|\mathbf{x} - \mathbf{y}\|^2 / 2\sigma_s^2\right)
\]
Spatial-only filtering results

Aligned, but unfiltered

Spatially filtered
Spatiotemporal geometry filtering

\[f_{ST}(x, t) \]

spatiotemporal filter
Spatiotemporal geometry filtering

\[f_{ST}(x, t) = \varphi \cdot f_{s}(x, t) \]

spatiotemporal filter spatial filter
Spatiotemporal geometry filtering

\[f_{ST}(x, t) = \varphi \cdot f_S(x, t) + (1 - \varphi) \cdot f_T(x, t) \]

spatiotemporal filter \hspace{1cm} spatial filter \hspace{1cm} temporal filter
Spatiotemporal geometry filtering

\[f_{ST}(x, t) = \varphi \cdot f_S(x, t) + (1 - \varphi) \cdot f_T(x, t) \]

sppatiotemporal filter spatial filter temporal filter

\[f_T(x, t) = \sum_{y \in N_x} w(x, y, \bar{x}, \bar{y}) \cdot f_{ST}(\bar{y}, t-1) \]
Spatiotemporal geometry filtering

\[f_{ST}(\mathbf{x}, t) = \varphi \cdot f_S(\mathbf{x}, t) + (1 - \varphi) \cdot f_T(\mathbf{x}, t) \]

spatiotemporal filter
spatial filter
temporal filter

\[f_T(\mathbf{x}, t) = \sum_{y \in \mathcal{N}_x} w(\mathbf{x}, y, \bar{x}, \bar{y}) \cdot f_{ST}(\bar{y}, t-1) \]
Spatiotemporal geometry filtering

\[f_{ST}(x, t) = \varphi \cdot f_S(x, t) + (1 - \varphi) \cdot f_T(x, t) \]

spatiotemporal filter \quad spatial filter \quad temporal filter

\[f_T(x, t) = \sum_{y \in \mathcal{N}_x} w_c(x, y) \cdot w_d(x, y) \cdot w_s(x, y) \cdot w_f(y, y) \cdot f_{ST}(y, t-1) \]
Spatiotemporal geometry filtering

\[f_{ST}(x, t) = \varphi \cdot f_S(x, t) + (1 - \varphi) \cdot f_T(x, t) \]

spatiotemporal filter
spatial filter
temporal filter

\[f_S(x, t) = \sum_{y \in N_x} w_c(x, y) \cdot w_d(x, y) \cdot w_s(x, y) \cdot d(y, t) \]

\[f_T(x, t) = \sum_{y \in N_x} w_c(x, \bar{y}) \cdot w_d(x, \bar{y}) \cdot w_s(x, \bar{y}) \cdot w_f(y, \bar{y}) \cdot f_{ST}(\bar{y}, t-1) \]
Spatiotemporal geometry filtering

\[
f_{ST}(\mathbf{x}, t) = \varphi \cdot f_S(\mathbf{x}, t) + (1 - \varphi) \cdot f_T(\mathbf{x}, t)
\]

spatiotemporal filter \quad spatial filter \quad temporal filter

\[
f_S(\mathbf{x}, t) = \sum_{y \in N_x} w_c(\mathbf{x}, y) \cdot w_d(\mathbf{x}, y) \cdot w_s(\mathbf{x}, y) \cdot d(y, t)
\]

\[
f_T(\mathbf{x}, t) = \sum_{y \in N_x} w_c(\mathbf{x}, \overline{y}) \cdot w_d(\mathbf{x}, \overline{y}) \cdot w_s(\overline{\mathbf{x}}, \overline{y}) \cdot w_f(y, \overline{y}) \cdot f_{ST}(\overline{y}, t-1)
\]
Spatiotemporal geometry filtering

\[f_{ST}(x, t) = \varphi \cdot f_S(x, t) + (1 - \varphi) \cdot f_T(x, t) \]

spatiotemporal filter \hspace{2cm} spatial filter \hspace{2cm} temporal filter

\[f_S(x, t) = \sum_{y \in N_x} w_c(x, y) \cdot w_d(x, y) \cdot w_s(x, y) \cdot d(y, t) \]

\[f_T(x, t) = \sum_{y \in N_x} w_c(x, \bar{y}) \cdot w_d(x, \bar{y}) \cdot w_s(x, \bar{y}) \cdot w_f(y, \bar{y}) \cdot f_{ST}(\bar{y}, t-1) \]
Spatiotemporal geometry filtering

\[f_{ST}(x, t) = \varphi \cdot f_s(x, t) + (1 - \varphi) \cdot f_T(x, t) \]

spatiotemporal filter \hspace{1cm} spatial filter \hspace{1cm} temporal filter

\[f_s(x, t) = \sum_{y \in N_x} w_c(x, y) \cdot w_d(x, y) \cdot w_s(x, y) \cdot d(y, t) \]

\[f_T(x, t) = \sum_{y \in N_x} w_c(x, \bar{y}) \cdot w_d(x, \bar{y}) \cdot w_s(x, \bar{y}) \cdot w_f(y, \bar{y}) \cdot f_{ST}(\bar{y}, t-1) \]
Spatiotemporal geometry filtering

\[f_{ST}(x, t) = \varphi \cdot f_s(x, t) + (1 - \varphi) \cdot f_t(x, t) \]

spatiotemporal filter \hspace{1cm} spatial filter \hspace{1cm} temporal filter

\[f_s(x, t) = \sum_{y \in N_x} w_c(x, y) \cdot w_d(x, y) \cdot w_s(x, y) \cdot d(y, t) \]

\[f_t(x, t) = \sum_{y \in N_x} w_c(x, y) \cdot w_d(x, y) \cdot w_s(x, y) \cdot w_f(y, \bar{y}) \cdot f_{ST}(\bar{y}, t-1) \]

flow weight

\[w_f(y, \bar{y}) = \exp \left(- \frac{||y - \bar{y}||^2}{2\sigma_f^2} \right) \]
Spatiotemporal filtering results

Aligned, but unfiltered

Spatiotemporally filtered

http://richardt.name/rgbz-camera/
RGBZ video effects

- video relighting
- geometry-based video abstraction
- stroke-based video rendering
- background segmentation
- stereoscopic 3D rendering
Video relighting

Input video
Geometry-based video abstraction

Input video

Image-based abstraction
Stroke-based video rendering
Background segmentation

Filtered distance map

Colour video
Stereoscopic 3D rendering

Synthesised right view

Synthesised stereo image
Limitations

- unreliable optical flow can lead to smearing artefacts
- assumption of coincident colour + depth edges
 - ‘texture copy’ artefacts in the distance map
 - edges with small colour differences not preserved well
- depth detail limited by time-of-flight camera resolution
- joint-bilateral filter not guaranteed to be optimal: new values are a linear combination of existing values
Future work

- improve preservation of features
 - could refine results using shape-from-shading

- formulate optical flow that respects depth discontinuities
 - would prevent ‘smearing’ artefacts in the distance map

- commodification of RGBZ video cameras and effects:
 - miniaturisation of camera hardware
 - improvements in hardware performance
 - algorithmic optimisations
Summary

- introduced a novel set of efficient and effective depth filtering and upsampling techniques for RGBZ videos:
 - a fast fill-in procedure for unreliable geometry
 - a multi-lateral spatiotemporal filtering approach
- illustrated the benefits of RGBZ video for effects
- source code and data sets are available on our project page at
 http://richardt.name/rgbz-camera/

Hire me! I’m looking for a postdoc from October 2012.