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Summary statement
Psychometric methods from experimental psychology can be used to quantify the relationships
between the properties of images and what people perceive. This course will provide an
introduction to the use of psychometric methods in computer graphics, and will teach attendees
how to design perceptual experiments that can be used to advance graphics research and
applications. This course will be of interest to members of the graphics community who want to
be able to interpret the results of perception psychology experiments and develop their own
perceptual studies of computer graphics techniques.

Prerequisites
This course assumes a basic level understanding of issues in computer graphics and electronic
imaging. Familiarity with freshman-level college math will be helpful. No specific knowledge of
perception psychology or statistical methods is necessary.



Course syllabus

- I. Welcome, Introductions, Schedule Review (Ferwerda, 10 mins)

- II. Motivation/Orientation (Rushmeier, 35 mins)

- Why psychometrics?
- graphics are generated to be useful to people
- we need to be able to determine what factors contribute to visual experience
- we need to be able to assess what methods produce an effective visual experience

- Why don't we just use existing psychophysical results?
- graphics builds on psychophysical research (e.g. colorimetry)
- goals of psychophysical research are different than graphics research

- determining contrast sensitivity vs. designing a rendering method that uses a
model of contrast sensitivity

- What are example problems to be addressed by psychometrics?
- realistic image synthesis

- how accurate does the input need to be?
- what input is needed?
- how accurate does the light transfer need to be?
- how are the results in physical units transformed to displays?

- data visualization
- how should data values be mapped to visual attributes?
- how effective are different visual cues for conveying information about data
- what are the interactions between these different cues?
- how can we make sure that the images we create are faithful representations

- virtual environments
- what trade-offs are acceptable to maintain real time performance?
- what spatial representations are adequate?
- what are the perceptual differences between screen-based and immersive

displays?
- compression

- what kinds of artifacts are visually acceptable in still images? In temporal
sequences? In 3D geometric models?

- animation
- How does psychometrics relate to physical measurement?

- human observers are responding to physical stimulus
- depending on problem various physical measurements also needed

- object shape/material properties; light energy from real scenes/displays
- What kind of results can we expect?

- more efficient graphics techniques -- computing only what is necessary
- more effective graphics techniques -- choosing the right image to generate

- How do we make progress?
- adopt established experimental methods
- build a literature of results relevant to graphics techniques



- III. Psychophysical Methods (Ferwerda, 60 mins)

- Introduction
- need for objective metrics of subjective visual experience
- fundamental psychophysical metrics: thresholds and scales
- history: Weber, Fechner

- Methods for measuring thresholds
- the method of adjustment
- the method of limits

- adaptive methods
- the method of constant stimuli

- Threshold models
- psychometric functions

- Signal detection theory
- variation in threshold measurements
- the signal detection problem
- stimulus/response (SR) matricies
- the decision criterion
- measures of sensitivity and response bias

- Suprathreshold scaling methods
- types of psychophysical scales

- nominal, ordinal, interval, ratio
- indirect scaling methods

- rating
- pair comparison
- ranking
- category scaling

- direct scaling methods
- equisection/fractionation
- magnitude production
- magnitude estimation

- Scaling models
- Weber’s law, Fechner’s law
- Steven’s power law

- Multidimensional scaling (MDS)
- Practicalities of running psychophysical experiments

- stimulus selection
- display/interface issues
- selecting subjects
- experimental design
- data analysis

- Summary
- Resources

- books
- papers/standards
- software packages

- Break



- IV. Experimental Design (Watson, 60 mins)

- Why do an experiment?
- real world context: an example experiment from the graphics literature

- Global experimental issues
- internal/external validity
- feasibility
- non-null results

- Design components
- hypothesis
- independent/dependent/control variables
- test or task

- Threats to validity, feasibility and non-null results
- to internal validity

- randomness, confounds, individual differences, carryover effects,
reactivity, researcher bias

- to external validity
- unreliability, too much control, unrepresentative population

- to feasibility
- population too big, design too ambitious, task too hard

- to non-null results
- ceiling and floor effects, type 2 errors

- Standard experimental designs
- single factor designs

- within/between subject designs
- multi-factor designs

- interactions
- mixed designs
- repeated measures designs

- Analysis of results
- analytical tools

- descriptive statistics
- inferential statistics

- ethics of analysis
- excluding participants
- excluding results

- Practical questions
- how many participants?
- getting approval (human subjects committees)
- motivating participants
- the hunt for significance

- pilot studies

- V. Case Studies of Psychometric Methods in Graphics (Rushmeier, 25 mins)
- realistic image synthesis
- animation
- data visualization
- virtual environments



- VI. Panel / Group Discussion (All, 20 mins)
- review of day’s material
- pointers to resources
- open questions

- VII. Supplementary Materials
- Rogowitz, B., and Rushmeier, H.E. (2001) Are image quality metrics adequate to

evaluate the quality of geometric objects? Proceedings SPIE Vol 4299 Human
Vision and Electronic Imaging VI,1-9.

- Rushmeier, H.E., Rogowitz, B.E., Piatko, C. (2000) Perceptual issues in
substituting texture for geometry. Proceedings SPIE Vol 3959 Human Vision and
Electronic Imaging V, 372-383.

- Meyer, G.W., Rushmeier, H.E., Cohen, M.F., Greenberg, D.P., and Torrance,
K.E. (1986) An experimental evaluation of computer graphics imagery. ACM
Transactions on Graphics, 5(1), 30-50.

- Pellacini, F., Ferwerda, J.A., and Greenberg.D.P. (2000) Toward a
psychophysically-based light reflection model for image synthesis. Proceedings
SIGGRAPH '00, 55-64.

- Watson, B.A., Friedman, A., McGaffey, A. (2001) Measuring and predicting visual
fidelity. Proceedings SIGGRAPH 2001, 213-220.



Motivation/Orientation

Why psychometrics?

graphics are generated to be useful to people
we need to be able to determine what factors 
contribute to visual experience
we need to be able to assess what methods 
produce an effective visual experience

Why not use existing 
psychophysical results?

same color?

II-1

graphics does use existing psychophysical 
research
prime example is colorimetry, we routinely 
display colors that look the same as objects in 
the real world although their actual reflected 
spectra cannot be produced by the display 
device
existing research is used in many different 
ways in graphics, ranging from "rules of 
thumb" to reliable numerical algorithms



same geometry?

We have new problems
goals of psychophysical research are different 
than graphics research, e.g. determining 
contrast sensitivity (vision research) vs. 
designing a rendering method that uses a 
model of contrast sensitivity (computer 
graphics)
we have issues that have never come up in 
vision research -- such as the spatial 
resolution required for faithful representation 
of a 3D surface

correct shadows?

We have new capabilities
New controlled experiments are possible using 
relatively new computer graphics techniques. 
Visual effects like shadows can be precisely 
controlled in synthetic imagery that can't be 
controlled physically, letting vision researchers 
explore questions such as how shadows affect 
our judgements of size and position. Graphics 
researchers can exploit these new insights in 
designing efficient rendering algorithms.
Ref: M.S. Langer and H.H. Buelthoff, 
"Measuring Visual Shape using Computer 
Graphics Psychophysics" Rendering 
Techniques 2000, Springer-Verlag.

Problems that can be addressed 
by psychometrics

What should be displayed to achieve a particular 
goal?
  
Given limited resources what  is most important to 
be computed/stored?

II-2

What should be displayed to achieve a 
particular goal?
  - mapping visual attributes to non-visual data
  - identifying relevant input data required
Given limited resources what is most 
important to be computed?
 - limited time
 - limited memory
 - limited display device
 - limited bandwidth



Example: Realistic Image Synthesis

What input ? How accurate?

To simulate these photographs of two different 
teapots, how accurate do the geometric 
descriptions have to be to show the difference 
in shapes? How are the surface properties 
represented to show that one is light and 
diffuse and the other is dark and shiny? How 
accurately do we have to measure the input?
Sample Refs:
"Toward a psychophysically-based light 
reflection model for image synthesis"  Fabio 
Pellacini, James A. Ferwerda Donald P. 
Greenberg, SIGGRAPH 2000.
"Measuring and predicting visual fidelity",  
Benjamin Watson,  Alinda Friedman, Aaron 
McGaffey, SIGGRAPH 2001

Example: Realistic Image Synthesis

How accurate does the light transfer need to be?

A realistic image can be generated by simulating the paths 
of millions of light rays. How many are enough to sample so 
that the result is indistinguishable from the real thing?
Sample Refs:
 M.R. Bolin and G.W. Meyer. A  Perceptually Based 
Adaptive Sampling Algorithm. In SIGGRAPH 98 Conference 
Proceedings, Annual Conference Series, pages 299–310, 
1998.
K. Myszkowski, P. Rokita, and T. Tawara. 
Perceptually-Informed Accelerated Rendering of High 
Quality Walkthrough Sequences. In Eurographics 
Rendering Workshop 1999, pages 5–18, 1999.
M. Ramasubramanian, S.N. Pattanaik, and D.P. Greenberg. 
A Perceptually Based Physical Error Metric for Realistic 
Image Synthesis. In SIGGRAPH 99 Conference 
Proceedings, Annual Conference Series, pages 73–82, 
1999.
Y.L.H. Yee. Spatiotemporal Sensitivity and Visual Attention 
for Efficient Rendering of Dynamic Environments. M.Sc. 
thesis, Cornell University, 2000.

Viewers should have same visual impression

Example: Realistic Image Synthesis

II-3

We can calculate radiances that aren't displayable 
on our viewing device. What is the best way to map 
onto the limited device?
Sample Refs:
Ward-Larson, G., Rushmeier H., and Piatko, C. 
(1997) A visibility matching tone reproduction 
operator for high dynamic range scenes. IEEE 
Trans. on Vis. and Comp. Graph., 3(4):291-306.
 Jack Tumblin , Jessica K. Hodgins , Brian K. 
Guenter, Two methods for display of high contrast 
images, ACM Transactions on Graphics (TOG), 
v.18 n.1, p.56-94, Jan. 1999
  Sumanta N. Pattanaik , James A. Ferwerda , Mark 
D. Fairchild , Donald P. Greenberg, A multiscale 
model of adaptation and spatial vision for realistic 
image display, SIGGRAPH  p.287-298, July 19-24, 
1998.



Example: Data Visualization

4  2  3
5  1   6

How do you make pictures of numbers?
make a circle for each
with a size related to the number

How should data values be mapped to visual 
attributes? For some data this can be obvious, 
i.e. geographic data on a map. For other types 
of data, there are no obvious physical 
representations.

Example: Data Visualization
Even for a small group of numbers, there are 
an infinite number of possible representations. 
Which if any are of any use? What does a 
person get out of looking at them?

Example: Data Visualization

Visualizing 15 
variables, numerical
and categorical

II-4

It is possible to generate imagery of huge 
numbers of variables which may be scalar, 
vector, textual etc. How much can a person 
understand about such complex data from an 
image? Current graphics systems expand our 
choices about what we can display, and we 
need to keep up with understanding what is 
useful to display.
Ref:
Healey, C. G. and Enns, J. T. "Building 
Perceptual Textures to Visualize 
Multidimensional Datasets"  In Proceedings 
IEEE Visualization '98 (Research Triangle 
Park, North Carolina, 1998), pp. 111-118.



Example of specific study area: Color Maps

Example: Data Visualization

Problem is not how do we reproduce a 
particular color, but what set of colors best 
represents a set of values.
A Rule-based Tool for Assisting Colormap 
Selection, L. Bergman, B. Rogowitz and L. 
Treinish. Proceedings of the IEEE Computer 
Society Visualization '95 pp. 118-125, October 
1995.
The 'Which Blair Project:' A Quick Visual 
Method for Evaluating Perceptual Color Maps, 
Bernice E. Rogowitz and Alan D. Kalvin, 
Proceedings of IEEE Visualization 2001.

Example: Virtual Environments

what trade-offs are acceptable to maintain real 
time performance? what spatial 
representations are adequate?
what are the perceptual differences between 
screen-based and immersive displays? Can 
we take advantage of capabilities like eye 
tracking?
Ref: B.A. Watson, N. Walker, L.F. Hodges & 
M. Reddy (1997). An evaluation of level of 
detail degradation in head-mounted display 
peripheries . Presence, 6, 6, 630-637.

Example: Virtual Environments

How are virtual environments modeled for
effective training applications?

II-5

How well does an environment need to be 
rendered to train for a task, i.e. such a putting 
an object (letter) in a specific place (mailbox)?



Example: Virtual Environments
What contributes to a sense of "presence"?

What are the factors that make a person 
feel like they are actually in the 
environment that is presented virtually?
Ref: M. Slater (1999)" Measuring 
Presence: A Response to the Witmer and 
Singer Questionnaire," Presence: 
Teleoperators and Virtual Environments, 
8(5), 560-566.

Example: 
Compression/Transmission

23 kB 11 kB 5 kB

In image compression there has been great 
success in applying human vision 
characteristics to reducing data in a way that 
image file size correlates well with perceived 
image quality, as in these jpeg iimages shown 
here.

Example: 
Compression/Transmission

II-6

We would like a similar scheme for geometry 
-- we can simplify geometry in many ways, but 
which techniques let us control 
perceived/quality versus file size?



Example: 
Compression/Transmission

bunny model
made available
by Stanford U.

The geometry problem is made more complex 
by the fact that there are an infinite number of 
views and lighting conditions. 
Ref.: B.E. Rogowitz and H.E. Rushmeier, "Are 
image quality metrics adequate to evaluate the 
quality of geometric objects?"  Proceedings of 
SPIE Vol 4299 Human Vision and Electronic 
Imaging VI, 340-349, (2001)

Example:  Animation

collisions
level of detail

The fact that we perceive objects as moving when 
we flip through images, and how fast the images 
must be displayed is based on measurements of 
human perception. 
Computing the dynamics of animations can be 
hugely expensive -- how accurately do we need to 
compute to spheres colliding to "believe" they 
intersect? How accurately do we have to compute 
the fluttering of the jockey's jacket to be consistent 
with how fast the horse is running?
Refs:Carlson D.A. and Hodgins J.K. – Simulation 
Levels of Detail for Real-Time Animation. Proc. of 
Graphics Interface ’97. pp. 1-8.
Collisions and Perception. O'Sullivan, C. Dingliana, 
J. ACM Transactions on Graphics. Vol. 20, No. 3. 
July 2001.

How does psychometrics 
relate to physical 
measurement?

Both have standard  metrics 
and measurement  methods

II-7

Most people have school experience with 
physical sciences, and experiments involving 
measuring quantities such as time, length and 
temperature, but not experience in 
psychophysical experiments. As a result, we 
often rely on only anecdotal results rather than 
conducting experiments. The purpose of this 
course is to introduce to the standard metrics 
and methods used in psychophysics.



What kind of results can 
we expect?

More efficient graphics techniques:
computing only what is necessary

What kind of results can 
we expect?

More effective graphics techniques:
choosing the right image to generate

How do we make progress?

adopt established experimental methods
build a literature of results relevant to graphics 

techniques

II-8

Besides mining the existing vision literature, 
new experiments are needed to gain insight 
into complex problems relevant to graphics 
applications. New experiments are also 
needed to examine the success or failure of 
new graphics techniques.
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Psychophysical methodsPsychophysical methodsPsychophysical methods

Jim Ferwerda

Program of Computer Graphics

Cornell University

Jim FerwerdaJim Ferwerda

Program of Computer GraphicsProgram of Computer Graphics

Cornell UniversityCornell University

PsychophysicsPsychophysicsPsychophysics

• Physical properties of 
objects (length, weight, 
intensity)

• Measured directly

• Perceptual impressions
on observer (size, 
heaviness, brightness)

• Inferred from observer’s 
responses

Goal: tools to quantify the relationships between 
physical stimulation and perceptual sensation
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Psychophysical issues: 
thresholds and scales

Psychophysical issues: Psychophysical issues: 
thresholds and scalesthresholds and scales

detection discrimination scaling

how bright? how much brighter? twice as bright?

absolute
threshold

difference
threshold (JND)

suprathreshold
appearance

HistoryHistoryHistory

• Ernst Heinrich Weber (1795-1878)
– experiments with weights (1830’s)
– just noticeable differences (JNDs) are 

proportional to stimulus magnitude
• ∆I = k I (Weber’s law)

• Gustav Teodore Fechner (1801-1887)
– how to measure sensations?
– need a zero and a unit
– zero = absolute threshold
– unit = difference threshold (JND)
– “Elements of Psychophysics” (1860)

• psychophysical methods
• Fechner’s Law (S = k log I )

•• Ernst Heinrich Weber (1795Ernst Heinrich Weber (1795--1878)1878)
–– experiments with weights (1830’s)experiments with weights (1830’s)
–– just noticeable differences (just noticeable differences (JNDsJNDs) are ) are 

proportional to stimulus magnitudeproportional to stimulus magnitude

•• ∆∆I = k I (Weber’s law)I = k I (Weber’s law)

•• Gustav Gustav TeodoreTeodore FechnerFechner (1801(1801--1887)1887)
–– how to measure sensations?how to measure sensations?

–– need a zero and a unitneed a zero and a unit

–– zero = absolute thresholdzero = absolute threshold

–– unit = difference threshold (JND)unit = difference threshold (JND)

–– “Elements of Psychophysics” (1860)“Elements of Psychophysics” (1860)

•• psychophysical methodspsychophysical methods
•• Fechner’sFechner’s Law (S = k log I )Law (S = k log I )
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Psychophysical methods for 
measuring thresholds

Psychophysical methods for Psychophysical methods for 
measuring thresholdsmeasuring thresholds

• method of adjustment

• method of limits

• method of constant stimuli

•• method of adjustmentmethod of adjustment

•• method of limitsmethod of limits

•• method of constant stimulimethod of constant stimuli

Method of adjustmentMethod of adjustmentMethod of adjustment

standard test set 77 13131010

trial 3 . . .trial 2

77 1313

trial 1

1111

start intensity
final intensity

11
10.19

7
10.41

13
9.52

• adjust intensity until target is just visibly 
different than the standard

•• adjust intensity until target is just visibly adjust intensity until target is just visibly 
different than the standarddifferent than the standard

descending ascending
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Method of adjustment: analysisMethod of adjustment: analysisMethod of adjustment: analysis

• point of subjective equality (PSE) = grand mean = 9.99
• just noticeable difference (JND) = 0.67449 * stdev = 1.17
• upper threshold (UL) = PSE + JND = 11.16
• lower threshold (LL) = PSE - JND = 8.81
• interval of uncertainty (IU)= UL - LL = 2.35

•• point of subjective equality (PSE) =point of subjective equality (PSE) = grand mean = grand mean = 9.999.99
•• just noticeable difference (JND) =just noticeable difference (JND) = 0.67449 * 0.67449 * stdevstdev = = 1.171.17
•• upper threshold (UL) =upper threshold (UL) = PSE + JND =PSE + JND = 11.1611.16
•• lower threshold (LL) =lower threshold (LL) = PSE PSE -- JND =JND = 8.818.81
•• interval of uncertainty (IU)=interval of uncertainty (IU)= UL UL -- LL =LL = 2.352.35

number of trials 20

trial 1 2 3 4 5 6 7 8 9 10
series d a d a d a d a d a
start intensity 11.00 7.00 13.00 9.00 12.50 8.50 11.50 7.50 12.00 8.00
final intensity d 10.19 9.52 11.15 11.79 12.86
final intensity a 10.41 7.08 8.15 12.22 9.29

series mean stdev grand mean stdev
d 9.89 1.76 9.99 1.74
a 10.08 1.81

Method of limitsMethod of limitsMethod of limits

standard test set 77 88 99 1010 1111 1212 13131010

trial 1

1010

99

1111

trial 2

brighter

darker

darker 99

trial 3

darker

1010

1111

1212 brighter

brighter

brighter1010

1111

1212 brighter

brighter

darker

10.510.5 10.510.5

9.59.5

. . .

• is the target brighter or darker than the standard?•• is the target brighter or darker than the standard?is the target brighter or darker than the standard?
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Method of limits: analysisMethod of limits: analysisMethod of limits: analysis

• point of subjective equality (PSE) = grand mean = 10.00
• just noticeable difference (JND) = 0.67449 * stdev = 1.17
• upper threshold (UL) = PSE + JND = 11.17
• lower threshold (LL) = PSE - JND = 8.83
• interval of uncertainty (IU)= UL - LL = 2.34

•• point of subjective equality (PSE) =point of subjective equality (PSE) = grand mean = grand mean = 10.0010.00
•• just noticeable difference (JND) =just noticeable difference (JND) = 0.67449 * 0.67449 * stdevstdev = = 1.171.17
•• upper threshold (UL) =upper threshold (UL) = PSE + JND =PSE + JND = 11.1711.17
•• lower threshold (LL) =lower threshold (LL) = PSE PSE -- JND =JND = 8.838.83
•• interval of uncertainty (IU)=interval of uncertainty (IU)= UL UL -- LL =LL = 2.342.34

number of trials: 20

trial 1 2 3 4 5 6 7 8 9 10
series d a d a d a d a d a

test 13 B
intensity 12 B B B D

11 B B B D B B
10 D D B B B D
9 D D B B D
8 B B D D D
7 D D

crosspts. d 10.5 9.5 11.5 8.5 8.5
a 10.5 7.5 7.5 12.5 10.5

stdev stdev
d 10.20 1.77 10.00 1.73
a 9.80 1.77

series mean grand mean

9

10

11

12

13

0 5 10 15 20 25 30

trial

te
st

 in
te

n
si

ty

Variations on the method of limitsVariations on the method of limitsVariations on the method of limits

• staircase methods
• PEST
• QUEST

•• staircase methodsstaircase methods

•• PESTPEST

•• QUESTQUEST
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Staircase methodsStaircase methodsStaircase methods

9

10

11

12

13

0 5 10 15 20 25 30

trial

te
st

 in
te

n
si

ty

• next series starts where last ends
• increased efficiency over method of limits

•• next series starts where last endsnext series starts where last ends

•• increased efficiency over method of limitsincreased efficiency over method of limits

PEST                            QUESTPEST                            QUESTPEST                            QUEST

9

10

11

12

13

0 5 10 15 20 25 30

trial

te
st

 in
te

n
si

ty

• Parameter Estimation by 
Sequential Tracking

• test intensity chosen to achieve 
target performance level

• step size reduced on reversals

•• Parameter Estimation by Parameter Estimation by 
Sequential TrackingSequential Tracking

•• test intensity chosen to achieve test intensity chosen to achieve 
target performance leveltarget performance level

•• step size reduced on reversalsstep size reduced on reversals

• QUEST
• test intensity chosen by fit to 

psychometric function
• maximum information gain per 

trial

•• QUESTQUEST

•• test intensity chosen by fit to test intensity chosen by fit to 
psychometric functionpsychometric function

•• maximum information gain per maximum information gain per 
trialtrial

9

10

11

12

13

0 5 10 15 20 25 30

trial

te
st

 in
te

n
si

ty
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Method of constant stimuliMethod of constant stimuliMethod of constant stimuli

trial 1 trial 2

99 darker

trial 3

1111 brighter

standard test set 77 88 99 1010 1111 1212 13131010

1313 brighter

. . .

• is the target brighter or darker than the standard?•• is the target brighter or darker than the standard?is the target brighter or darker than the standard?

Method of constant stimuli: analysis 1Method of constant stimuli: analysis 1Method of constant stimuli: analysis 1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

6 7 8 9 10 11 12 13 14

test intensity

p
 "

b
ri

g
h

te
r"

20 trials/stimulus
test int. f "darker" f "brighter" p "brighter" z

7 19 1 0.04 -1.75
8 18 2 0.12 -1.17
9 14 6 0.32 -0.47

10 9 11 0.56 0.15
11 6 14 0.69 0.50
12 2 18 0.89 1.23
13 1 19 0.95 1.64

standard

psychometric function
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Method of constant stimuli: analysis 2Method of constant stimuli: analysis 2Method of constant stimuli: analysis 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

6 7 8 9 10 11 12 13 14

test intensity

p
 "

b
ri

g
h

te
r"

20 trials/stimulus
test int. f "darker" f "brighter" p "brighter" z

7 19 1 0.04 -1.75
8 18 2 0.12 -1.17
9 14 6 0.32 -0.47

10 9 11 0.56 0.15
11 6 14 0.69 0.50
12 2 18 0.89 1.23
13 1 19 0.95 1.64

psychometric models
– cumulative normal

• (probit analysis)

– logistic
– Weibull

psychometric modelspsychometric models

–– cumulative normalcumulative normal
•• ((probitprobit analysis)analysis)

–– logisticlogistic

–– WeibullWeibull

psychometric function

Method of constant stimuli: analysis 3Method of constant stimuli: analysis 3Method of constant stimuli: analysis 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

6 7 8 9 10 11 12 13 14

test intensity

p
 "

b
ri

g
h

te
r"

20 trials/stimulus
test int. f "darker" f "brighter" p "brighter" z

7 19 1 0.04 -1.75
8 18 2 0.12 -1.17
9 14 6 0.32 -0.47

10 9 11 0.56 0.15
11 6 14 0.69 0.50
12 2 18 0.89 1.23
13 1 19 0.95 1.64

( )
dzep

i i
z z

i ∫ ∞−
= 22

( ) IIiz σµ /−=

psychometric function psychometric models
– cumulative normal

psychometric modelspsychometric models

–– cumulative normalcumulative normal
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Method of constant stimuli: analysis 4Method of constant stimuli: analysis 4Method of constant stimuli: analysis 4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

6 7 8 9 10 11 12 13 14

test intensity

p
 "

b
ri

g
h
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r"

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

6 7 8 9 10 11 12 13 14

test intensity

z

20 trials/stimulus
test int. f "darker" f "brighter" p "brighter" z

7 19 1 0.04 -1.75
8 18 2 0.12 -1.17
9 14 6 0.32 -0.47

10 9 11 0.56 0.15
11 6 14 0.69 0.50
12 2 18 0.89 1.23
13 1 19 0.95 1.64

psychometric function

Method of constant stimuli: analysis 5Method of constant stimuli: analysis 5Method of constant stimuli: analysis 5
20 trials/stimulus

test int. f "darker" f "brighter" p "brighter" z
7 19 1 0.04 -1.75
8 18 2 0.12 -1.17
9 14 6 0.32 -0.47

10 9 11 0.56 0.15
11 6 14 0.69 0.50
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Method of constant stimuli: analysis 8Method of constant stimuli: analysis 8Method of constant stimuli: analysis 8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

6 7 8 9 10 11 12 13 14

test intensity

p
 "

b
ri

g
h

te
r"

• point of subj. equality (PSE) = mean (p(.50))  = 9.97
• just noticeable diff. (JND) = 0.67449 * stdev = 1.18
• upper threshold (UL) = PSE + JND = p(.75) = 11.17
• lower threshold (LL) = PSE - JND = p(.25) = 8.83
• interval of uncertainty (IU)= UL - LL = p(.75) - p(.25) = 2.34

•• point of subj. equality (PSE) =point of subj. equality (PSE) = mean (p(.50))  = mean (p(.50))  = 9.979.97
•• just noticeable diff. (JND) =just noticeable diff. (JND) = 0.67449 * 0.67449 * stdevstdev = = 1.181.18
•• upper threshold (UL) =upper threshold (UL) = PSE + JND = p(.75) =PSE + JND = p(.75) = 11.1711.17
•• lower threshold (LL) =lower threshold (LL) = PSE PSE -- JND = p(.25) =JND = p(.25) = 8.838.83
•• interval of uncertainty (IU)=interval of uncertainty (IU)= UL UL -- LL = p(.75) LL = p(.75) -- p(.25) =p(.25) = 2.342.34

ULLL PSE
JND
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The signal detection problemThe signal detection problemThe signal detection problem
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–– internal internal -- neural transduction/transmission, neural transduction/transmission, 
adaptation, ...adaptation, ...



III -13

The signal detection problemThe signal detection problemThe signal detection problem
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Decision criterionDecision criterionDecision criterion
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• factors affecting the criterion
– payoff, expectation, attention, learning

•• factors affecting the criterionfactors affecting the criterion

–– payoff, expectation, attention, learningpayoff, expectation, attention, learning
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Measuring sensitivity and response biasMeasuring sensitivity and response biasMeasuring sensitivity and response bias
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Contributions of SDTContributions of SDTContributions of SDT

• no true threshold cutoffs

• detection/discrimination processes probabilistic

• measured thresholds affected by sensory and 
psychological factors

• effects can be teased apart with SDT methods

• Two alternative forced choice method (2AFC)

•• no true threshold cutoffsno true threshold cutoffs

•• detection/discrimination processes probabilisticdetection/discrimination processes probabilistic

•• measured thresholds affected by sensory and measured thresholds affected by sensory and 
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•• effects can be teased apart with SDT methodseffects can be teased apart with SDT methods

•• Two alternative forced choice method (2AFC)Two alternative forced choice method (2AFC)
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Psychophysical issues: 
thresholds and scales

Psychophysical issues: Psychophysical issues: 
thresholds and scalesthresholds and scales

detection discrimination scaling

how bright? how much brighter? twice as bright?

absolute
threshold

difference
threshold (JND)

suprathreshold
appearance

Types of scalesTypes of scalesTypes of scales

• nominal – teams
• ordinal – 1st, 2nd, 3rd place
• interval – relative times
• ratio – absolute times

•• nominal nominal –– teamsteams

•• ordinal ordinal –– 11stst, 2, 2ndnd, 3, 3rdrd placeplace

•• interval interval –– relative timesrelative times

•• ratio ratio –– absolute timesabsolute times
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Scaling methodsScaling methodsScaling methods

• indirect
– rating
– pair comparison
– ranking
– category scaling

• direct
– equisection / fractionation
– magnitude production
– magnitude estimation

•• indirectindirect
–– ratingrating

–– pair comparisonpair comparison

–– rankingranking

–– category scalingcategory scaling

•• directdirect
–– equisectionequisection / fractionation/ fractionation

–– magnitude productionmagnitude production

–– magnitude estimationmagnitude estimation

RatingRatingRating

?? ???? ????00 100100

numerical

. . .

adjectival
• very bright
• bright
• moderate
• dark
• very dark

?? ???? ????
. . .

graphical

. . .
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Range/frequency effectsRange/frequency effectsRange/frequency effects
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Pair comparisonPair comparisonPair comparison

99

1010

1111

1212

1313

1010 1111 1212 131399

test set 99 1010 1111 1212 1313 (n)(n-1)/2 pairs

…

trial 1 trial 2 trial 3 trial 4

XX XX XX XX

• law of 
comparative 
judgment 
(Thurstone 1927)

•• law of law of 
comparative comparative 
judgment judgment 
((ThurstoneThurstone 1927)1927)
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-1 -0.5 0 0.5 1

relative brightness

9 10 11 12 13

Pair comparison analysisPair comparison analysisPair comparison analysis
frequencies

∑
n

j
jkz

n

1

z scores
9 10 11 12 13

9 0 0.5 1 1.25 1.75
10 -0.5 0 0.5 0.75 1.25
11 -1 -0.5 0 0.25 0.75
12 -1.25 -0.75 -0.25 0 0.5
13 -1.75 -1.25 -0.75 -0.5 0

patch k

pa
tc

h 
j

9 10 11 12 13
9 35 42 45 48

10 15 35 39 45
11 8 15 30 39
12 5 11 20 35
13 2 5 11 15

patch k
pa

tc
h 

j
9 10 11 12 13

9 0.6915 0.8413 0.8943 0.9594
10 0.3085 0.6915 0.7734 0.8943
11 0.1587 0.3085 0.5987 0.7734
12 0.1057 0.2266 0.4013 0.6915
13 0.0406 0.1057 0.2266 0.3085

patch k

pa
tc

h 
j

proportions

scale values

-0.9 -0.4 0.1 0.35 0.85
column
means

RankingRankingRanking

ranked order (dark to bright)

7 6 5 4 3 2 1

subj. 1

subj. 2

subj. 3

subj. 4
.
.
.

77

88

99

1010
1111

1212 1313

test set
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relative brightness
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Ranking analysisRanking analysisRanking analysis

7 8 9 10 11 12 13
7th 78 8 10 0 0 0 0
6th 11 81 10 2 0 0 0
5th 0 1 65 33 1 0 0
4th 10 1 10 52 10 17 0
3rd 0 0 2 11 75 12 0
2nd 0 8 0 2 12 68 16
1st 1 1 3 0 2 3 84

patch intensity

ju
dg

ed
 r

an
k

6.53 5.68 5.04 4.22 2.96 2.43 1.16mean rank (Mr)

0.078 0.220 0.327 0.463 0.673 0.762 0.973
proportions

p = (Nr- Mr)/(Nr-1)

7 6 5 4 3 2 1 ordinal scale

-1.416 -0.772 -0.449 -0.092 0.449 0.712 1.932z scores z(p) interval scale

Category scalingCategory scalingCategory scaling
test set 99
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1111
1212

1313

categories

subj. 1

subj. 2

subj. 3
.
.
.

very
dark dark moderate bright

very
bright

• law of 
categorical 
judgment 
(Thurstone 1927)

•• law of law of 
categorical categorical 
judgment judgment 
((ThurstoneThurstone 1927)1927)
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Category scaling analysis 1Category scaling analysis 1Category scaling analysis 1

V. Dk. Dark Mod. Bright V. Brt.
9 100 38 49 11 2

10 84 27 47 23 19
11 13 32 110 39 6
12 62 14 32 23 69
13 4 9 49 58 80

categories
pa
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in
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ity

V. Dk. Dark Mod. Bright V. Brt.
9 100 138 187 198 200

10 84 111 158 181 200
11 13 45 155 194 200
12 62 76 108 131 200
13 4 13 62 120 200
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VD/D D/M M/B B/VB

9 0.50 0.69 0.94 0.99
10 0.42 0.56 0.79 0.91
11 0.07 0.23 0.78 0.97
12 0.31 0.38 0.54 0.66
13 0.02 0.07 0.31 0.60

category boundaries
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VD/D D/M M/B B/VB

9 0.00 0.50 1.51 2.33
10 -0.20 0.14 0.81 1.31
11 -1.51 -0.76 0.76 1.88
12 -0.50 -0.31 0.10 0.40
13 -2.05 -1.51 -0.50 0.25

category boundaries
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frequencies
cumulative
frequencies

cumulative
proportions z scores

Category scaling analysis 2Category scaling analysis 2Category scaling analysis 2
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Ratio scaling methodsRatio scaling methodsRatio scaling methods
• equisection

• magnitude production

• magnitude estimation

trial 3trial 2trial 1

. . .

standard

½ x
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standard trial 1 trial 2 trial 3

or just 
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Magnitude estimation analysisMagnitude estimation analysisMagnitude estimation analysis

8 9 10 11 12 13
A 1.1 3 35 565 1651 788
B 0.5 1 9 2 12 39
C 0.3 6 7 14 38 166
D 0.5 1 7 8 6 19
E 0.2 0.5 2 8 49 50
F 0.4 1 28 18 13 75
G 0.1 1 9 5 60 49
H 1.2 3 14 110 434 499
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Scaling modelsScaling modelsScaling models

physical intensity (I) physical intensity (I)
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S

)
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 (
S

)S = k log I S = k Ib

brightness 
(b = 0.5)

elec. shock
(b = 3.5)

• Fechner’s law
– ∆I = k I (Weber’s law)
– S = k log I

•• Fechner’sFechner’s lawlaw

–– ∆∆I = k I (Weber’s law)I = k I (Weber’s law)

–– S = k log IS = k log I

• Steven’s power law
– S = k Ib

– different powers for 
different modalities

•• Steven’s power lawSteven’s power law

–– S = k S = k IIbb

–– different powers for different powers for 
different modalitiesdifferent modalities

jnd

jnd
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0.01

1 2 3 4 5

Dimensionality of solution
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Dimensionality
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Multidimensional scalingMultidimensional scalingMultidimensional scaling

Miami 

DC 

NYC 

Houston 

Seattle 

Chicago 

Denver 

LA 

SF 
Atlanta 

N

E

Atl Chi Den Hou LA Mia NYC SF Sea DC
Atlanta 0
Chicago 587 0
Denver 1212 920 0
Houston 701 940 879 0

LA 1936 1745 831 1374 0
Miami 604 1188 1726 968 2339 0
NYC 748 713 1631 1420 2451 1092 0
SF 2139 1858 949 1645 347 2594 2571 0

Seattle 2182 1737 1021 1891 959 2734 2406 678 0
DC 543 597 1494 1220 2300 923 205 2442 2329 0

• distances -> 
locations

•• distances distances --> > 
locationslocations
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Practicalities of running 
psychophysical experiments

Practicalities of running Practicalities of running 
psychophysical experimentspsychophysical experiments

• stimulus selection

• display/interface issues

• selecting subjects
– population, human subjects committees

• experimental design
– randomization, control, counterbalancing
– # of subjects, # trials, # repetitions

• data analysis
– tests of significance/fit, confidence intervals

•• stimulus selectionstimulus selection

•• display/interface issuesdisplay/interface issues

•• selecting subjectsselecting subjects
–– population, human subjects committeespopulation, human subjects committees

•• experimental designexperimental design
–– randomization, control, counterbalancingrandomization, control, counterbalancing

–– # of subjects, # trials, # repetitions# of subjects, # trials, # repetitions

•• data analysisdata analysis
–– tests of significance/fit, confidence intervalstests of significance/fit, confidence intervals

SummarySummarySummary

• psychophysics: quantify relationships between 
physical stimulation and perceptual sensation

• psychophysical issues: thresholds and scales

• thresholds are a product of sensory and 
psychological factors

• four types of scales: nominal, ordinal, interval, ratio

• multidimensional scaling

•• psychophysics: quantify relationships between psychophysics: quantify relationships between 
physical stimulation and perceptual sensationphysical stimulation and perceptual sensation

•• psychophysical issues: thresholds and scalespsychophysical issues: thresholds and scales

•• thresholds are a product of sensory and thresholds are a product of sensory and 
psychological factorspsychological factors

•• four types of scales: nominal, ordinal, interval, ratiofour types of scales: nominal, ordinal, interval, ratio

•• multidimensional scalingmultidimensional scaling
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Resources -booksResources Resources --booksbooks

• Fechner, G.T. (1966) Elements of Psychophysics. 
Holt, Rinehart & Winston.

• Gescheider, G.A. (1997) Psychophysics: The Fundamentals, 
3rd Edition. Erlbaum.

• Guilford, J.P. (1954) Psychometric methods. Mcgraw-Hill.

• Torgerson, W.S. (1960) Theory and Methods of Scaling. Wiley.

• Green, D.M. and Swets, J.A. (1966) Signal Detection Theory 
and Psychophysics. Wiley. 

• Engeldrum, P.G. (2000) Psychometric scaling: A Toolkit for 
Imaging Systems Development. Imcotek Press.

•• FechnerFechner, G.T. (1966) , G.T. (1966) Elements of PsychophysicsElements of Psychophysics. . 
Holt, Rinehart & Winston.Holt, Rinehart & Winston.

•• GescheiderGescheider, G.A. (1997) , G.A. (1997) Psychophysics: The FundamentalsPsychophysics: The Fundamentals, , 
3rd Edition. Erlbaum.3rd Edition. Erlbaum.

•• Guilford, J.P. (1954) Guilford, J.P. (1954) Psychometric methodsPsychometric methods. . McgrawMcgraw--Hill.Hill.

•• TorgersonTorgerson, W.S. (1960) , W.S. (1960) Theory and Methods of ScalingTheory and Methods of Scaling. Wiley.. Wiley.

•• Green, D.M. and Green, D.M. and SwetsSwets, J.A. (1966) , J.A. (1966) Signal Detection Theory Signal Detection Theory 
and Psychophysicsand Psychophysics. Wiley. . Wiley. 

•• EngeldrumEngeldrum, P.G. (2000) , P.G. (2000) Psychometric scaling: A Toolkit for Psychometric scaling: A Toolkit for 
Imaging Systems DevelopmentImaging Systems Development. . ImcotekImcotek Press.Press.

Resources - papers/standardsResources Resources -- papers/standardspapers/standards

• Use of computers and cathode-ray-tube displays in visual 
psychophysics - special issues of the journal Spatial Vision 
10(4) and 11(1) - http://www.lrz-
muenchen.de/~Hans_Strasburger/contents.html

• ASTM (American Society for Testing and Materials), Standard 
Guide for Conducting Visual Experiments, E1808-96

• ASTM (American Society for Testing and Materials), Standard 
Guide for Selection, Evaluation, and Training of Observers, 
E1499-94

• CIE Technical Committee 1-34 Testing Color-Appearance 
Models: Guidelines for Coordinated Research - Alessi, P.J. 
(1994) Color Research and Applications,19, 48-58.

•• Use of computers and cathodeUse of computers and cathode--rayray--tube displays in visual tube displays in visual 
psychophysics psychophysics -- special issues of the journal Spatial Vision special issues of the journal Spatial Vision 
10(4) and 11(1) 10(4) and 11(1) -- http://www.lrzhttp://www.lrz--
muenchen.de/~Hans_Strasburger/contents.htmlmuenchen.de/~Hans_Strasburger/contents.html

•• ASTM (American Society for Testing and Materials), Standard ASTM (American Society for Testing and Materials), Standard 
Guide for Conducting Visual Experiments, E1808Guide for Conducting Visual Experiments, E1808--9696

•• ASTM (American Society for Testing and Materials), Standard ASTM (American Society for Testing and Materials), Standard 
Guide for Selection, Evaluation, and Training of Observers, Guide for Selection, Evaluation, and Training of Observers, 
E1499E1499--9494

•• CIE Technical Committee 1CIE Technical Committee 1--34 Testing Color34 Testing Color--Appearance Appearance 
Models: Guidelines for Coordinated Research Models: Guidelines for Coordinated Research -- AlessiAlessi, P.J. , P.J. 
(1994) Color Research and Applications,19, 48(1994) Color Research and Applications,19, 48--58.58.
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Resources - softwareResources Resources -- softwaresoftware

• Psychophysics Toolbox
– Matlab-based - http://psychtoolbox.org/

• Psychophysica/Cinematica
– Mathematica/Quicktime-based -

http://vision.arc.nasa.gov/mathematica/psychophysica/

• Strasburger’s review of psychophysics software -
– http://www.lrzmuenchen.de/~Hans_Strasburger/psy_soft.html

•• Psychophysics ToolboxPsychophysics Toolbox
–– MatlabMatlab--based based -- http://http://psychtoolbox.orgpsychtoolbox.org//

•• Psychophysica/CinematicaPsychophysica/Cinematica
–– Mathematica/QuicktimeMathematica/Quicktime--based based --

http://http://vision.arc.nasa.gov/mathematica/psychophysicavision.arc.nasa.gov/mathematica/psychophysica//

•• Strasburger’sStrasburger’s review of psychophysics software review of psychophysics software --
–– http://http://www.lrzmuenchen.de/~Hans_Strasburger/psy_soft.htmlwww.lrzmuenchen.de/~Hans_Strasburger/psy_soft.html

Updates/ErrataUpdates/ErrataUpdates/Errata

• http://www.graphics.cornell.edu/~jaf•• http://http://www.graphics.cornell.edu/~jafwww.graphics.cornell.edu/~jaf
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Case Studies

Our purpose here is to highlight a sampling of 
the work that has appeared in the computer 
graphics literature that uses psychometrics to 
gain additional insight into human perception, 
and/or examines the success of computer 
graphics techniques.

Case Study: Realistic Image 
Synthesis

"An experimental evaluation of computer 
graphics  imagery"  
Gary Meyer, Holly Rushmeier, Michael Cohen, 
Donald Greenberg, and Kenneth Torrance,  ACM 
Transactions on Graphics,  Volume 5 ,  Issue 1  
(January 1986).

Graphics Problem:
Synthetic images look artificial

Possible Solution:
Use radiosity to calculate diffuse interreflections

Psychophysics:
Does radiosity produce more realistic images?

Case Study: Realistic Image 
Synthesis

Meyer et al.

V-1

One reason that synthetic images can look 
artificial is that they take short cuts in 
represent the light transfer that accounts for 
the formation of the image. Radiosity is a 
method for more accurately calculating light 
transfer. Radiosity can be computationally 
intensive, and the question arose whether the 
extra effort was really worthwhile considering  
the quality of the image produced.



Case Study: Realistic Image 
Synthesis

Meyer et al.

From the vision literature:

Previous work comparing view of 
real scene and a picture 
suggested limiting view.
Previous work in color 
metamerism to convert spectral 
radiosity results to RGB for 
calibrated display

Case Study: Realistic Image 
Synthesis

Meyer et al.

The Experiment:

Comparing a displayed image to a photograph 
requires simulating the entire film chain. A 
more direct comparison is to view the actual 
real scene and the displayed image. The view 
that would reveal which is which was restricted 
using view cameras. One advantage of the 
view cameras was that the subject could see 
both images at the same time.
The light coming from the scene was 
measured to compare to numerical values to 
ensure that the radiosity simulation was 
physically accurate. The goal of the 
experiment was to see if this physical 
accuracy had an impact on the visual 
accuracy.

Case Study: Realistic Image 
Synthesis

Meyer et al.

Insights

When asked which is the real model 
and which is the synthetic image 9 out of
20 picked the wrong one.

For this scene, it was possible to generate
a realistic image from principles of light
transfer and color metamerism.

V-2

 As a group, subjects did no better than they 
would have with random guessing in choosing 
which image was synthetic and which was a 
view of the real scene.
The experiment proved that at least for certain 
classes of scenes radiosity was capable of 
generating realistic images, with realism in 
this case defined as indistinguishable from a 
view of the physical scene being simulated.



Case Study: Animation

"Collisions and Perception"
Carol O'Sullivan and John Dingliana
ACM Transactions on Graphics
Volume 20 ,  Issue 3  (July 2001)

Graphics Problem:
Collisions expensive to compute

Possible Solution:
Degradable collision calculations

Psychophysics:
When is a collision plausible?

Case Study: Animation

O'Sullivan and Dingliana

Collisions are expensive to compute, 
especially when there are large numbers of 
potentially interacting objects. Taking the time 
to accurately compute the collisions can bring 
a real time application to a complete halt.
Previously O'Sullivan and Dingliana 
considered degradable collisions, a method for 
computing collisions at different levels of 
accuracy.
If you can adjust the level of accuracy of a 
collision, how much can you get away with 
without the observer feeling that the results are 
implausible?
Issue is not "is this a faithful simulation" but 
"is this plausible"

From Vision Literature

Case Study: Animation

causality
eccentricity
distractors
velocity

O'Sullivan and Dingliana

V-3

Rather than run through hundreds of cases 
with arbitrary variations, important elements in 
perception of collisions are identified from the 
vision literature.



Case Study: Animation
The Experiments

∆t

Delay and
Causality

Eccentricity

O'Sullivan and Dingliana

Psychophysical experiments conducted to 
examine each effect.
Perception of causality, whether the collision is 
causing the objects to move, depends on the 
delay in the motion. Experiment verified that 
the  more the delay the less plausible the 
collision.
In the proposed degradable collision method, 
less accurate collisions leave gaps between 
the two colliding objects. The experiment 
verified that detectability of these gaps 
decreases as the collision is further away from 
the point where the observer is directing 
attention.

Case Study: Animation

Distractors Velocity

O'Sullivan and Dingliana

In the proposed degradable collision method, 
less accurate collisions leave gaps between 
the two colliding objects. The experiment 
verified that detectability of these gaps 
decreases as the collisions as there are more 
objects "distracting" the observer.
In the proposed degradable collision method, 
less accurate collisions also affect the angular 
momentum imparted on collision. In a 
surprising result, for higher velocities highly 
accurate collisions actually rated less plausible 
than medium accuracy.

Case Study: Animation

Insights:

Time delays are important
Eccentricity and distractors  can be exploited
Simulation accuracy != plausibility

O'Sullivan and Dingliana

V-4



Case Study: Data Visualization

"The Which Blair Project:
A Quick Visual Method for Evaluating
Perceptual Color Maps"
Bernice Rogowitz and Alan Kalvin
IEEE Visualization, Oct. 2001

Case Study: Data Visualization

Graphics Problem:
Mapping colors to data values

Possible Solution:
Perceptual color maps

Psychophysics:
Can a simple test identify a good map?

Rogowitz and Kalvin

One way to represent a scalar data value 
visually is to map a range of color to a range 
of values. To be effective, the relative changes 
perceived colors should be the same as the 
relative changes in the data,e.g. if a value of 
0.5  is significantly  low compared to 0.7 they 
should not be mapped to imperceptibly 
different shades of yellow.  Perceptual color 
maps has been developed to address this 
issue. Unfortunately, the  color displayed by a 
value 0-255 depends on the particular display 
be used. Without tedious calibration, it is 
impossible to know what map should be used 
on a particular display to produce a 
perceptually uniform mapping.

Case Study: Data Visualization

Rogowitz and Kalvin

From Vision Literature

perception of luminance versus hue, 
saturation
sensitivity of luminance variation on 
faces

V-5

The goal of this work is to find an easy test for 
evaluating the best color map without 
calibration. The work starts with the insights 
that monotonic increase in luminance is 
critical in a useful color map, and that people 
are very sensitive to luminance variations on 
human faces.



Case Study: Data Visualization

Rogowitz and Kalvin

Experiment:

different color maps applied to Blair image

In the experiment various color maps were 
used on a grey scale image of a well-known 
face.

Case Study: Data Visualization

Rogowitz and Kalvin

Experiment:

Users judged whether the picture was very bad 
(-2), somewhat bad (-1), neutral (0), 
somewhat good (1) or very good(2).

Case Study: Data Visualization

Rogowitz and Kalvin

Experiment:

scales with monotonic increase rated positive
higher luminance contrast, higher rating

V-6

The experimental results showed that images 
generated with the perceptual color maps 
received positive ratings.



Case Study: Data Visualization

Rogowitz and Kalvin

Insight:

Applying various sets of color maps to
a face image can aid in selection of perceptual
color map on uncalibrated display.

The results of this experiment indicated that 
applying color maps on a face may be an 
effective method for choosing a color map 
from a set of color maps that is best for a 
particular uncalibrated display. This may help 
when people share data among remote sites, 
to make sure that the same features are 
discernible in a visualization, even when the 
data is being viewed on vastly different display 
devices.

Case Study: Virtual Environments

"Visual Cues for Imminent Object Contact"
Helen Hu, Amy Gooch, William Thompson,
Brian Smits, John Rieser, Peter Shirley
IEEE Visualization, Oct. 2000.

Graphics Problem:
Judging distances in V.E.'s is difficult

Possible Solution:
Add visual cues

Psychophysics:
What visual cues are worth computing
to improve judgements?

Case Study: Virtual Environments

Hu et al.

V-7

A sense of imminent contact is needed for 
virtual environments to have a sense of 
naturalness -- i.e. its unnatural to not know 
you are about to hit something until you feel it. 
Visual cues can help, but some of them can 
be very time-consuming to compute, so which 
are really helpful?



From Vision Literature

Case Study: Virtual Environments

binocular stereo
shadows 
interreflections

Hu et al.

The study begins with a review of relevant 
vision literature on depth perception. Stereo is 
important and has been studied a lot. There 
are a few studies on shadows, and very little 
on interreflections and their impact on depth 
perception.

The Experiment

Case Study: Virtual Environments

Hu et al.

In the experiment the user moved a real 
cylinder, constrained to vertical motion, while 
viewing a virtual cylinder which was being 
moved above a horizontal virtual surface. The 
cylinder was to be lowered as close as 
possible to the horizontal surface without 
hitting it.

The Experiment

Case Study: Virtual Environments

Hu et al.

All eight combinations of stereo/no 
stereo, shadows/no shadows, 
interreflections/no interreflections tested.
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The Experiment

Case Study: Virtual Environments

Hu et al.

All results better for cases including 
stereo than for cases which did not 
include stereo.
Overall all subjects used all three cues.
Benefit of shadows and interreflections 
varied between subjects.

Insights

Case Study: Virtual Environments

Hu et al.

Stereo important
Shadows help
Benefit of interreflections unclear
Data for more configurations needed

A single experiment of this type can indicate 
useful effects, but it will take much more 
additional testing for different configurations 
and tasks before the value of various cues can 
before quantitative results can be obtained.

Summary

Just a small sampling of work using 
perceptual studies in computer graphics.

No single experiment completely solves 
a problem, but each gives new insights.
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The original papers for these examples should 
be consulted for details on the experimental 
methods and design. Reading about  the 
experiments in these papers in the context of 
the principles presented in this course is a 
good way to start using the information 
presented today.



Are Image Quality Metrics Adequate to Evaluate the Quality of

Geometric Objects?

Bernice E. Rogowitz and Holly E. Rushmeier

IBM TJ Watson Research Center, P.O. Box 704, Yorktown Heights, NY USA

ABSTRACT

Geometric objects are often represented by many millions of triangles or polygons, which limits the ease with which they can be
transmitted and displayed electronically. This has led to the development of many algorithms for simplifying geometric models,
and to the recognition that metrics are required to evaluate their success. The goal is to create computer graphic renderings of
the object that do not appear to be degraded to a human observer. The perceptual evaluation of simplified objects is a new topic.
One approach has been to use image-based metrics to predict the perceived degradation of simplified 3-D models 1 Since that
2-D images of 3-D objects can have significantly different perceived quality, depending on the direction of the illumination, 2

2-D measures of image quality may not adequately capture the perceived quality of 3-D objects. To address this question, we
conducted experiments in which we explicitly compared the perceived quality of animated 3-D objects and their corresponding
2-D still image projections. Our results suggest that 2-D judgements do not provide a good predictor of 3-D image quality, and
identify a need to develop “object quality metrics.”

Keywords: computer graphics, geometric simplification, perception

1. INTRODUCTION

Three dimensional computer graphics was once used primarily in specialized computer-aided design (CAD) systems, and off-
line rendering applications such as feature film production. Increasingly 3-D graphics is being used in widespread interactive,
networked applications such as computer games and e-commerce. The representation and display of 3-D objects can require
substantial computer resources. A critical issue in designing effective interactive systems is to find the minimum representation
of a 3-D object that does not compromise the visual quality of the object when it is rendered in two dimensions. In this paper we
address how to evaluate the quality of the representation of a 3-D object. To do so, we compare the degree to which a simplified
object appears degraded relative to an “original”. In one condition, the observers judge the perceived quality of the simplified
object by comparing static images of the object; in the other condition, observers compare animated sequences of the original
and simplified objects rotating through an angle of 90 degrees.

1.1. Geometric Representation and Simplification

A wide variety of numerical forms can be used to represent 3-D objects. For interactive applications however, the most widely
used representation is triangle meshes since they can be displayed rapidly by computer graphics cards commonly available on
personal computers. In the past, 3-D objects for games and other interactive applications were carefully designed to use small
numbers of triangles. More recently, objects are modeled by sampling continuous representations designed in CAD systems, or
by capturing physical objects using 3-D scanning systems. Typically CAD or scanned objects are over sampled. Simplification
algorithms have been used to reduce the number of triangles. A review of simplification algorithms can be found in an article
by Cignoni et al..3 In general, geometric metrics, such as maximum distance from the original unsimplified surface, are used
to drive algorithms that reduce the number of triangles. Simplified models are produced by trial and error using different values
of the geometric metric until the model judged to be of adequate visual quality with the least number of triangles is obtained.

Recent algorithms have been designed based on the realization that ultimately the perceived quality of the object is the
critical issue. Driving the simplification by the resulting 2D display of the object, image metrics, rather than geometric metrics,
have been proposed. In particular, Lindstrom and Turk 4 have developed a simplification method driven by minimizing the
root-mean-squared difference in images generated from a large number of views of the simplified object relative to the original
object. The algorithm simplifies a shape for a particular surface color variation and reflectance. In all the views used in their
algorithm, light coincident with the viewer is used.

Further author information: (Send correspondence to B.E.R.) E-mail:frogowtz,hertjwrg@us.ibm.com
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1.2. Perceptual Evaluations of Geometric Representations

Although many simplification algorithms take into account geometric measures that are related to perception, only two studies
have appeared that document psychophysical experiments to evaluate object quality.

Watson et al.1 used naming times to study the quality of object representations. Observers were presented with images
of objects that had been simplified to various extents, and the time it took for observers to name the objects was recorded.
Generally naming times correlated poorly with both geometric measures and image-based measures. In one condition however
the authors found a correlation between naming time and the output of a perceptually-based image quality metric. This suggests
a role for image-based metrics for evaluating geometric object quality.

Rushmeier et al.2 studied the effectiveness of replacing geometric detail with texture maps as a method of simplification.
Observers were asked to rate the quality of match between high resolution models and various simplifications of the model.
Consistent results were obtained across observers. For the simple objects used, it was found that the effectiveness of textures to
replace geometric detail depended on the spatial detail of the object .

In both of these studies, the authors assumed that the quality of still images can be used to assess the quality of an object
representation. Since one essential feature of an interactive application is that objects are observed in motion, we wonder
whether the perceived quality of 2D projections correlates with the perceived quality of the rotating object. It may be that the
requirements for the representation of an object in motion may be reduced because the observer is able to detect less detail in
frames that pass quickly. On the other hand, motion may make some artifacts in simplified objects more apparent if they result
in unnatural jumps between frames. If the observer’s judgements are the same for animations and for the still images that the
animations are composed of, asking observers to rate comparisons of animations may be a more efficient method of examining
object quality in future experiments.

2. DESIGN OF EXPERIMENT

In general, 3-D objects have varying color and surface finish. To narrow the scope of this experiment, we considered only
gray objects with a uniform surface finish. We used objects from the Georgia Tech Large Model database, that were originally
obtained using 3-D scanning by researchers at Stanford University. In addition to being publically available, these models are
of interest because they are commonly used in comparisons of geometric simplification algorithms by the computer graphics
community.

2.1. Preparation of Stimuli

The two objects used were the models “bunny” b and “happy Buddha” h in the database. The models are shown in Figs. 1, 2
and 3. The highest resolution model for the bunny was composed of 69,451 triangles, and for the Buddha 143,206 triangles.
Two simplified versions of each model were generated using the Simplify module in the OpenDX open source visualization
system. The Simplify module uses Gueziec’s simplification method5 that specifies a bound on the distance of each vertex in
the simplified model as a percentage of the diagonal of a rectangle bounding box (BB) for the original model. For the bunny
an error bound of 0.4 per cent of the BB diagonal produced a simplified model of 6467 triangles, and a bound of 1.0 per cent
produced a very simplified model of 1679 triangles. The three versions of the bunny model viewed and lit from the front are
shown in Fig. 1. For the happy Buddha bounds of 0.25 and 1.40 percent of the BB diagonal produced simplified and very
simplified models of 27,168 and 6389 triangles respectively. The three happy Buddha models are shown in Fig. 2.

For each model and level of simplification two sequences of 15 images were produced, one with a light collocated with the
view position, as in Figs. 1 and 2, and one with the light directly above the object. In each sequence the object rotated in 5
degree increments from a front to a side view. Examples of side views of the models lit from above are shown in Fig. 3. The
image sequences were assembled into animations to be played back at a rate of 15 frames/second, giving a smooth rotation
from front to side that could be run in a forwards/backwards loop.

2.2. Procedure

There were 8 basic conditions: two objects (bunny and happy Buddha), each at two levels of simplification (simplified and very
simplified), with each level of simplification viewed under two lighting conditions (lit from above or from the front). We will
refer to these conditions by specifying object-simplification-lighting, e.g. bva refers to the bunny model, very simplified lit
from above. The experiment consisted of two parts. In the first part the observers were asked to rate the images of the simplified
and very simplified models relative to images of the full resolution model under corresponding view and lighting conditions.
The images were presented pairwise (full and simplified resolution in each pair) in random order (model types, simplification
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Figure 1. Three versions of the bunny b model were used. On the left is the full resolution model, in the center the simplified
model, and on the right the very simplified model. All three versions are shown here viewed and lit from the front.

Figure 2. Three versions of the happy Buddha h model were used. On the left is the full resolution model, in the center the
simplified model, and on the right the very simplified model. All three versions are shown here viewed and lit from the front.

Figure 3. Sequences of each model were generated rotating from a front to a side view. Two sequences were constructed of
each of the three models. They were either lit from the front and viewed from the front, as in Figs. 1 and 2, or lit from the top
and viewed from the front as shown here.
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levels and light conditions all mixed) to each observer in an html form. The observer rankings were indicated on an integer
scale of 0 (worst) to 10 (perfect) using radio buttons under each test stimulus.

For each of the 8 basic conditions images were generated for 15 different view positions, for a total of 120 image compar-
isons to be made by each observer. The observers were free to view all of the images to be compared before assigning scores, to
determine their own calibration for “worst” comparison. Ten observers with normal or corrected to normal vision participated
in the experiment. All were professionals at the Watson Research Center, but naive to the purpose of the experiment.

In the second part of the experiment the observers were presented animations of the objects. They were asked to judge
the quality of each animated simplified object relative to the full resolution animated object under the same lighting condition.
The animations for each comparison were embedded in a Lotus Freelance presentation file to allow the observers to view the
animations for as long as they desired without being able to stop the animations and examine individual frames. The animations
for each comparison were viewed in succession, rather than side by side. As in the image comparisons, the observers were free
to review the animations as many times as they wanted, and to go back a review previous pairs of animations before recording
their final scores.

3. RESULTS

Ten observers judged the degree to which a simplified geometric object matched the perceived image quality of the original
object and assigned a rank to the perceived quality. The higher the rank, the greater the perceived similarity between the original
and simplified object. This judgment was made for two different geometric objects, under two different illumination conditions,
for a sequence of still images, and for an animated set of sequences.

3.1. Analyzing Data from Rating Experiments

The data from these experiments are rank judgments. Observers use numerical values on a scale from 0 to 10, and these
judgments provide a measure of perceived quality. These judgments are ordinal. Consider three still images rated “2,” “5” and
“8”. These values are ordered, the images increase in perceived image quality, but the distances between these judgments do
not necessarily represent perceptual distances. That is, although the number assigned to the highest quality image is four times
the number assigned to the lowest quality image, its perceived image quality is not necessarily four times as great. Since these
are ordinal, not nominal data, we cannot simply use mean rating scores to summarize the data, and must instead treat the data as
ranks. We can compute, instead, statistical summaries appropriate to ordinal data, such as the proportion of scores at or above
a certain value, rank-order correlations, etc. We call this out explicitly since it is a common practice to simply compute means
and standard errors for rating data. Since these methods assume that the data are interval, using them on ordinal data can lead
to biases in data interpretation.6

3.2. The Perceived Quality of Simplified Objects

Figure 4a shows results for one observer from one of the test patterns, hsa (happy Buddha, simplified, lit from above). The
graph shows the rating score for each of the 15 viewing positions, plus, at the value indicated by A the score representing the
degree of degradation of that target, relative to its original, when animated. Figure 4b shows the results for all 10 observers.
Observations for two of the observers have been connected by lines to aid in visualizing the data. These data reveal the large
variability in the observers’ rating responses. For this target, rating scores ranged from 2 to 8. Whatever effect there might be
of viewing position, it is small relative to the variability in the data.

Since we found no systematic effect of viewing position, we combined the rating scores for the 15 different viewing
positions. Figure 5 shows a set of histograms representing quality scores under each of the eight conditions. Each histogram
represents rating scores for ten observers at 15 different viewing positions (150 scores). The first column shows histograms; the
second column shows cumulative histograms. The histogram representing the data hsa in Fig. 4 are in the fifth row. Images
of the test objects are provided to aid in interpretation. For ease of viewing, the histograms have been ordered by mean rank
score. Ordering them by the percentage of scores at or above the rank of 6 produces the same ordering.

Several results emerge from this plot. First, for all targets, independent of lighting, the more simplified the object, the greater
the perceived degradation. Second, the simpler model, the bunny, was less sensitive to degradation than the more complex
model, the happy Buddha. When compared with its original, the bunny was systematically rated as being less degraded,
independent of lighting angle. Third, in three of the four cases, the object lit from above was rated less positively than the same
object, at the same simplification, lit from the front. In the cumulative histograms, the distribution of scores shifts to the right
with higher scores when the object is lit from the front.
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Figure 4. Example results for the target hsa (happy Buddha, simplified, lit from above). Fig. (a) shows the rating results for a
single observer at each of 15 position of the object, and the score assigned to the quality of hsa when animated relative to the
(animated) original, A. Fig. (b) shows the results for all observers for hsa.

Figure 5. Histogram results for all eight conditions in the still image experiment. The first column on the left shows histograms,
the second column shows cumulative histograms, and images representing each condition are shown on the far right.
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Figure 6. Charts showing the percentage of trials with high image quality (% scores >= 6) for the 8 conditions. Fig. (a) shows
the results for the still images, Fig.(b) shows the results for the animations.

3.3. Effects of Lighting Direction on Perceived Quality

Figure 6 summarizes the effects of lighting on the perceived degradation of simplified objects. As a dependent measure, we
compute the proportion of total trials where the simplified object is rated as having good quality relative to the original (%
scores >= 6). The light bars indicate those conditions in which the object is lit from above; the dark bars indicate those
conditions in which the object is lit from the front. The chart to the left shows data when judging 2-D images of the objects and
provides a summary of the data in figure 5. Each bar represents the percentage of trials across observers (10) and positions (15),
n = 150, rated >= 6. The chart to the right shows data when judging animations of the 3-D objects. Each bar represents the
percentage of trials across observers (n = 10) rated >= 6. In Fig. 6b we see that the quality judgments made for animations of
3-D objects are in some ways similar to those made for their 2-D projections. For example, the very simplified models receive
systematically lower scores than their less simplified counterparts. The greater robustness of the bunny model relative to the
happy Buddha however is not replicated, and most strikingly the effects of lighting are quite different for the better quality (less
simplified) models. In particular the superiority of lighting from the front is much more pronounced for the simplified happy
Buddha model hs. Lighting from above produces comparable results, but under animation lighting from the front produces a
considerably higher proportion (80 %) positive scores. That is , the visual effects produced by simplification are reduced under
lighting from the front when that object is animated. Under animation, the perceived quality of the object when lit from the
front, is increased.

3.4. Geometric Metrics and Perceptual Quality

Figure 7 explores the degree to which a standard computer graphics metric for measuring object simplification captures the
perceived quality of these objects. Here rated quality is plotted as a function of a standard measure of object degradation. The
lower the maximum distance as a percentage of the bounding box, the less distortion. If this measure captures perceived quality,
then the quality rating scores should decrease linearly with this measure, and there should be no difference between objects lit
from above and those lit from the front.

In this figure, we consider the results of the two experiments separately. The results are remarkably similar. Whether the
judgments are made on static 2-D images or animated 3-D objects, perceived quality decreases monotonically and linearly for
models lit from the front. For front lighting r 2 is �0:98 for still images and�0:95 for animated sequences. However perceived
quality is not monotonic for models lit from above. The large difference between the two lighting conditions, suggests that a
purely geometric description will not be adequate to describe these results. As with the still images, the perceived quality of
3-D animated geometric objects depends critically on the incident angle of the lighting.

3.5. Object and Image Quality

In our experiments, we measured the degree to which animated objects and their 2-D image projections were degraded percep-
tually by geometric simplification. In order to use an image-based quality metric to describe the perceived degradation of a
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Figure 7. Perceptual ratings versus a standard geometric metric for simplification, the maximum distance of the simplified
geometry from the original as a percentage of bounding box diagonal. Fig. (a) shows the ratings for the still images, (b) shows
the ratings for the animations. Although perceived quality is linear with this metric with lighting from the front, it is not even
monotonic with lighting from above. Furthermore, this metric does not account for differences between lighting conditions.

Figure 8. Comparisons of the ratings of the still and animated cases. The proportion of trials in which the still image is given a
higher score than the animated object is shown by the light bars, and the proportion of trials in which the still image is given a
lower score is shown by the dark bars.
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3-D object, we would need to show that the degree of perceived degradation of the still image is comparable to the perceived
degradation of the animated object. Figure 8a explores this hypothesis.

Instead of counting the percentage of “good scores,” we count the proportion of trials when the still image was given a higher
score than the animated object and the proportion of trials when the still image was given a lower score. If the degree to which
geometric simplification degrades perceived quality is the same for images and animations, then we expect the proportion of
lower and higher scores to be the equal. For example, if an observer assigns a rank of 6 to an animated object, then the expected
value for the 2-D projections should also be 6, with an equal proportion of scores above and below this expected value.

In Fig. 8, the light bars show the proportion of the still images trials rated higher than the animated object; the dark bars
show the proportion of trials where the still images were rated lower in quality than the animated object. In this chart, we see
that for three of the test stimuli, the still images are consistently rated lower than the animated object (dark bars smaller); for
three of the stimuli, the still images are consistently rated higher in quality than the animated object. For two of the stimuli,
the perceived degradation due to the geometric simplification is the same, whether the observer is rating the images or the
animation.

It is clear that the degree of perceived degradation of the still images does not adequately predict the perceived degradation
in the equivalent animated images.

4. CONCLUSIONS

In these experiments, we explored the perceived quality of two different representations of 3-D objects, in order to better
understand how to characterize and measure the effects of geometric simplification. To do so, we selected a simple and a
complex geometric model, Bunny and Happy Buddah, and created two simplified versions of each. We used these stimuli to
study the effect of geometric simplification on perceived quality by having observers rate the quality of these stimuli relative to
their unsimplified originals. Since, in previous experiments, we had observed striking differences in the quality of 2-D images
of 3-D objects depending on the direction of the lighting, we varied lighting explicitly, making all measurements with lighting
from above and with lighting from the front, aligned with the observers viewing direction. Although geometric measures of
model simplification are based on the 3-D geometry of those models, the two existing experiments aimed at developing a
more perceptual model were based on the evaluation of 2-D projections of those objects. In particular, it had been suggested
that the quality of 3-D objects could be predicted based on the quality of static 2-D projections. To explore this hypothesis,
we conducted our experiments under two different conditions. In the first condition, the observers rated the quality of 2-D
static images, 15 projections of the 3-D object, at 5-degree angles along a quarter-rotation from side-to-front view. In the
second condition, the observers rated an animated sequence of these 15 images, showing the object rock back and forth from
side-to-front-to side.

When compared with the unsimplified original, the more the object was simplified, the lower the rating scores, for both
animated and static presentations. Perhaps the most striking result of these experiments is the remarkable effect of lighting on
perceived quality. In 7 of the 8 conditions tested, judgments of perceived quality depended on the direction of the lighting.
Furthermore, the degree to which lighting direction affected the quality judgments depended on whether static or animated
images were being judged. For the two more complex objects, the simplified Buddah (hs) and the simplified Bunny (bs), the
perceived quality of the rendering increased significantly when the object was animated, if that object was lit from the front.
That is the degree of geometric simplification was much less noticeable in animation for simplified objects lit from the front.
This suggests that certain simplified geometric objects might be best lit from the front, rotating. Since the human visual system
is less sensitive to high spatial frequencies when an object is moving, it may be that the rotation reduces the detectability of
high spatial frequency artifacts introduced by the simplification process. This result may not be observed when the object is
lit from the front, since the contrast of these artifacts is so high that their effect cannot be effectively attenuated. It would be
interesting to explore this idea further by explicitly varying the spatial and temporal frequency composition of the stimuli.

Since one goal of this work is to develop a metric for characterizing the perceived quality of geometrically simplified
graphical objects, we examined the perceptual rating scores as a function of a standard metric for characterizing the geometric
effect of simplification, the maximum distance of the distortion as a percentage of the bounding box. We found that for objects
lit from the front, perceived quality decreased linearly with this measure of geometric difference. Rated quality did not decrease
monotonically for these same objects when lit from above. According to this metric, the simplified happy Buddah (hs), with
%BoundingBox = 0:27 should have much higher perceived quality than the simplified bunny (bs), with %Boundingbox =

0:4. Instead, we found for both static and animated viewing conditions, the opposite was true. The hs stimulus had consistently
lower scores, indicating much lower perceived quality.
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Perhaps the most important observation to make regarding the geometric metric is that it does not predict any difference
between the two lighting conditions. Since the geometry of the object is unchanged when the lighting direction is changed, the
metric sees these as identical. Perceptually, however, lighting direction is a critical factor in judging the amount of distortion
produced by the simplification.

An important criterion for selecting a metric is that address the difference between the perceived quality of still and animated
images. This difference is not a simple shift in sensitivity that can be accounted for with a normalization factor. In some cases,
the static images were consistently rated higher in quality than the animated sequence; in some cases the static images were
consistently rated lower than the animated sequence. The pattern of these results is not straightforward, and more work needs
to be done. The clear conclusion, however, is that even if we had a metric that completely characterized the perceived quality
of static 2-D projections of 3-D objects, this metric would not predict the quality of 3-D animated sequences of those same
images.
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ABSTRACT

An important goal in interactive computer graphics is to allow the user to interact dynamically with three-dimensional objects.
The computing resources required to represent, transmit and display a three dimensional object depends on the number of
polygons used to represent it. Many geometric simplification algorithms have been developed to represent the geometry with
as few polygons as possible, without substantially changing the appearance of the rendered object. A popular method for
achieving geometric simplification is to replace fine scale geometric detail with texture images mapped onto the simplified
geometry. However the effectiveness of replacing geometry with texture has not been explored experimentally.

In this paper we describe a visual experiment in which we examine the perceived quality of various representations of
textured, geometric objects, viewed under direct and oblique illumination. We used a pair of simple large scale objects with
different fine-scale geometric detail. For each object we generated many representations, varying the resources allocated to
geometry and texture. The experimental results show that while replacing geometry with texture can be very effective, in some
cases the addition of texture does not improve perceived quality, and can sometimes reduce the perceived quality.

Keywords: computer graphics, geometric simplification, texture, perception

1. INTRODUCTION

Graphics systems can make intensive use of available computational resources. Given the complexity and detail of geometric
models available, trade-offs must be made in graphics rendering to balance between interactivity and perceptual quality. Ad-
vances in networking have also focused attention on the use of rendering approximations in order to enable the efficient use
of bandwidth-constrained resources for distributed graphics applications. Different choices of rendering approximations will
affect perception in different ways. Thus, it is desirable to develop perceptual measures to understand the impact of texture and
geometry approximations. In this paper we study the implications of substituting texture for geometry.

Many geometric simplification algorithms have been developed to provide interactivity and reduce bandwidth require-
ments. The goal of these algorithms is to achieve a perceptually acceptable representation with minimal resource requirements.
Ultimately, both the acceptable perceptual quality and resource requirements are dependent on the particular computing en-
vironment. The acceptable perceptual quality would be quite different for an e-commerce application where a customer is
examining an object to make a decision whether to buy it, versus a game environment in which the player may be willing to
accept a level of artificiality. The resource limitations would be quite different for an application in which transmission over the
Internet is the bottleneck, versus an application where interactive frame rate on a specific workstation is required. Before we
can address these issues, however, we need to enhance our understanding of the interplay of graphics resource allocation and
perceptual quality.

Very little work has been done to explore the perceptual effects of different simplification schemes. For simple sprite
representations, Horovitz and Lengyel1 considered trade-offs in the perceptual and computational costs. Watson et al. 2 consider
naming time as a predictor of the perceptual quality for various levels of geometric simplification. They considered only triangle
reduction – not methods which replace geometry with texture. They found that both geometric and image metrics correlated
poorly with the quality indicated by naming time.

The goal of our work is to provide a general framework for evaluating the perceptual effects of geometric simplification, and
geometry-texture trade-offs. We do not specify a task or a particular network/workstation setting. Instead, we create simple,
well-controlled stimuli, explicitly varying the geometry, texture and illumination. We introduce a simple scaling procedure
as a method for exploring fundamental questions in the area of geometry/texture allocation. Does texture replacement always
result in better perceptual quality for a given resource allocation? Are certain types of geometry more suitable for texture
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Figure 1. In computer graphics, a solid object (leftmost image) is often represented as a dense mesh of triangles (second
image from left.) To facilitate interactive display performance, objects are often simplified (third image from left), to reduce
the number of triangles (rightmost image), while attempting to preserve the appearance of the object.

replacement? Are there different rules for different classes of objects, different viewing conditions? What is the impact of
lighting?

To evaluate the degree to which adding texture could compensate for simplifications in geometry, we measured the perceived
fidelity of two objects, a smooth sphere and a crinkly sphere, lit from the front or obliquely from the side. In each experiment,
twelve test stimuli were created using three levels of geometric resource and four levels of texture resource (including a no-
texture condition). In these experiments, psychophysical data were obtained from eight observers who rated the degree to which
each of the test stimuli compared with a comparison stimulus with full geometry and full texture resource.

2. GEOMETRIC SIMPLIFICATION AND TEXTURE MAPPING

A wide range of representations can be used to model the geometry of an object – including tensor spline surfaces and quadric
patches. For interactive display, typically all representations are converted to a set of polygons approximating the surface. For
curved or complicated objects, thousands of polygons may be used. Usually networks of triangles are used, such as the example
shown in Fig. 1 since triangles are guaranteed to be non-self-intersecting, facilitating hidden surface calculations. The time to
display a surface depends directly on the number of triangles. Interactive display rates require that the number of triangles be
limited. To maintain interactive rates, many algorithms have been developed to reduce the number of triangles in a given model
while maintaining the visual appearance.

2.1. Simplification

Many different simplification methods have been proposed. Here we present just a brief overview. A comprehensive discussion
can be found in an article by Cignoni et al.3 Virtually all of the methods are associated with parameters that affect appearance,
but none are based on perceptual data. One general class of methods creates simplified geometries by a series of small incre-
mental simplifications. Popular incremental approaches are vertex removal and edge collapse. In vertex removal methods such
as the one proposed by Schroeder et al.4 one point in the mesh is removed, and new triangles are defined to fill the resulting
hole. In edge collapse methods such as the one developed by Gueziec, 5 one edge is removed, and the two vertices at the ends
of the edge are merged into one.

In any type of incremental method, a choice needs to be made to determine the next best vertex or edge to remove. The
choice is generally made on the basis of a geometric metric. Common metrics include selecting the change that results in the
smallest change in surface area, or selecting the change that results in a surface that is the closest to the original vertices.

Other methods work globally, such as clustering or volumetric methods. 6 These impose a maximum length scale on the
simplified model by coalescing all vertices within a prescribed distance to one another into a single vertex. These methods have
the advantage that they allow the object topology to change.



Figure 2. A simplified geometry can be given a detailed appearance using a texture map, as shown in the before and after
images on the far left. At each vertex (u; v) indices are stored , which are locations in an image, as shown in the center diagram.
Details inside the triangle are “painted” on the triangle using the image pixels within the corresponding triangular area on the
texture image. A texture-mapped object can be viewed from any direction (right-most image).

Recently more attention has been paid to visual impression rather than purely geometric measures. On one extreme some
efforts seek to find the simplest symbolic representation of an object – for example representing a hand with a skeleton of five
line segments. At the other extreme, some efforts attempt to produce a pixel by pixel identical image of the object by selecting
the correct level from a hierarchical description of the object. 7 The object is rendered to the image plane progressively, at each
step refining the representation until further refinement does not influence the image. This approach can account for both the
particular view and lighting conditions. However, it does require the observer to wait while the object is progressively rendering
on the screen.

2.2. Replacing geometry with texture

The most successful efforts to date to maintain visual appearance with a relatively small number of triangles make use of
texture mapping. Texture maps provide the illusion of detail. Even though texture is a flat image, when they are attached to
the geometry new views can be obtained. Texture maps that contain color and fine scale detail associated with lower resolution
geometry have been used for decades in computer graphics, 8 9 .

In texture mapping, each vertex in a model is associated with a (u; v) coordinate pair, where u and v each vary from zero
to one. As diagrammed in Fig. 2, the (u; v) coordinates correspond to a location in an image. The detailed value for any point
in the geometry is found by interpolating the (u; v) coordinates of the vertices and looking up the corresponding location in the
texture image. Storing detailed data in image maps is efficient because images do not require the explicit storage of positional
or connectivity data. Images to represent detail may simply store colors. Bump maps are a type of texture image in which each
pixel value represents a small height deviation of the detailed surface from the underlying surface. Normals maps store a vector
quantity at each pixel representing surface normal.

There have been many successful methods for simplifying large sections of complex scenes by generating a texture map
for a single polygon, or small number of polygons, 10 11 . A major feature of the Talisman graphics architecture proposed by
Torborg and Kajiya12 was the representation of three dimensional objects as small polygons, or “sprites” that could be translated
and warped. Soucy et al.13 moved beyond mapping textures to single polygon by developing a systematic method for deriving
color texture maps to represent color detail on a simplified version of a dense triangle mesh.

Display hardware for texture mapping colors is available at relatively low cost on personal computers, and is routinely used
in computer games. A difficulty with using a color image for a texture map is lighting the object. There are two options:
compute the lighting based on the simplified geometry, or use a color image that includes the effect of light. The problem with
the first option is that the lighting variations make the simplified geometry visible, the problem with the second option is that
the lighting cannot be changed.

Display hardware that performs dynamic lighting changes using bump or normals maps is rapidly becoming more widely
available. The hardware interpolates the detailed value of the surface normal from maps and performs the dot product with the
light direction in real time. The calculation performed in hardware to compute a detailed lit texture is diagrammed in Fig. 3.
Cohen et al.14 recognized the importance of dynamically relighting details and developed a method for computing both normals
and color maps for a simplified version of a complex mesh.



Figure 3. Texture maps can be dynamically relit by taking the dot product of light source direction [l;m; n] (as shown in first
three images from left), multiply by the image storing surface color (or simply albedo) and producing a new image (far right).

Figure 4. The objects used in our experiments were a sphere lit from the lef (leftmost image), a sphere lit from the right (image
second from left), a crinkled sphere lit from the front (image thrid from left) and a crinkled sphere lit from the left (rightmost
image.)

3. EXPERIMENTAL DESIGN

We examined perceptual trade-offs in replacing geometry with texture for objects of uniform color and surface finish. We
examined abstract shapes, to avoid issues of semantic interpretation. We constructed our experimental stimuli in order to
have object representations that allowed us to control the geometric and texture simplifications separately. Suitable numerical
object representations were not readily available, since existing collections of test objects did not include the two-dimensional
parameterization required for the texture maps. A few texture mapped objects were available on the Internet, but the textures
were in the form of one texture per triangle, and so were not suitable for filtering to varying resolutions. For our experiment,
test objects were constructed using IBM Visualization Data Explorer (DX). DX is a flexible visual programming system, and
is available without cost as open source from http://www.opendx.org/

The stimuli used were a sphere and a sphere with a crinkled surface, each represented by varying levels of geometry and
texture, viewed under direct or oblique lighting. We used a psychophysical scaling procedure to measure the perceived fidelity
of each representation of each object, relative to a “perfect” reference representation.

3.1. Preparation of Stimuli

The two test objects are shown in Fig. 4. The objects were defined starting with a 512 x 512 grid of points, and warping the grid
into a sphere with unit radius. Normals were computed at each grid vertex, a dot product was performed with lighting direction,
and the results were stored in a 512 x 512 image to be used as a texture map. Texture (u; v) coordinates were stored at each
vertex, with a one-to-one correspondence between object vertices and texture image pixels for the full representation.

The geometry was simplified using the DX Simplify module which is an implementation of Gueziec’s geometric simplifi-
cation.5 Gueziec’s method produces a simplification that guarantees that the resulting surface is within a specified distance of
all the original vertices. Simplify maintains the (u; v) indices at the vertices remaining after each simplification, so all version
of the sphere could be texture mapped with all versions of the texture image. Lower resolution versions of the lit normals maps
were computed with box filtering to reduce aliasing artifacts.

The distribution of crinkles on the second object was obtained by painting intensity variations on a 512x512 image. This
grey scale image was imported into DX, and the grey levels were interpreted as radial perturbations ranging between 0 and 0:1



Figure 5. The medium geometry sphere lit from the front, with geometry only (far left), with simple texture (second from left),
with medium texture (second from right) and with full texture (right).

on the unit sphere. After the full crinkled geometry was constructed, the normals maps and simplified geometries and images
were computed as for the case of the sphere.

For each of the objects we generated two levels of simplification by experimenting with the distance error parameter in
Gueziec’s method to produce simplified objects that spanned a range of visual quality. For each object then we have represen-
tations we will refer to as full, medium and simple. We measure the resource required for each geometry as the compressed
ascii file size of the DX representation. Clearly, this size would vary depending on the particular format used, and the particular
geometry viewer used. The levels of geometric simplification were selected based on the complexity of the model. For the
smooth sphere, the geometric resource was 4.4 Mb for the “full” geometry, .093 Mb (a reduction by a factor of 47) for the
“medium” geometry and .047Mb (a further reduction by a factor of 2) for the “simple” geometry. For the crinkled sphere, the
geometric resource was 14.4 Mb for the “full” geometry, 6.39 Mb (a reduction of a factor 2.3) for the “medium” geometry and
.24 Mb (an additional reduction by a factor of 26.6) for the “small” geometry.

The same four levels of texture were selected for all four stimuli: the original 512x512 image as the “full” case, a 256x256
(factor of 2 reduction in resolution) image “medium” case, and 64x64 (additional factor of 4 reduction in resolution) as the
“simple” case. The resource required is the uncompressed tif file for each of these images, since the texture memory required
is the expanded image size. In terms of memory the “full” image is .787 Mb, the “medium” image is .197 Mb (a factor of
4 reduction), the “small image is .0122 Mb (an factor of 16 reduction) and 0 Mb for no texture. We use this size measure to
illustrate the general framework for evaluation; the correct measures to use would depend on the specific task and computing
environment.

We consider the effect of two lighting conditions, illustrated in Fig. 4. The first condition is with light parallel to the view
direction. This is typical of the “headlight” lighting used in most computer graphics systems used to view individual objects.
The second lighting condition was a light perpendicular to the view direction that causes a relatively abrupt, attached, shadow.
Such shading could occur when an object is used as part of a virtual environment.

For each object and lighting condition, images were computed in which the object height corresponded to approximately 370
pixels on an image with black background. This size was chosen so that a few of the images could be displayed simultaneously
on a 1280 x 1024 monitor. Twelve images were computed for each object/lighting combination, covering all combinations of
simple/medium/full geometry and no/simple/medium/full texture. Samples of the various combinations are showin in Figs. 5
and 6. For the geometry only case, the image was formed by taking the dot product of vertex normal and light source direction
at each vertex, and then using Gouraud shading for the smooth surface display. Note that for the full geometry case, the result
of this technique is pixel-by-pixel identical to mapping the full texture on the geometry.

3.2. Procedure

Eight observers participated in the experiment. They were told that they would be asked to score images of various representa-
tions of an object relative to a “perfect” object (i.e. the image of the full geometry) using a scale of 0 to 100. A score of 100
indicated a perfect match. The observers were shown a variety of the comparisons they were to make from the four tests sets,
and told to try to assign 0 to the worst match or matches. The observers were then asked to scale each of the twelve images in
each of the 4 test sets, with the 4 test sets presented in a random order. The observers viewed a full-size, “perfect” image in one
corner of the display screen, and a matrix of thumbnails of the objects to be rated. For each evaluation, the observer clicked on
the thumbnail to expand it to full size. The observers were free to score each of the 12 objects in any order they liked, and were
given no time limit. The time to complete all 48 comparisons was typically half an hour.



Figure 6. All of the representaions of the side lit crinkled sphere presented to viewers: geometry varies from full (top row) to
simple (bottom row), texture varies from none (left column), to simple (second column from left) to full (right column).

4. RESULTS

The results of the observer scores are summarized in Figs. 7 to 9.

4.1. Validity of Results

Figure 7 shows the distribution of scores assigned by the eight observers in this experiment, across all four stimulus conditions.
There was a high degree of intra-subject concordance. All observers used the whole range of scores from 0 to 100, and the
responses are evenly distributed over that range. The number to the right of each distribution gives the value of r

2 for the
correlation of that observer’s scores with the mean scores for all observers. When each test set is examined individually, r 2 is
systematically higher.

4.2. Perceptual Scaling Results

Figure 8 shows the mean rating scores for the four test stimuli, the smooth sphere viewed from the front (Sphere-Front), the
smooth sphere viewed from the side (Sphere-Side), the crinkly sphere viewed from the front (Crinkle-Front) and the crinkly
sphere viewed from the side (Crinkle-Side). For each stimulus the observer compared the full geometry original with 12
alternate representations varying in texture and geometry. The four texture levels are shown along the x axis, with the no-
texture condition at the extreme left. The three geometry conditions are shown along the y axis.

Sphere-Front. The plot in the top left quadrant of Fig. 8 contains results for the smooth regular sphere, lit front on. Data for
the control stimulus (full geometry and full texture) is shown by the top right column in the set. Since this is identical to the
comparison stimulus, it should be judged as equal (100). For this “sphere-front” stimulus, there was a clear effect of geometry.
Increasing the geometry by a factor of 2 (from .047 to .093) caused the quality ranking to roughly double. An additional factor
of 47 increase in the geometric resource, however, did not produce a further increase in perceived fidelity. Said the other way



Figure 7. The distribution of scores assigned by each observer across the 4 test sets. The correlation coefficient r 2 shows the
degree of correlation between each observer’s score and the mean score for all observers. Each observer used the full range of
scores. The individual scores correlated well with the mean scores.

around, this smooth shape, viewed front on, is impervious to geometric distortion. Reducing the geometric resource by a factor
of 47 had no significant effect on the ratings. It was only perceived to be of reduced quality when the geometry was decreased
by an additional factor of 2.

On this smooth sphere, variations in the texture resource had no effect on perceived image quality. The left-most set of
columns shows the rating data for the three levels of geometric simplification with no texture added. For all three levels of
geometric simplification, there was no change in the rating score with increases in the quality of the texture. For this low
spatial-frequency texture, illuminated from the front, the rating score was driven entirely by the underlying geometry and was
independent of texture.

Sphere-Side. When the sphere was viewed under oblique illumination (bottom left panel), the mean rating score dropped
systematically for each decrease in geometry. This result occurred in the no-texture condition, and at all three levels of .

Under this illumination, adding texture had a significant effect on the perceived quality. Low resolution texture (.0122 Mb)
degraded the perceived quality for all levels of geometric simplification. This may be due to the fact that under these lighting
conditions, the pixel structure of the undersampled texture is very visible, producing an image which is distinctly different from
the smoothly-shaded comparison stimulus. For the most simplified geometry (.047 Mb), additional texture did little to improve
the perceived quality of the smooth sphere. For the less simplified models, using a less simplified texture significantly improved
perceived quality, but with diminishing returns. The first factor of 16 (from .0122 to .197 Mb), produced a big improvement,
but the next factor of four produced no additional effect. This may be because the factor of 16 jump in texture resolution was
sufficient to eliminate most of the pixelation noise.

Can the degradation in perceived quality produced by the decrease in geometry be compensated for by adding texture?
For the middle level (.093 Mb) geometry, the perceived quality of the geometry-plus-texture stimuli was always less than the
perceived quality of geometry alone. Trying to compensate for reduced quality by adding texture would be a waste of resource.

Crinkle-Front and Crinkle-Side. The second model is the sphere with a highly textured surface, viewed under direct illumi-
nation (top right quadrant) and under oblique illumination (bottom right quadrant). Since the data for the two cases are quite
similar, we will discuss them together. Looking first at the left-most columns, we see that reducing the geometry significantly
reduced the perceived fidelity. For most simplifed geometry (.24 Mb), every increase in texture resource, even if that texture
was highly subsampled, produced an increase in perceived fidelity. This can be seen clearly by looking at the bottom row
of Fig. 6. The figure at the bottom left is the low-resolution geometric object without texture. The three images to its right



Figure 8. The mean scores for each of the four test sets are shown as bar charts. The bar in the back left of each chart
corresponds to the full geometry. A comparison of the front- and side-lit sphere demonstrates that illumination can have a
significant impact on perceived quality. A comparison of the sphere and crinkled sphere demonstrates that the effect of adding
texture is different for these two objects. In particular, a comparison of the front row of bars (simplest geometry) shows that
increasing texture does not improve perceived quality for the sphere, but does improve perceived quality for the crinkled sphere.
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Figure 9. The mean scores for each of the four test sets are shown as line charts with mean score versus total memory resource.
The 0 Mb texture case corresponds to geometry alone. For the sphere, the geometry alone always gives the best perceived
quality at each resource level. For the crinkled sphere the full texture (.787 Mb) always gives the best perceived quality at each
resource level.

show the effect of adding three resolution-levels of texture, respectively. Apparently, approximating the high spatial-frequency
surface with an imperfect texture is better than no texture at all, for highly simplified geometries.

For the other geometries, which were much less simplified, adding a low-resolution texture (.0122 Mb) significantly de-
creased the perceived quality of the object. This may be because the simplified texture had a discriminably different (lower)
spatial frequency than the perceived texture of the geometrically simplifed object. Adding additional texture resource increased
the level of perceived quality.

4.3. Resource Trade-offs

Another question to ask of these data is what combination of texture and geometry gives the best perceptual effects? To answer
this, we need to compare the perceptual ratings with the resources consumed in producing the stimuli. For example, in the
above case, we see that for the crinkle spheres, the same perceived quality is obtained for low and high geometry, at .197 Mb
texture resource. That is, a factor of 2 (7 Mb) is wasted by rendering the object with full geometry.

Figure 9 explores this issue more fully. Here the data for each of the four conditions are plotted in the same configuration
as the plots in Fig. 8. Each quadrant plots the mean rating score across subjects as a function of the total resource, where
total resource is the sum of the geometric and texture resource values, in megabytes. For the sphere front and sphere side
stimuli, where there was a factor of 200 difference in resource, the values are plotted on a logarithmic scale. One approach to
interpreting these data is to compare the perceived quality of the model when it is created with geometry alone (no texture), to
the cases where texture has been added. The no texture case is shown as a full line. The horizontally shifted curves show the
additional resource contributed when the three levels of texture are added. If the added texture enhances perceived quality, the
geometry-plus-texture curve will lie above the dotted ”no-texture” curve. If adding the texture decreases perceived quality, then
the geometry-plus-texture curve will lie below the no texture curve. The texture resources are indicated in the legend.



For the sphere-front stimulus (top left quadrant), the highest quality result is always obtained by geometry alone – for any
resource level the dotted line is always at the top of the plot. That is, no expenditure of resource by adding texture improves
the perceived quality of these stimuli. Furthermore, the poor quality texture (.0122 Mb) actually prevents any improved per-
ceived quality when additional geometry is added, as indicated by the quality plot reaching a plateau. For the sphere-side
stimulus (lower left quandrant) these general trends are repeated, with the gap between the quality of textured and untextured
representations widening at each resource level.

For both the crinkle-front and crinkle-side stimuli (on the right) significant benefits are observed using the texture maps.
Here the highest quality result is always obtained by the high-resolution texture mapped representation (.787 Mb). For the low-
resolution geometry, applying any texture map results in an improved perceived quality, and the quality improves monotonically
with the texture resolution. The resource required for the small geometry and full texture map is significantly less than the
resource required for the medium geometry, without substantial loss in quality, particularly for the side lit case. The lines cross
for the medium geometry case, reflecting the fact that only the high resolution texture is an improvement in this case. As in
the sphere case, the flat line for the low resolution texture indicates that this level of texture mapping again actually prevents
improvement by adding geometry.

5. DISCUSSION

In these experiments, we varied the texture and geometry of two models, a sphere with a low spatial frequency surface and a
sphere with a crinkly, high spatial frequency surface. Each representation was compared with an original, “perfect” representa-
tion, providing a measure of the quality of the graphical representation.

4.1 Perceptual Discussion

In this section, we interpret the results in perceptual terms, exploring how our manipulations of geometry, texture, and light-
ing affected perceived fidelity for these two models. We consider two perceptual dimensions of these objects, their boundary
contours and their texture. In this discussion, we discuss how our experimental manipulations affected these dimensions in a
qualitative manner, but plan to make explicit measurements in the future.

Boundary Contour. Detecting small changes in an object’s silhouette can be a very precise task for human observers, who
can reliably discern variations on the order of seconds of arc, for example, seeing a broadcast spire against a sunset horizon.
There has been a long tradition in the psychological literature regarding the role of boundary contours in the determination of
object shape for objects with a countable number of contours. For complex silhouettes, the fractal dimension of the boundary
contour has been shown to be important for object recognition (Rogowitz and Voss 15). For simple shapes, Cortese and Dyre16

have shown that shape discrimination depends on the frequency, amplitude and phase of the Fourier boundary contour. Reducing
the geometry of an object makes the boundary contour more jagged, reflecting the fact that the object has been created with
fewer polygons. In Fourier contour terms, the smooth sphere with full geometry has spatial frequency contours with zero
amplitude. As the geometry is reduced, higher spatial-frequency contours are introduced, with increasing amplitude. The
crinkly sphere has a high spatial-frequency contour. As the geometry is reduced, these high-spatial frequency components are
replaced with successively lower spatial-frequency contours, with increasing amplitude.

The spatial resolution of the texture mapped onto the geometry can also affect an object’s boundary contour. For the high-
geometry crinkly sphere, the subsampled texture reduced the spatial-frequency of the boundary contour. For the low-geometry
crinkly sphere, high-resolution texture increased the spatial frequency of the boundary contour.

Texture Discrimination. Another dimension along which these stimuli can be compared is the texture on the body of the
object. Texture discrimination depends both on the frequency composition of the texture and the amplitude modulation of its
components. For the smooth sphere, geometric simplification produces low spatial-frequency facets and contours. For the
crinkly sphere, with a high spatial-frequency surface, geometric simplification reduces the spatial frequency of the object’s
surface, and can smooth out the crinkly surface altogether. Oblique illumination increases the contrast modulation of these
crinkles and facets, which are made especially distinct as the object moves from full illumination to shadow, increasing texture
discrimination.

In these experiments, several levels of texture were added to the geometric objects. In the case of the smooth sphere, this
was a very low spatial-frequency texture, emulating the low-spatial frequency effect of light on a smooth sphere. Decreasing the
resolution of the low spatial frequency texture produced some banding , contouring and worming, visible mostly in the oblique
lighting condition. In the case of the crinkly sphere, this was a very high spatial-frequency texture, representing the effect of
light on a crinkly sphere. At the lowest level of simplification, it produced a distinct, regular, pixellated pattern. With each



increase in texture resolution, the more the texture map emulated the spatial frequency of the crinkly surface. At the highest
level of texture resource, the majority of the high spatial-frequency detail was represented.

Smooth Sphere. For the sphere-front stimulus, ratings of perceived quality seem to be based only on boundary contour. A
reduction in quality was only observed when the geometric resource was reduced from .093 Mb to .047, reflecting a perceptible
change in the boundary contour. At all levels of geometric simplification, quality judgements were independent of texture
resource, possibly because the texture was not visible under direct lighting. For the sphere-side stimulus, simplifying the
geometry increased the amplitude and the spatial frequency of the boundary contour; increasing the texture slightly decreased
the amplitude of the contour modulation. If the perceptual judgments were based solely on characteristics of the boundary
contour, we would expect perceived quality to decrease for greater degrees of geometric simplification, which it does, and
to increase slightly with added texture, which it does not. Adding a very simplified texture dramatically decreased perceived
quality, presumably because the texture was discriminably different from the original. Adding additional texture resource
improved the perceived quality, presumably reflecting a decrease in sampling artifacts.

Crinkly Sphere. If boundary contour were the major factor in determining the perceived quality of the crinkly sphere,
perceived quality would be highest for the highest-geometry shape and decrease monotonically with reductions in geometry,
correlated with the introduction of high amplitude, low spatial freqeuency jagged contours. This is certainly the effect obtained
for geometry alone; under both illumination conditions, perceived quality increases with each increase in geometric resource.
When texture is introduced, however, the medium-geometry object appeared to have the same quality as the high-geometry
object. This suggests that the texture may mask the imperfections in the medium geometry’s boundary contour.

Texture, however, can also decrease perceived quality. The most simplified texture, for example, brings perceived quality
to its lowest levels, independent of the underlying geometry. This may be because this pixelated texture has a much lower
spatial-frequency than the original, and is easily discriminated. Also, for all geometries, and under both illuminations, perceived
quality increased monotonically with increased texture resolution, suggesting that successive approximations to the high spatial-
frequency of the ”original” stimulus may be driving these results.

Illumination. For the smooth sphere, the object was judged to be of systematically higher quality when viewed under direct
illumination than when viewed under oblique illumination. For the crinkly sphere, representations based on the most simplified
geometry and the most simplified texture appeared to have lower quality under oblique illumination, where the oblique lighting
emphasized the jagged underlying geometry or the pixelated texture.

In interpreting these data, however, it is important to keep in mind that the goal of the experiment was not to study images
of objects, but to understand the perception of objects. Thus, the front-view and the oblique-view are both descriptions of the
same object, just viewed under two illuminations. In future experiments, we plan to ask observers to make judgments while
dynamically varying the illumination. We suspect that when the observer is forced to view these stimuli as one object, that the
judgments will be dominated by the lower perceived quality of the oblique view.

4.2 Graphics Discussion

When does texture successfully substitute for geometry? For the smooth sphere, texture was not able to compensate for
the decrease in perceived quality produce by reducing geometry. For the crinkly sphere, however, the opportunity to use low-
resource texture to substitute for geometry was clear. For highly simplified high spatial-frequency objects, viewed under either
illumination, adding even small amounts of texture increase perceived quality substantially, and perceived quality increases
monotonically with texture resource. Under both illumination conditions, adding less than 1 Mb of texture to the 6.39 Mb
object improved the mean rating score 25% giving it the same fidelity as the full-geometry object with 8 Mb more geometry.
Clearly, texture can successfully trade for geometry when the geometry is complex and has been simplified by a factor of two
or more. Since this is the arena of interest, these results are quite promising.

6. CONCLUSIONS

The framework and results presented here provide many useful insights into geometric simplification with texture substitution.
The results of our experiment indicate that scaling experiments can produce consistent data regarding the perceived quality
of object representations. The different results for front and side lighting for the smooth sphere indicate that lighting effects
need to be accounted for in comparing objects, making this a fundamentally different problem from comparing images. The
differing results for the smooth and crinkled sphere demonstrate that the benefit of expending resources substituting geometry
with texture is object dependent. The results for varying texture resolution show that textures may be counterproductive if they
are not of sufficiently high resolution. Practically speaking, if a system were forced to reduce texture map resolution because
of a resource bottleneck, it may be preferable to not use texture at all.



These insights provide guidance for the development and testing of new simplification algorithms. Rather than using the
same strategy for all objects, or all parts of a single object, it may be useful to analyze the nature of the object’s geometry to test
if it can be replaced by a texture map. We believe that our framework for measuring the perceptual consequences of different
geometries, textures, and lighting conditions can be used to evaluate the success of such tests.
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Accurate simulation of light propagation within an environment and perceptually based imaging 
techniques are necessary for the creation of realistic images. A physical experiment that verifies the 
simulation of reflected light intensities for diffuse environments was conducted. Measurements of 
radiant energy flux densities are compared with predictions using the radiosity method for those 
physical environments. By using color science procedures the results of the light model simulation 
are then transformed to produce a color television image. The final image compares favorably with 
the original physical model. The experiment indicates that, when the physical model and the 
simulation were viewed through a view camera, subjects could not distinguish between them. The 
results and comparison of both test procedures are presented within this paper. 

Categories and Subject Descriptors: 1.2.10 [Artificial Intelligence]: Vision and Scene Understand- 
ing-intensity, color, photometry, and thresholding; 1.3.3 [Computer Graphics]: Picture/Image 
Generation-display algorithms; viewing algorithms; 1.3.6 [Computer Graphics]: Methodology and 
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color, shading, shadowing, and texture; 1.4.8 [Image Processing]: Scene Analysis-photometry 
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1. INTRODUCTION 

The creation of realistic images requires an accurate simulation of light propa- 
gation within an environment, as well as a perceptually accurate method for 
displaying the results of the simulation. The need for physically based illumina- 
tion models and perceptually based imaging techniques means that the lighting 
calculations and the production of the final simulation are separate tasks, each 
having different objectives to be met. If a scientific basis for the generation of 
images is to be established, it is necessary to conduct experimental verification 
on both the component steps and the final simulation. 
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Early realistic image synthesis techniques and the lighting models that they 
employed were severely limited by processing and storage constraints, as well as 
by the display hardware characteristics. The need for computational simplicity 
substantially influenced the illumination algorithms that were originally devel- 
oped. The results were light models that did not make direct use of established 
physical behavior; reflection models arbitrarily assigned ambient, diffuse, and 
specular portions to the reflected light. The perceptual significance of the 
monitor’s primaries was not recognized as colors were directly computed in terms 
of the RGB (red, green, blue) primaries. Given specific viewing parameters, the 
intensity of each picture element was determined only on the basis of the single 
surface “seen” through that pixel and its direct relationship to light sources. 
These approaches, which do not simulate the global illumination effects and the 
interreflections among surfaces in an environment, result in pictures that are 
obviously computer generated. 

Recently, ray-tracing techniques, which attempt to model the global illumina- 
tion effects of specular surfaces, have been introduced. Ray tracing is still a view- 
and resolution-dependent approach, but employs a more comprehensive lighting 
model. Each picture element can receive light directly from the surface immedi- 
ately behind it and indirectly by ray reflection (and/or refraction) from other 
objects. However, each participating surface still receives its illumination only in 
a direct path from light sources or from an arbitrary constant ambient term. In 
most cases the light model is expressed in terms of the RGB primaries and is not 
based on sound physical principles. Although the technique is quite expensive 
computationally, the pictures produced can be impressive and are a substantial 
improvement over those generated by previous techniques. 

The introduction of the radiosity method has led to a complete decoupling of 
the light reflection simulation from the final imaging technique. An illumination 
model based on energy conservation principles is used to account for all inter- 
reflection of light in an environment. The illumination calculations are indepen- 
dent of viewing parameters and can be performed on a wavelength basis rather 
than the particular red, green, and blue channels provided by the phosphors 
of a specific raster display device. The results of the global illumination calcula- 
tions are used in conjunction with the principles of color science to convert 
the resulting spectral energy distributions to the RGB primaries of the display 
device. 

What has emerged from this sequence of events is the need for a clear 
distinction between the physical and perceptual portions of the image synthesis 
process and the need for experimental verification of each of these steps. The 
first step in the image synthesis process should be to model correctly the transport 
of light in the environment. This is inherently a physically based step where the 
flow of energy is modeled as accurately as possible. To verify the light model, 
physical measurements should be made on a real scene and should be compared 
with the simulated values. The second step of the image synthesis process should 
be to use the results from the physical modeling of the propagation of light to 
produce the final simulation to be observed. This is inherently a perceptually 
based step, where the objective is to satisfy the final observer. To verify the final 
simulation and thereby the overall objective of realistic image synthesis, the 
simulation should be visually compared with the real scene. 
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In this paper a simple environment is used to demonstrate an approach to 
image synthesis that has distinct physical and perceptual portions and that 
employs experiments to verify both parts of the process. In Section 2, the radiosity 
method is used to do the light modeling, and the results are compared against 
physical measurements made on an actual model. In Section 3, the principles of 
color science are used to produce an image of the same model on a color television 
monitor, and this picture is visually compared with the real scene by a group of 
experimental subjects. The observations and conclusions of the paper, summa- 
rized in Section 4, indicate that by using a rigorous scientific methodology a good 
match can be obtained for both the physical and perceptual comparisons. 

2. RADIOMETRIC COMPARISON 

In this section an example is presented of the use of a physical experiment to 
verify the first part of the image synthesis process-the simulation of reflected 
light intensities. The distribution of radiation in simple scenes is considered, and 
the particular theoretical procedure for calculating the radiant transfer to be 
verified is outlined. This technique, known as the radiosity method, is used to 
generate all of the synthetic computer images in this paper. An experimental 
apparatus is also described. This apparatus allows simple, real-world scenes to 
be tested and is used for all of the scenes presented in this study. Measurements 
of radiant energy flux densities on a wall of the physical model are compared 
with the predictions of the radiosity method; a method for measuring the radiant 
flux densities, which are directly related to the light intensities, is detailed, and 
measurements on three environments of varying complexity are presented. 

2.1 Overview of Experimental Design 

In an ideal experiment for verifying the accuracy of light intensity calculations 
on an image plane, an instrument would be used that could be positioned at the 
“eye” position with respect to the real environment. This instrument would have 
an angular resolution that would allow it to measure the light energy reaching 
the “eye” through the solid angle subtended by each pixel in the image plane. 
This instrument would also have the ability to measure each wavelength band of 
light reaching the eye. 

The instrument defined above would need precise angular and spectral reso- 
lution. The associated measurements would be geometrically difficult and time 
consuming, and would require high photon sensitivity under very carefully 
controlled lighting conditions. Since the present study is an initial effort to 
compare a real environment with a synthetic computer image, such a refined 
experimental study was not carried out. Indeed, a relatively inexpensive and 
simple radiation measuring instrument (a radiometer) was employed. The instru- 
ment gave a single reading corresponding to the hemispherically incident radiant 
flux over the range of visible wavelengths. 

Measuring an entire environment or scene from the “eye” position with this 
instrument would yield a single reading on a meter. Since this single reading 
represents a spatial and spectral average of the flux incident on the radiometer, 
it would not be sufficiently discriminating to allow an evaluation of simulation 
methods. It represents a point measurement, which is indicative only of the 
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magnitude of the radiant field. A more discriminating approach requires mea- 
surements at several locations to assess the spatial distribution of light energy. 
Thus measurements would be needed for many different viewing locations. 

Furthermore, the light received by a radiometer varies continuously with 
position and depends on the geometric and optical properties of the entire radiant 
environment. Although such measurements do not allow direct verification of 
the detailed predictions of a lighting model, they do allow verification of the 
integral predictions (i.e., integrated over wavelength and the incident hemisphere) 
of a lighting model. Such integral measurements at several locations are employed 
in this study to assess a particular lighting model. In general, a lighting model 
must be capable of predicting the relative values of these integral quantities if it 
is to be relied upon to simulate accurately the more detailed light intensities 
required for image synthesis. 

2.2 Radiosity and Irradiation 

The above radiometric method is used in the present article to evaluate the 
standard radiosity method and one variation of the radiosity method. The 
radiosity method is a theoretical procedure for predicting light intensities in a 
totally diffuse environment. The method was developed in the field of heat 
transfer to calculate the heat exchange by means of electromagnetic radiation in 
enclosures. It can also be applied to visible light. The method was first applied 
to synthetic image generation by Goral et al. [5], and extended by Cohen and 
Greenberg [2]. In this paper, the radiosity method is used to predict the light 
energy impinging on, and measured by, the radiometer. A brief summary of the 
radiosity method is included as background material for the experiments. 

In the radiosity method, all emission and reflection processes are assumed to 
be perfectly diffuse (Lambertian). The scene or enclosure is divided up into 
discrete surfaces, each of which is assumed to be of uniform radiant intensity. 
With these assumptions, the intensity of radiation leaving a particular surface is 
directly proportional to the radiant flux density (energy per unit area per unit 
time) or radiosity B leaving the surface. The radiosity of a surface i in an 
enclosure is related to the radiosities of all the surfaces in an enclosure by 

BiA = EiA + Pix C, FijB,x, 

where X denotes wavelength, Eih denotes the energy emitted from the surface per 
unit time and area, PiA is the diffuse reflectance of the surface, and the summation 
j is over all the surfaces in the enclosure. There is one such equation for each 
surface. The form factor Fij depends only on geometry and represents the fraction 
of energy leaving surface i that arrives at surface j. The energy source term Eih 
is zero for surfaces that are not light sources. Equation (1) holds for a particular 
wavelength. However, it also applies for discrete wavelength bands in which Bixy 
Ejx, and pih are constant, as long as energy is not exchanged between the bands. 

The basic radiosity method can be extended to account for directional varia- 
tions in the light source. The extension is achieved by computing the amount of 
emitted light directly reaching the surfaces illuminated by the light source. If 
reflections off the light source are neglected, the equation corresponding to the 
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light source can be set aside. The radiosity equation for the other surfaces 
becomes 

&A = Pih (df Fi,light max[&ight,x] + x Fi;BjhI, (2) 

where the index i and the summation j do not include the light source, df is a 
light source directional factor, and the maximum directional radiosity of the light 
source is denoted by max[&ght,h ] and is found from measurements. The direc- 
tional factor (df) is zero for surfaces not directly illuminated by the light source. 

As discussed above, it is difficult to make spatially and spectrally detailed 
measurements of the radiant energy in an environment. In the heat transfer 
literature, direct measurements of radiosity (the energy leaving a surface) are 
rarely found [lo]. The approach of measuring irradiation is more commonly 
used [9]. The irradiation Hii incident on a surface i is given in terms of the 
radiosities of all the other surfaces by 

HiA = 1 FijBjx* (3) 

For surfaces that are not light sources, comparison with eq. (1) shows that the 
radiosity of surface i is directly proportional to the irradiation onto the surface. 
The constant of proportionality is the reflectivity Pih of the surface. Since 
intensity is proportional to radiosity, the intensity of the surface is directly 
proportional to the irradiation. Thus the relative spatial distributions of the 
incident irradiation and reflected intensity are the same. 

Irradiation can be measured by a radiometric probe. If the sensitivity of the 
probe varies with direction, however, the probe response cannot be compared 
directly with eq. (3). Instead, the radiosity B at a particular angle of incidence 
must be multiplied by an angle-dependent correction factor cf. The predicted 
response of the probe is then given by 

Hii = C cf(O)FijBjx, (4) 
j 

where 0 denotes the angle of incidence on surface i of irradiation coming from 
surface j. The predictions of this equation are compared later with radiometric 
measurements. 

2.3 Experimental Apparatus 

The test environment was the five-sided cube shown in Figure 1. The dimensions 
of the cube are shown in Figure 2, as are the dimensions of two small boxes that 
were placed within the cube for some observations. All five sides of the cube 
could be removed independently so that the color of each side could be changed. 
All of the surfaces of the cube were painted with flat latex house paints, which 
are close to being ideal diffuse reflectors. The spectral reflectances of the paints 
were measured using a Varian Cary 219 spectrophotometer with an in-cell space 
diffuse reflectance accessory. These reflectances are shown in Figure 3a. 

The light source consisted of a EO-watt incandescent flood light mounted at 
the top of a 15-inch-high metal cone. The interior of the cone was covered with 
a flat white paint. The light shone through a piece of 4.5 by 3.5inch flashed opal 
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Fig. 3. (a) Reflectances of paints used to paint cube and small 
boxes. (b) Spectral energy distribution of light after passing 
through opal glass. 
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Fig. 4. (a) Probe directional sensitivity. (b) Normalized light source intensity versus angle. 

glass, which was mounted in the ceiling of the cube. An autotransformer and 
digital voltmeter were used with the light source to maintain a constant 115 
volts. The spectral energy distribution of the entire light source assembly was 
measured using equipment described by Imhoff [6] and is shown in Figure 3b. 

The enclosure was placed on a flat black table in a small room. The walls of 
the room were covered with black fabric so that essentially no visible radiation 
entered the cube through the open side. From the inside of the enclosure, the 
open side appeared as a black wall. 

Irradiation was measured using a Tektronix J16 photometer with a 56502 
irradiance probe. This probe has a flat spectral sensitivity in the visible and near 
infrared ranges. A Corning Glass 1-56 filter was placed on the front of the probe 
to filter out the infrared energy emitted by the light source. The directional 
sensitivity of the probe (and filter) was determined by rotating the probe while 
illuminating it with collimated light. The correction factor cf as a function of 
incident angle is shown in Figure 4a. 

To complete the apparatus specification, an additional measurement of the 
light source strength is required. This was measured for visible light by holding 
the 56502 probe flush against the opal glass. For a perfectly diffuse light source, 
the measured irradiation H can be related to the total light source emission 
Elight by 

Elight = F H * (5) 
sensor,light 

The form factor between the probe sensor and the light, Fsensor,light, was estimated 
to be 0.52 [ll, p. 8261. 

To use eq. (2), the directionality of the light source df is also needed. The light 
intensity at various angles from the normal was measured by using the photom- 
eter with the irradiance probe. The probe was fitted with a long tube to restrict 
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the acceptance angle of the probe. The results of these measurements are shown 
in Figure 4b and indicate that the light source is not perfectly diffuse. A perfectly 
diffuse light source would have a df of unity. 

2.4 Procedure 

Measurements of irradiation were made at 25 locations in the plane of the open 
face of the cube (shown in Figure 2a) and compared with the simulations. 
Measurements were made for three scenes: the empty white cube, the empty 
white cube with the left panel replaced by a blue panel, and the all-white cube 
with the large white box inside it. 

The measurement locations were chosen for two reasons: (1) to maximize the 
light energy incident at any point, and thus to minimize the uncertainty in each 
reading, and (2) to minimize the effect of the probe on the environment. The 
probe should cast no shadows and should reflect little light back into the 
environment. The foregoing criteria are satisfied by placing the probe at the open 
side of the cube. 

Tests were made to examine the potential sources of error in the measurements. 
The light source voltage could be controlled so that variations in light source 
emission changed by less than 1 percent. Movement of objects within the room 
surrounding the cube and changing the position of the cube within the room had 
no measurable effect on the irradiation at the open face of the cube. Doubling or 
tripling the size of cracks between the panels had no measurable effect. 

Another potential source of error in the measurement was the position of the 
probe. The three-dimensional position and angular orientation of the probe were 
carefully controlled. Very small variations in these parameters could result in 
large variations in the measured irradiation. This error was estimated by repo- 
sitioning the probe at each measurement location several times and recording 
the measured irradiation. The maximum deviation at each point was approxi- 
mately +5 percent of the mean value of the readings. 

The error in the photometer itself is given by the manufacturer as less than 
+5 percent. Combining the estimated error due to all of the foregoing factors 
leads to a total root mean square estimated error of &7 percent. 

2.5 Results 

For each of the three scenes, measurements were made at the 25 test locations 
and compared with theoretical predictions based on the radiosity method. 

For the radiosity calculations, the form factors were determined as described 
by Cohen and Greenberg [2]. In every case, each of the five walls of the cube was 
divided into 225 elements of equal area (see Figure 2b), the light source was 
divided into nine elements, and the sides of the large rectangular box in the third 
scene were each divided into nine elements. The reflectances used for the walls 
were averages of the measured spectral reflectance curves in Figure 3a. The open 
side of the cube was modeled as a black wall with zero reflectance. This side was 
divided into 25 surfaces, the center of each surface corresponding to a measure- 
ment position. The average measured irradiation when the probe was held flush 
against the light source was 240 microwatts per square centimeter. Using eq. (5), 
the total emission of the light source was estimated to be 460 microwatts/per 
square centimeter. This value, max[,?&htJ, was used for all calculations. The 
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Fig. 5. Comparison of the measured and calculated irradiation at the open 
side of the empty white cube: ----, radiosity calculation with diffuse light 
source. - , radiosity calculation with directional light source; 0, radi- 
ometer measurement. 

spectral distribution, max[E I1ght,X], was obtained from Figure 3b. The results 
predicted by the radiosity calculations were converted to an equivalent probe 
response by using eq. (4). 

The measurements made with the empty all-white cube are shown in Figure 5 
(filled circles). Each of the plots is for one horizontal row of locations. In general, 
the results show that the irradiation is highest near the center of the open side 
of the cube. This area has the best view of the light source and the other walls. 

Figure 5 also shows the results of calculations using a completely diffuse light 
source (dashed lines). These calculations were made using eqs. (1) and (4). The 
calculated values are much higher than the measurements. 
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The major source of discrepancy between the measured results and those
calculated for the purely diffuse environment is the directionality of the light
source. This causes a difference in both curve shape and overall illumination
level. Calculations using the diffuse radiosity method extended to include the
directionality of the light source, as described by eq. (2), are also included in
Figure 5 (solid lines). The calculated values are obviously lower than those for a
purely diffuse light source, since less energy reaches each surface directly, and
less energy is interreflected within the cube. The calculated results for the upper
row show the largest changes since this row has the largest angle of incidence,
and thus the greatest deviation, with respect to the light source emission. When
light source directionality is accounted for, the root mean square difference
between the calculated and measured results at the open face of the cube is less
than 4 percent and the root mean square difference between normalized results
is less than 3 percent. These values compare with 18 and 7 percent, respectively
when the light source directionality is not accounted for, and are both less than
the estimated measurement error of 7 percent. Thus the calculations made by
assuming a directional light source are significantly more accurate than those
made by assuming a perfectly diffuse light source. The rest of the calculated
results presented in this section assumed a directional light source.

Figures 6-9 provide a comparison of the three scenes that were considered. In
each figure the irradiation H is shown as a function of measurement position.
Figure 6 provides a comparison of the measurements on the empty white cube
with measurements on an empty cube with one blue wall, the other walls being
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white. The low reflectance of the blue wall (Figure 3a) reduces the overall
illumination in the cube. Clearly, this reveals that a large proportion of the light
incident on any surface in the cube is due to reflection from other surfaces rather
than direct illumination from the light source. Furthermore, measurements along
the leftmost column of measuring positions (see Figure 2a) are only about 75
percent of the corresponding measurements on the right side of the cube. Thus
small surfaces located on the left side of the open side of the cube would appear
darker than surfaces located on the right side. This influence of the neighboring
surfaces on the intensity of a point is related to the color bleeding effect discussed
in earlier work [2, 5].

Figure 7 shows a comparison of measured and calculated results for an empty
cube with one blue wall and four white walls. The calculated results differ from
the measured results by a root mean square difference of less than about 7
percent. On comparing relative values, the results differ by 4 percent. The
calculated and measured results are lower for the left side than for the right side
of the cube. A method for calculating light intensities that only takes into account
the location of the light source, and not surface interreflections, would have given
equal reflected intensities on the left and right sides.

A comparison of measurements in an all-white cube with and without an
internal all-white box is shown in Figure 8. The large white box was placed in
the center of the floor below the light source and was turned at a 45° angle to
the walls of the cube. The intensity of the top two horizontal rows is higher for
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the case with the internal box because light is reflected from the top of the white 
box to the upper edges of the cube. The bottom two rows of the open side are 
less intense than those for an empty cube. These rows see the dark sides of the 
internal box, which receive relatively little energy since they, in turn, face a black 
wall and have no direct view of the light source. 

Figure 9 shows a comparison of measured and calculated results for an all- 
white cube with an internal white box. The calculated and measured results have 
a root mean square difference of about 4 percent and a root mean square difference 
in relative values of 3 percent. The presence of hidden surfaces did not appear to 
reduce the accuracy of the calculations. The calculated results follow the same 
trend as the measured results in having values for the top row that are higher 
than those for the open white cube, and values for the bottom two rows that are 
lower. Calculation methods that do not account for diffuse interreflections would 
not predict the increase in intensity near the top caused by reflection off the box. 

In summary, there is good agreement between the radiometric measurements 
and the predictions of the lighting model. A full summary of results is deferred 
until Section 4. The perceptual experiments are described in the next section. 

3. PERCEPTUAL COMPARISONS 

Given the experimentally verified output of a light model, the next step in the 
image synthesis process is to use this information to produce the final simulation. 
In this section color science methods are used to create a color television image 
of the simple cubical environment from the output of the radiosity method. This 
picture is then compared by a group of experimental subjects against a real model 
as seen through the back of a view camera. This step is taken to evaluate the 
simulation and thereby to determine whether the overall objective of realistic 
image synthesis has been achieved. 

There is some precedent for performing comparisons between pictures and 
reality. 0. W. Smith constructed an experiment to study depth perception in 
which a subject viewed a picture and a real scene through a peephole [12]. In 
computer graphics, comparisons have been made between photographs of reality 
and photographs of computer-generated images [5, 81, the value of synthetic 
images for interior illumination design has been studied by an indirect com- 
parison against a real scene [4], and two computer-generated pictures have been 
compared in order to determine how many polygons are necessary to represent 
a surface [ 11. 

This section begins with a discussion of the rationale for viewing the model 
through a view camera while making the comparisons. Next, the experimental 
apparatus is described, and the procedures that were used to compute the color 
television picture and compare it against a view of the real model are discussed. 
Finally, the results of having a group of human observers make the comparison 
are presented. 

3.1 Selecting the View of the Real Model 

Although the field of view is restricted and some perceptual cues are eliminated, 
the view camera has been selected for several reasons: (1) it allows simultaneous 
side-by-side comparisons to be made without introducing the effect of the 
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observer’s memory (a factor that is unavoidable in an alternative viewing scheme 
such as a pinhole), (2) it corresponds closely to the “synthetic camera” approach 
employed in computer graphics, (3) it is an experimental setup that can easily be 
controlled, (4) it is a starting point that must be mastered before other standards 
can be evaluated, and (5) the degree of restriction is relatively unimportant once 
the unavoidable step of limiting the view has been taken. In order to present the 
real and synthetic scences to the observer in the same way, the color television 
picture was also observed through a view camera. 

3.2 Apparatus 

The simple cubical enclosure that was described in the previous section was used 
for the perceptual experiments (see Figure 2). In this test case, the model was set 
up to have a blue wall on the right and a red wall on the left, with the rest of 
the walls white. The small yellow block was placed on the left and the large 
white block on the right. The blocks were turned at a slight angle with respect 
to one another. 

The imaging media consisted of a frame buffer and a color television monitor. 
The frame buffer (Grinnel Systems GMR-27) had a resolution of 480 vertical by 
512 horizontal pixels, had eight bits of intensity information in each of its three 
channels, and produced an interlaced video signal with a frame rate of 30 hertz 
and a field rate of 60 hertz. The monitor (Barco CTVM 3/51) had a 20-inch 
display tube with phosphor chromaticity coordinates: 

XR = 0.64, XG = 0.29, XB = 0.15, 
YR = 0.33, ye = 0.60, YB = 0.06. 

The individual brightness and contrast controls for each of the monitor guns 
were adjusted to yield a D6500 white point, and the individual gamma correction 
functions were measured for each of the guns. The luminance ratios necessary to 
set the white point were found to be 

YR: YG: YB = 0.3142 : 1.0 : 0.1009. 

By determining the proportional relationship between luminance and radiance 
for each of the guns, these luminance ratios were converted to radiance ratios 
and were used to balance the guns over their entire dynamic range. The luminance 
of the white point was set to 24 foot lamberts. 

Two Calumet 4 x 5 view cameras were used to view the model and the monitor. 
The two lenses used were a Schneider-Kreuznach Symmar fl : 5.6/150mm and a 
Schneider-Kreuznach Symmar-S f5.6/150mm. Fresnel lenses ruled with 110 lines 
to the inch and with lo-inch focal length were placed in front of the ground glass 
of each camera to act as image intensifiers. The combination of the Fresnel 
lenses and the ground glass introduced some image degradation that made 
construction and imaging artifacts in both images less obvious. 

The positions of the view cameras, the model, and the monitor are shown in 
Figure 10. The cameras were positioned so that the images were identical in size 
(3: inches by 32 inches), and the f-stop settings of each camera were adjusted so 
that the intensities were the same. The combination of f-stop setting and camera- 
to-model distance were such that the entire depth of the model was in focus, 
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thereby minimizing depth of field problems. To minimize reflections, all of the
walls were draped in black, and a black curtain (only part of which can be seen
in Figure 10) split the room lenghtwise and separated the two view cameras.
Another black curtain was hung across the width of the room to separate the
subject from the model and the monitor, and the view cameras protruded through
holes cut in this curtain.

Figure 11 shows the experimental setup with the widthwise curtain in place
and an experimental subject evaluating the view-camera images. The centers of
the view-camera backs were 8; inches apart and were 44 inches off the ground.
The subjects were positioned so that their eyes were 25 inches from the view
cameras and 48 inches off the ground. The scene, as viewed by the subjects, was
inverted, and observations were made under dark ambient conditions.

3.3 Procedure

The image was computed using the radiosity software described above [2]. The
frustum angle and eye-point position were selected to properly simulate the
150-millimeter lens on the 4 X 5 view camera. Radiosity computations were per-
formed in 15 evenly spaced wavelength bands between 400 and 700 nanometers,
and the resulting spectral energy distributions were converted to CIE XYZ
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tristimulus values. The RGB triplets were found by applying a matrix based on
the chromaticity coordinates of the monitor phosphors and the monitor white
point [3, 7]. These RGB triplets were subsequently gamma corrected and loaded
into the frame store.

Preliminary observations indicated that the limited dynamic range of the
monitor would not allow the light source in the ceiling to be rendered convinc-
ingly. To avoid this problem, it was decided to alter the experimental design by
adding a 4.5 x 2.75-inch opaque flap at the top of the open side in order to
obscure the light source when viewing the cube. This minimized the range of
light intensities in the scene.

Figure 12 is a black and white picture taken from the position of the observer.
It gives an approximate idea of what was seen. Further documentation was
obtained by exposing color negative film in the view cameras and producing the
color prints shown in Figure 13. No attempt was made to compensate for
distortions caused by the photographic process or for the fact that reflection
prints seen under bright ambient conditions present an entirely different mode
of viewing than self-luminous images seen in a dark ambient environment. Thus
these photographs should not be used to evaluate the responses given by the
subjects during the comparison experiment.

The subjects for this test consisted of 10 members of the Cornell University
Program of Computer Graphics Laboratory who had extensive experience eval-
uating computer graphics images, and 10 people with little or no experience with
ACM Transactions on Graphics, Vol. 5, No. 1, January 1986.
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computer-generated pictures. In order to factor out the possible effect of differ-
ences between the two lenses, five of each group did the experiment with the
lenses on particular sides and five of each group did the experiment with the
lenses switched. Because no color vision test was available, the subjects were all
taken at their word regarding the normalcy of their color vision.

3.4 Results

In trying to decide which was the picture of the model and which was the
computer-generated picture, 9 out of 20 people, or 45 percent, selected the wrong
answer. The subjects did no better than they would have by guessing.

In all cases, the subjects considered the match between the model and the
simulation to be quite good. Specifically, the overall match was rated as being
between good and excellent, the color match was rated as being slightly
better than good, and the shadow correspondence was rated as being slightly
less than good.

Two differences between the pictures were pointed out quite frequently in the
written comments. The shadows were described as being “fuzzy” in the computer-
generated image but “distinct” in the image of the model. This may be due to not
discretizing finely enough the surfaces in the environment. It was also noted that
the ceiling corners were “brighter” in the computer-generated image than in the
image of the model. Given the results of the radiometric study, where it was
discovered that the actual light emits more radiation downward than it does to
the sides, this comment is not surprising, since the image was computed with the
assumption that the light source emits evenly in all directions.
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4. SUMMARY AND CONCLUSIONS 

Two experimental studies were carried out to assess the physical and perceptual 
aspects of the image synthesis process. A physical model was built using diffusely 
reflecting materials. The physical model was compared in two different ways to 
the predictions of a diffuse lighting model (the radiosity method). The first study 
allowed a test of the physical aspects of the lighting model (energy transfer rates 
were compared). The second study allowed a perceptual test of a rendered image 
against the physical model. 

In the first study, radiometric measurements were made on the physical model 
and were compared with the predictions of the radiosity method. A simple, 
hemispherically and spectrally integrating radiometer was used. Three different 
environments were considered. Some general guidelines emerged for creating a 
lighting model that accurately describes light (and energy) transport processes 
in the physical scene. First, the spectral reflectance of materials in the scene 
must be measured and used as input to the lighting model. Similarly, the spectral 
and directional characteristics of the light source must be measured and used as 
input. It is especially important that any directionality in the light source be 
accounted for. If the light source is not ideal diffuse, an extension to the radiosity 
method as described in the paper can be used. In the experimental measurements 
it is necessary to account for the spectral and directional characteristics of the 
radiometer. With the foregoing factors accounted for, and with care in conducting 
the experiments, the radiometric measurements and lighting model predictions 
were found to be in good agreement (see Figures 5, 7, and 9). This agreement 
lends strong support for the radiosity method as an accurate simulation of the 
light transfer processes that occur in diffuse environments. 

In the second study, the physical model was compared with an image on a 
color television monitor. The image was synthesized by applying the radiosity 
method on a spectral basis, selecting the viewing direction, and then converting 
the predicted spectral energy distributions to XYZ tristimulus values and 
rendering the image. A single scene was considered (see Figure 10). A per- 
ceptual experiment was carried out by asking a group of experimental subjects 
to compare the simulated image against the physical model. A restricted mode of 
viewing was employed by asking the subjects to observe the scenes through two 
view cameras (see Figures 11-13). In comparing the physical scene against the 
monitor, the subjects did no better than they would have by simple guessing. 
Although they considered the overall match and the color match to be good, some 
weaknesses were cited in the sharpness of the shadows (a consequence of the 
discretization in the simulation) and in the brightness of the ceiling panel 
(a consequence of the directional characteristics of the light source). The overall 
agreement lends strong support to the perceptual validity of the simulation and 
display process. 

The present experiments provide a first step in assessing the physical and 
perceptual aspects of the image synthesis process. Future work should be directed 
to refining these comparisons. Possible steps include radiometric measurements 
with high directional and spectral resolution, perceptual tests with alternative 
modes of viewing, and extensions to more complex environments and to other 
lighting models. 
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Light Reflection Model for Image Synthesis
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ABSTRACT
In this paper we introduce a new light reflection model for

image synthesis based on experimental studies of surface gloss
perception. To develop the model, we’ve conducted two
experiments that explore the relationships between the physical
parameters used to describe the reflectance properties of glossy
surfaces and the perceptual dimensions of glossy appearance. In
the first experiment we use multidimensional scaling techniques
to reveal the dimensionality of gloss perception for simulated
painted surfaces. In the second experiment we use magnitude
estimation methods to place metrics on these dimensions that
relate changes in apparent gloss to variations in surface
reflectance properties. We use the results of these experiments to
rewrite the parameters of a physically-based light reflection model
in perceptual terms. The result is a new psychophysically-based
light reflection model where the dimensions of the model are
perceptually meaningful, and variations along the dimensions are
perceptually uniform. We demonstrate that the model can
facilitate describing surface gloss in graphics rendering
applications. This work represents a new methodology for
developing light reflection models for image synthesis.

Keywords
I.3.7 Three-Dimensional Graphics and Realism, Human Factors,

Experimentation, Light Reflection Models, Gloss, Visual
Perception.

1. INTRODUCTION
Color and gloss are two fundamental visual attributes used to

describe the appearances of objects in synthetic images. In a
typical graphics rendering application a user specifies an object’s
color as an RGB triple and describes its gloss in terms of the
parameters of a light reflection model such as Phong [Phon75].

In addition to RGB, many rendering applications allow users to
describe color in more perceptually meaningful color spaces such
as HSV, Munsell, or CIELAB, that have grown out of the science
of colorimetry [Wysz82]. Working in these spaces makes it easier
to specify color, because the dimensions of the spaces are
representative of our visual experience of color, and the scaling of
the dimensions is perceptually uniform.

Unfortunately similar perceptually-based spaces for specifying

surface gloss do not yet exist. At the present time the parameters
used to describe gloss are either based on ad-hoc lighting models
such as Phong, or are motivated by research into the physical
aspects of light reflection [Blin77, Cook81, He91, Ward92,
Schl93, LaFo97, Stam99].  In either case, the visual effects of the
parameters are relatively unintuitive and interactions among
different parameters make it difficult to specify and modify
surface gloss properties. A light reflection model grounded in the
visual psychophysics of gloss perception would greatly facilitate
the process of describing surface gloss properties in computer
graphics renderings, and could lead to more efficient and effective
rendering methods.

In this paper we introduce a new light reflection model for
image synthesis based on experimental studies of surface gloss
perception. To develop the model, we have conducted two
psychophysical studies to explore the relationships between the
physical parameters used to describe the reflectance properties of
glossy surfaces and the perceptual dimensions of glossy
appearance. We use the results of these experiments to rewrite the
parameters of a physically-based light reflection model in
perceptual terms. The result is a new psychophysically-based
light reflection model where the dimensions of the model are
perceptually meaningful, and variations along the dimensions are
perceptually uniform. We demonstrate that the model is useful for
describing and modifying surface gloss properties in graphics
rendering applications. However,  the long-term impact of this
work may be even more important because we present a new
methodology for developing psychophysical models of the
goniometric aspects of surface appearance to complement widely
used colorimetric models.

2. BACKGROUND
To develop a psychophysically-based light reflection model for

image synthesis we first need to understand the nature of gloss
perception.

In his classic text, Hunter [Hunt87] observed that there are at
least  six different visual phenomena related to apparent gloss. He
identified these as:

Figure 1: Coffee mugs with different gloss attributes.
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specular gloss – perceived  brightness associated with the
specular  reflection from a surface

contrast gloss – perceived relative brightness of  specularly
and diffusely reflecting areas

distinctness-of-image (DOI) gloss – perceived sharpness of
images reflected in a surface

haze – perceived cloudiness in reflections near the specular
direction

sheen – perceived shininess at grazing angles in otherwise
matte surfaces

absence-of-texture gloss – perceived surface smoothness
and uniformity

Judd [Judd37] operationalized Hunter’s definitions by writing
expressions that related them to the physical features of surface
reflectance distribution functions (BRDFs). Hunter and Judd’s
work is important, because it is the first to recognize the
multidimensional nature of gloss perception.

In 1987 Billmeyer and O’Donnell [Bill87] published an
important paper that tried to address the issue of gloss perception
from first principles. Working with a set of black, gray, and white
paints with varying gloss levels, O’Donnell collected ratings of
the apparent difference in gloss between pairs of samples and then
used multidimensional scaling techniques to discover the
dimensionality of perceived gloss. He concluded that for his
sample set and viewing conditions (flat samples, structured/direct
illumination, black surround) the appearance of high gloss
surfaces is best characterized by a measure similar to distinctness-
of-image gloss, while the appearance of low gloss surfaces is
better described by something like contrast gloss.

In the vision literature, studies of gloss have focused primarily
on its effects on the perception of shape from shading. Todd and
Mingolla [Todd83, Ming86] found that gloss generally enhances
the perception of surface curvature. Blake [Blak90] found
categorical changes in surface appearance and shape depending
on the 3d location of the specular highlight.  Braje [Braj94] found
interactions between apparent shape and apparent gloss, showing
that a directional reflectance pattern was perceived as more or less
glossy depending on the shape of its bounding contour. More
recently Nishida [Nisi98] also studied interactions between shape
and gloss, and found that subjects are poor at matching the Phong
parameters of bumpy surfaces with different frequency and
amplitude components.

Finally, in computer graphics, while there has been extensive
work on developing physically-based light reflection models,
there has been relatively little effort to develop models whose
dimensions are perceptually meaningful. One exception is
Strauss’s model [Stra90], a hybrid of Phong and Cook-Torrance,
that describes surface properties with five parameters: color,
smoothness, metalness, transparency, and refractive index. He
reports that users find it much easier to specify surface gloss with
this model than with others.

There is still much work to be done in this area. First, with the
exception of Billmeyer and O’Donnell’s work there has been little
investigation of the multidimensional nature of glossy appearance
from first principles. Hunter’s observations about visual gloss
phenomena are insightful but we need studies that quantify these
different appearance dimensions and relate them to the physical
properties of materials. Second, all previous gloss studies have
looked exclusively at locally illuminated surfaces in uniform
surrounds. This practice is understandable given the difficulty of
controlling complex environments, but it’s strange considering
that one of the most salient things about glossy surfaces is their
ability to reflect their surroundings. To really understand how we

perceive surface gloss, we need to study three-dimensional objects
in realistically rendered environments. Fortunately, image
synthesis gives us a powerful tool to study the perception of
surface gloss. Physically-based image synthesis methods let us
make realistic images of three-dimensional objects in complex,
globally-illuminated scenes, and gives us precise control over
object properties. By using image synthesis techniques to conduct
psychophysical experiments on gloss perception we should be
able to make significant progress toward our goal of developing a
psychophysically-based light reflection model that can describe
the appearance of glossy materials.

3. EXPERIMENTS
3.1 Motivation
In many ways the experiments that follow are analogous to early

research done to establish the science of colorimetry.  In that
work, researchers wanted to understand the relationships between
the physical properties of light energy, and our perception of
color. Many of the earliest experiments focused on determining
the dimensionality of color perception, culminating with Young’s
trichromatic theory [Helm24].  Following this, further
experiments were done to find perceptually meaningful axes in
this three-dimensional color space. Hering’s work [Heri64] on
opponent color descriptions, falls into this category. Finally, many
experiments have been done to scale these axes and create
perceptually uniform color spaces. Munsell, Judd, and
MacAdam’s efforts to develop uniform color scales are good
examples (see [Wysz82] for a review).

Although we recognize the great effort involved in the
development of color science, our overall goals with respect to
understanding gloss are similar: we are conducting experiments to
understand gloss perception with the goal of  building a
psychophysical model of gloss that relates the visual appearance
of glossy surfaces to the underlying physical properties of the
surfaces.
� In Experiment 1 we will use multidimensional scaling

techniques to reveal both the dimensionality of gloss
perception, and to suggest perceptually meaningful axes
in visual “gloss space”

� In Experiment 2 we will use magnitude estimation
techniques to place quantitative metrics on these axes
and create a perceptually uniform gloss space.

� Finally we will use these results to develop a
psychophysically-based light reflection model for image
synthesis.

Gloss is a visual attribute of a wide variety of materials
including plastics, ceramics, metals, and other man-made and
organic substances. Eventually we would like to develop a model
that can explain the appearances of all these kinds of materials,
but initially we need to restrict our studies to a manageable
subclass. To start, we’ve chosen to study a set of achromatic
glossy paints. We chose paints because they exhibit a wide variety
of gloss levels from flat to high gloss; their reflectance properties
have been measured extensively so there are good models to
describe their physical characteristics, and they are widely used in
art and industry, so hopefully our findings will be immediately
useful.

3.2 Experiment 1: Finding the perceptual
dimensions of gloss space

3.2.1 Purpose
The purpose of Experiment 1 is to determine the dimensionality



of gloss perception for painted surfaces in synthetic images and to
find perceptually meaningful axes in this visual gloss space. To do
this we’ve designed an experiment based on multidimensional
scaling techniques.

3.2.2 Methodology: Multidimensional scaling
Multidimensional scaling (MDS) is statistical method for

finding the latent dimensions in a dataset [Borg97].
Multidimensional scaling takes a set of measures of the distances
between pairs of objects in a dataset and reconstructs a space that
explains the dataset’s overall structure. This concept is best
illustrated by example.

Table 1 shows a matrix of the distances between a number of
U.S. cities. This matrix indicates how far one city is from another
but gives no sense of their spatial relations. If this proximity
matrix is used as input to the PROXSCAL MDS algorithm
[Busi97], it attempts to reconstruct the spatial positions of the
cities to best explain the proximity measures.

The two-dimensional MDS solution produced by the algorithm
is shown in Figure 2, where you can see that MDS has recovered
the true spatial layout of the cities (the outline of the U.S. map is
overlaid for reference). Since distances in a space are unaffected
by rotations or inversions, MDS solutions are only specific up to
these transformations, and it is the experimenter’s job to find
meaningful axes in the solution.

Although a two-dimensional MDS solution is shown in Figure
2, MDS can produce solutions in any number of dimensions to try
to achieve the best fit to the data. The goodness of the fit is known
as the stress of the solution. The stress formula used in the
example is:
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where δi,j are the input proximities, xi and xj are the recovered
locations in the nth dimensional solution, and d is a measure of the
distance between them. The MDS algorithm attempts to minimize
the stress for each of the solutions.

Figure 3 plots the stress values for solutions running from 1 to 5
dimensions. The stress curve will drop sharply as dimensions are
added that explain more of the data and will decline more slowly
as further superfluous dimensions are added. Standard practice is
to choose the dimensionality indicated by this inflection point in
the stress curve. The stress curve in Figure 3 indicates that a two-
dimensional solution provides the best fit to the data, but this is to
be expected since the dataset is inherently two dimensional, and
error in the proximity measures is negligible, providing a perfect
two-dimensional fit. In typical experimental datasets, noise in the
data results in a stress curve that drops then asymptotes as greater-
than-necessary dimensions are added.

MDS algorithms come in a variety of flavors that depend on the
form of the stress function the algorithm uses.  In our work we use
a variant called weighted Euclidean non-metric MDS  [Borg97]
that allows us to combine data from multiple subjects, compensate
for individual differences, and analyze datasets where the

proximities may only reflect ordinal rather than interval relations
in the data. We also use a second variant called confirmatory
MDS [Borg97] which let us test hypotheses about the functional
forms of the dimensions and their orthogonality.

3.2.3 Experimental Procedure
3.2.3.1 Stimuli
To apply MDS to the problem of finding the dimensionality of

gloss perception, we first need to construct a stimulus set with
objects that vary in gloss, and then collect measures of the
apparent differences in gloss between pairs of objects in the set.
These apparent gloss differences then serve as the proximities that
the MDS algorithm uses to construct a representation of visual
“gloss space”.

A composite image of the stimulus set used in Experiment 1 is
shown in Figure 4. The environment consisted of a sphere
enclosed in a checkerboard box illuminated by an overhead area
light source. Images were generated using a physically-based
Monte Carlo path-tracer that used an isotropic version of Ward’s
[Ward92] light reflection model:

oi
s

d
ooii

θθπα
αδ−⋅ρ+

π
ρ

=φθφθρ
coscos4

]/tanexp[),,,(
2

22
(2)

where ρ(θi,φi,θo,φo) is the surface BRDF, θi,φi, and θo,φo are
spherical coordinates for the incoming and outgoing directions,
and δ is the half-angle between them. Ward’s model uses three
parameters to describe the BRDF: ρd – the object’s diffuse
reflectance; ρs – the energy of its specular component, and α – the
spread of the specular lobe. Our reason for choosing Ward’s
model is that we wanted the objects in the stimulus set to be
representative of the gloss properties of real materials, and Ward
gives parameters that represent measured properties of a range of
glossy paints. The parameters used in our stimulus set span this
range. Each parameter was set to three levels. ρs values were
(0.033, 0.066, 0.099), α values were (0.04, 0.07, 0.10), and ρd
was set to (0.03, 0.193, 0.767) which are the diffuse reflectance
factors corresponding to Munsell values (N2, N5, and N9). The
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Figure 2: MDS reconstruction of the U.S. map.

Atl Chi Den Hou LA Mia NYC SF Sea DC
Atlanta 0
Chicago 587 0
Denver 1212 920 0
Houston 701 940 879 0
LA 1936 1745 831 1374 0
Miami 604 1188 1726 968 2339 0
NYC 748 713 1631 1420 2451 1092 0
SF 2139 1858 949 1645 347 2594 2571 0
Seattle 2182 1737 1021 1891 959 2734 2406 678 0
DC 543 597 1494 1220 2300 923 205 2442 2329 0

Table 1: Proximity matrix of distances between U.S. cities.
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Figure 3: Stress vs. dimensionality graph for MDS solution.



black and white checks in the checkerboard surround were
completely diffuse and had ρd’s of 0.03 and 0.767 respectively.
By using all combinations of the ρd, ρs, and α parameters for the
sphere objects, we produced the 27 images shown in Figure 4.

Choosing a tone reproduction operator to map from calculated
image radiances to display values presented a challenge because
the images had high dynamic ranges caused by the visible
reflection of the light source. We experimented with a number of
tone reproduction operators including simple clipping and gamma
compression as well as Pattanaik [Patt98] and Ward-Larson’s
[Ward97] high dynamic range operators but we abandoned these
methods because they produced objectionable artifacts such as
halos and banding. We settled on Tumblin’s [Tumb99] Rational
Sigmoid function which compresses the light source highlight
without abrupt clipping and allows all other scene values to be
directly mapped to the display.

One of the consequences of the limited dynamic range of
display devices is that any gloss attribute related to the absolute
intensity of a highlight is not likely to play much of a role in how
glossy surfaces appear in images. Given the amount of effort that
has gone into developing physically accurate light reflection
models for realistic image synthesis, addressing the particular
dynamic range problems caused by trying to display images of
glossy surfaces is certainly a subject that merits future work.

3.2.3.2 Procedure
Nine subjects participated in Experiment 1. The subjects were

the first two authors and seven graduate and undergraduate
Computer Science students. All had normal or corrected to normal
vision. With the exception of the authors, all were naïve to the
purpose and methods of the experiment.

In the experimental session, the subjects viewed pairs of images
displayed on a calibrated SXGA monitor. Minimum and
maximum monitor luminances were 0.7 and 108 cd/m2 and the
system gamma was 2.35. The images were presented on a black
background in a darkened room. The monitor was viewed from a
distance of 60 inches to ensure that the display raster was
invisible. At this viewing distance each image subtended 3.2
degrees of visual angle.

Subjects were asked to judge the apparent difference in gloss
between the pair of objects shown in the images. They entered
their responses using a mouse to vary the position of a slider that

was displayed below the images. The ends of the slider scale were
labeled “0, small difference” and “100, large difference”. A
readout below the slider indicated the numeric position along the
scale.

Subjects judged the apparent gloss differences of all 378 object
pairs in the stimulus set. The pairs were presented in random
order. For each subject, the apparent gloss differences measured
in the experiment were used to fill out a 27 x 27 proximity matrix.
All nine proximity matrices were used as input to the
PROXSCAL MDS algorithm using the weighted Euclidean non-
metric stress formulation.

3.2.4 Analysis/Discussion
Recall that our goal in this experiment is to discover the

dimensionality of gloss perception for the painted surfaces and to
find perceptually meaningful axes in this gloss space. To do this
we observed how the stress varied with the dimensionality of the
MDS solution. Figure 5 plots stress values for solutions running
from 1 to 5 dimensions. The stress value drops significantly with
the change from a 1-dimensional to a 2-dimensional solution, but
declines more slowly with the addition of higher dimensions
which are probably only accommodating noise in the dataset.
From this pattern of results we infer that under these conditions
apparent gloss has two dimensions.

The two-dimensional gloss space recovered by MDS is shown
in Figure 6. In the Figure, MDS has placed the objects at locations
that best reflect the differences in apparent gloss reported by the
subjects.

As stated earlier, since distances in this space are invariant
under rotation, inversion or scaling, it is our job to look for
perceptually meaningful axes in the space. The cross in the lower
right corner of the diagram indicates two important trends in the
data that are related to properties of the reflected images formed
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Figure 5: Dimensionality vs. stress graph for Experiment 1.

Figure 4†: Composite image of the stimulus set used in Experiment 1. Labels indicate the diffuse color (white, gray, black), and ρρρρs
and αααα values. Symbols are included as an aid for interpreting subsequent figures.

†Gloss appearance parameters are specified for the display
conditions described in the experiments. Appearance in the
printed images is subject to the limitations of the printing process.



by the surfaces. First, the apparent contrast of the reflected image
increases from the lower left to the upper right of the diagram.
Second, the apparent sharpness or distinctness of the reflected
image increases from lower right to upper left. We believe these
dimensions are qualitatively similar to the contrast gloss and
distinctness-of-image (DOI) gloss attributes Hunter observed and
so we will name our dimensions c for contrast gloss and d for DOI
gloss. However, to foreshadow the results of the next experiment,
we will differ significantly from Hunter (and Judd) in the
quantitative formulation of relationship between these perceptual
dimensions and the physical dimensions used to describe surface
BRDFs.

3.3 Experiment 2: Creating a perceptually
uniform gloss space

3.3.1 Purpose
In Experiment 1 we discovered the dimensionality of gloss

perception and identified perceptually meaningful axes in visual
gloss space for painted surfaces in synthetic images. The purpose
of Experiment 2 is to place psychophysical metrics on these axes

and rescale them to create a perceptually uniform gloss space. To
do this we’ve designed an experiment based on magnitude
estimation techniques.

3.3.2 Methodology: Magnitude estimation
Magnitude estimation is one of a family of psychophysical

scaling techniques designed to reveal functional relationships
between the physical properties of a stimulus and its perceptual
attributes [Torg60]. In the basic magnitude estimation procedure,
subjects are presented with a random sequence of stimuli that vary
along some physical dimension, and they are asked to assign a
number to each stimulus that indicates the apparent magnitude of
the corresponding perceptual attribute. Magnitude estimates are
then used to derive a psychophysical scale.

3.3.3 Experimental Procedure
3.3.3.1 Stimuli
Two magnitude estimation studies were performed in

Experiment 2 to scale the perceptual gloss dimensions found in
Experiment 1. In both cases the stimuli used were subsets of the
stimuli used in Experiment 1, supplemented by new stimuli with

Figure 6†: Two-dimensional MDS solution for Experiment 1.



parameters intermediate to those in the original set. In the contrast
gloss scaling study 24 images were used, showing objects with
combinations of ρd levels of (0.03, 0.087, 0.193, 0.420, 0.767)
(black, dark/medium/light gray, white) and ρs levels of (0.017
0.033, 0.050, 0.066, 0.083 0.099) (low to high specular energy),
the α parameter was fixed at 0.04 (small spread) to make
variations along the contrast gloss dimension as salient as
possible. In the DOI gloss scaling study, α was varied in 11 levels
from 0.01 to 0.19 (small to large spread), and the ρd and ρs
parameters were fixed at 0.03 (black) and 0.099 (high specular
energy) to make variations along the DOI gloss dimension as
salient as possible.

3.3.3.2 Procedure
The subjects in Experiment 2 were the same as those in

Experiment 1, and the same display techniques, viewing
conditions, and data gathering methods were used.

In each magnitude estimation study, subjects viewed single
images from the new stimulus sets. Images were presented in a
random sequence and each sequence was repeated three times. On
each trial subjects were asked to judge the apparent glossiness of
the object in the image on a scale from 0 to 100 by adjusting the
on-screen slider.

3.3.4 Analysis/Discussion
Our goal in these experiments is to derive psychophysical

scaling functions that relate changes in apparent gloss along the
perceptual dimensions we discovered in Experiment 1 to
variations in the parameters of the physical light reflection model.
To achieve this goal we tested various hypotheses about
functional relationships between the physical and perceptual
dimensions, first with least squares fitting techniques on the
magnitude estimation data and then with confirmatory MDS on
the full dataset from Experiment 1. This approach allowed us to
verify that the scaling functions are task independent and to
determine whether the perceptual dimensions are orthogonal.

First we examined the d (DOI gloss) dimension. Our hypothesis
was that d is inversely related to the α parameter. In Figure 7
subjects’ gloss ratings are plotted versus the function d = 1 - α.
The line was obtained through linear regression and the r2 value
of the fit was 0.96. Polynomial fits only increased r2 by less than
0.01 so we concluded that the relationship is linear.

Interpreting the c (contrast gloss) dimension was less
straightforward. In the MDS solution from Experiment 1 (Figure
6) it is clear that c varies with diffuse reflectance, since the white,
gray, and black objects form distinct clusters that occupy different
ranges along the c dimension. Our first hypothesis was that c is a
simple function of the physical contrast (luminance ratio) of the
black and white patches in the reflected image but this provided a
very poor fit to the data (r2 = 0.76). Our second hypothesis was
that “contrast” in this situation is a function of the difference in

apparent lightness of the two patches, where lightness is defined
as in CIELAB [Fair98]. This second formulation provided a much
better fit to the magnitude estimation data (r2 = 0.87). However
when we tested this second hypothesis on the full dataset from
Experiment 1 using confirmatory MDS, we found that the fit was
poor for surfaces with large α values where the physical contrast
in the image plane drops as the reflected image gets blurrier. We
then tested a third hypothesis that subjects’ lightness judgments
are based on inferred object-space reflectance values rather than
image-space intensity values (i.e. subjects show lightness
constancy [Fair98], compensating for blur-related image contrast
losses). This hypothesis is formalized in Equation 4 which we
derived using standard integration techniques under the
assumption of small α values and high environmental contrast.

Figure 8 plots the data from the contrast gloss scaling study,
which shows how subjects’ gloss ratings relate to this final
formulation for the c dimension. The line was obtained through
linear regression and is a good fit to the data with an r2 value of
0.94. This result shows that subjects appear to be compensating
for the decrease in physical image contrast caused by blurring in
making their judgments of the lightnesses of the reflected patches.
Using this formulation also decreased the stress value in a
subsequent confirmatory MDS test on the full dataset, which
indicates that the c and d axes are independent, and therefore
orthogonal in gloss space.

Equations 3 and 4 show the final formulas for the c and d axes.
These formulas define psychophysical metrics that relate changes
in apparent gloss along these two axes to variations in the physical
parameters of the light reflection model.

α−=1d (3)
33 22 ddsc ρ−ρ+ρ= (4)

These axes are perceptually linear, but to make the space
perceptually uniform, we need to find weighting factors for the
axes so that distances in the space can be measured. These
weights are given as a byproduct of the confirmatory MDS tests
we ran which lets us write the distance as:

 22 )](78.1[][ jijiij ddccD −⋅+−∝ (5)

Figure 9 shows a visualization of the perceptually uniform gloss
space with the stimuli from Experiment 1 placed at their predicted
locations. The Figure shows the contrast gloss (c) and DOI gloss
(d) dimensions form a two-dimensional space, (which is also
shown in the inset), and surface lightness (L) (which we will
incorporate in the following section) is an orthogonal third
dimension.

Like perceptually uniform color spaces, this perceptually
uniform gloss space has a number of important properties. For
example, it allows us to:
� predict the visual appearance of a glossy paint from its

physical reflectance parameters
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� compare two paints with respect to the two visual gloss
dimensions

� produce paints with different physical reflectance values  that
match in terms of apparent gloss

� calculate isogloss contours that describe paints that differ
equally in apparent gloss from a standard.

4. A PSYCHOPHYSICALLY-BASED
LIGHT REFLECTION MODEL

To take full advantage of this new space, we are going to rewrite
the parameters of the physically-based light reflection model
(Equations 6,7,8) in perceptual terms to create a
psychophysically-based light reflection model that can be used to
describe both the physical and visual characteristics of the paints
we studied. To do this, we need to introduce a perceptually linear
parameter related to diffuse reflectance. For compatibility with
perceptually uniform color spaces we chose CIELAB lightness
(L). This final addition allows us to express the physical
parameters in terms of the perceptual ones through the following
equations:

)(1 Lfd
−=ρ (6)

2/)(2/)( 1
3

3 1 LfLfcs
−− −






 +=ρ (7)

d−=α 1 (8)

where f is the CIELAB lightness function normalized in [0,1].
Figure 10 illustrates the influence of the lightness of the diffuse

component on perceived gloss. Here the solid curve plots the
maximum contrast gloss c achievable for different lightness values
(derived by enforcing energy conservation of the BRDF). This
defines the envelope of gloss space with respect to lightness. We
also plotted how contrast gloss varies with lightness for a fixed
energy of the specular lobe. This curve shows that for the same
specular energy, contrast gloss is smaller for lighter objects. That
is to say, if two surfaces are painted with black and white paints
having the same physical formulations, the black surface will
appear glossier than the white one.

Strictly speaking, the model we’ve developed is only predictive

Figure 9†: The perceptually uniform gloss space derived from Experiment 2.
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within the range of our stimuli, which covers a substantial range
of measured glossy paints.  However we feel confident that the
model can be applied outside this range to cover the space of
physically plausible BRDFs expressible using the Ward model,
but we believe that the physical parameters should be maintained
in the range of the ones measured for real materials. In particular,
the α value should not be much larger than 0.2 since the specular
lobe of the BRDF is not normalized for larger values [Ward92].

5. APPLYING THE MODEL
In the previous section we used the results of our gloss

perception studies to develop a psychophysically-based light
reflection model for image synthesis where the dimensions of the
model are perceptually meaningful and variations along these
dimensions are perceptually uniform. In this section we
demonstrate the power of the model by showing how it can be
used to facilitate the process of describing surface appearance in
graphics rendering applications.

5.1 Describing differences in apparent gloss
One of the benefits of working in a perceptually uniform

description space is that steps along the dimensions produce equal
changes in appearance. This is true of uniform color spaces such
as CIELAB where equal numerical steps in lightness (L) or
chroma (a,b) produce perceptually equal changes in color
appearance.

The perceptually uniform gloss space our light reflection model
is based on has similar properties. Figure 11 shows isogloss
difference contours with respect to the object in the lower left
corner of the diagram (c = 0.087, d = 0.93). According to the
model, the objects falling on the circular contours are equally
different in apparent gloss from the reference object. The
concentric circles show two degrees of isogloss difference (∆c =
0.04, ∆d = 0.22 = 0.04/1.78).

It’s important to observe that because the gloss space is two-
dimensional (c,d), objects equidistant from a reference object may
have different reflectance properties even though they will be
judged to be equally different in gloss from the reference. For
example, the two objects at 12 and 3 o’clock in Figure 11 have

very different reflectance properties: the one at 12 o’clock
produces a sharp but low contrast reflection, while the one at 3
o’clock makes a blurry but high contrast reflection, still the model
predicts that they will be judged to be equally different in gloss
from the reference object. This prediction was supported by an
informal ranking study we ran using the stimulus set from
Experiment 1. Objects whose parameters fell along isogloss
contours with respect to a low gloss reference object received
similar rank values implying that they appeared equally “glossy”
but in different ways.

This demonstration shows that our model provides the ability to
specify differences in apparent gloss. This should make it much
easier to modify object gloss properties in controlled ways in
graphics rendering applications.

5.2 Matching apparent gloss
Many studies of gloss perception [Hunt87, Bill87] have noted

that apparent gloss is affected by the  diffuse reflectance of a
surface, with light colored surfaces appearing less glossy than
dark ones having the same finish. This effect is illustrated in the
top row of Figure 12 where the white, gray and black objects have
the same physical gloss parameters (ρs = 0.099, α = 0.04) but
differ in apparent gloss with the white sphere appearing least
glossy and the black sphere appearing most glossy. This
phenomenon makes it difficult to create objects with different
lightnesses that match in apparent gloss.  The bottom row of
Figure 12 shows the results produced with our psychophysically-
based gloss model. When the objects are assigned the same
perceptual gloss values (c = 0.057, d = 0.96) they appear to have
similar gloss despite differences in their lightnesses. This property
of the model should make it much easier to create objects that
have the same apparent gloss, since the parameters that describe
object lightness (L) and gloss (c,d) have been decoupled.

5.3 A new tool for modeling surface
appearance in computer graphics

In the previous subsections we have demonstrated that our new
model has two important features: it allows us to describe
differences in apparent gloss, and it lets us make objects match in
apparent gloss. These features should make it much easier to
specify surface appearance in graphics rendering applications. To
demonstrate how the model might be used, Figure 13 shows a
prototype of a perceptually-based color/gloss picker for painted
surfaces that could be incorporated into an application. We add
color to the model by assuming (as suggested in [Astm89] and
[Aida97]), that surface chromaticity and apparent gloss are

Figure 11†: Isogloss difference contours.

Figure 12†: Matching apparent gloss: white, gray, and black
objects having the same physical gloss parameters (top row)
and perceptual gloss parameters (bottom row).



relatively independent. For consistency with the lightness
parameter (L) we use CIELAB chroma (a,b) to specify color. In
the interface, surface appearance is specified by these three color
parameters and by the two gloss parameters (c,d).

Figure 14 shows an image where this five parameter color/gloss
description has been used to match the apparent gloss of the dark
red and light blue mugs. Notice that the glossy appearance of the
mugs is similar even though they differ significantly in lightness
and color. This image suggests that psychophysically-based light
reflection model we have developed through our experiments may
be usefully applied under more general conditions, however
further testing and validation are clearly necessary.

6. CONCLUSIONS/FUTURE WORK
In this paper we’ve introduced a new light reflection model for

image synthesis based on experimental studies of surface gloss
perception. To develop the model we conducted two experiments
that explored the relationships between the physical parameters
used to describe the reflectance properties of glossy surfaces and
the perceptual dimensions of glossy appearance in synthetic
images. We used the results of these experiments to develop a
psychophysically-based light reflection model where the
dimensions of the model are perceptually-meaningful and
variations along the dimensions are perceptually uniform. We’ve
demonstrated that the model can facilitate the process of
describing surface appearance in graphics rendering applications.
Although we feel that these results are promising, there is clearly
much more work to be done.

First, we want to make clear that strictly speaking, the model
we’ve developed only accurately predicts appearance within the
range of glossy paints we studied, under the viewing conditions
we used. Although we believe our results will generalize well, if
the goal is to develop a comprehensive psychophysically-based
light reflection model for image synthesis, many more studies
need to be done: 1) to investigate different classes of materials
like plastics, metals, and papers (possibly requiring different
BRDF models); and 2) to determine how object properties like
shape, pattern, texture, and color, and scene properties like
illumination quality, spatial proximity, and environmental contrast
and texture affect apparent gloss. Additionally, even though in our
experiments we found that apparent gloss has two dimensions, we
fully expect that for other materials and under other conditions
different gloss attributes such as sheen and haze may play a
greater role. Finally, we feel that a very important topic for future
work is to develop better tone reproduction methods for

accurately reproducing the appearance of high dynamic range
glossy surfaces within the limited ranges of existing display
devices.

By using physically-based image synthesis techniques to
conduct psychophysical studies of surface appearance, we should
be able to make significant progress in these areas.  This will
allow us to develop models of the goniometric aspects of surface
appearance to complement widely used colorimetric models.
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ABSTRACT 
This paper is a study of techniques for measuring and predicting 
visual fidelity.  As visual stimuli we use polygonal models, and 
vary their fidelity with two different model simplification 
algorithms.  We also group the stimuli into two object types: 
animals and man made artifacts.  We examine three different 
experimental techniques for measuring these fidelity changes: 
naming times, ratings, and preferences.  All the measures were 
sensitive to the type of simplification and level of simplification.  
However, the measures differed from one another in their 
response to object type.  We also examine several automatic 
techniques for predicting these experimental measures, including 
techniques based on images and on the models themselves.  
Automatic measures of fidelity were successful at predicting 
experimental ratings, less successful at predicting preferences, and 
largely failures at predicting naming times.  We conclude with 
suggestions for use and improvement of the experimental and 
automatic measures of visual fidelity. 

CR Categor ies: I.3.7 Three-Dimensional Graphics and Realism, 
I.3.5 Computational Geometry and Object Modeling 

Keywords: visual fidelity, model simplification, image quality, 
naming time, human vision, perception 

1 INTRODUCTION 
Polygonal models, images and the techniques for rendering 

them are growing steadily in complexity, and with this growth 
comes a need for visual quality control.  For interactive computer 
graphics applications, fidelity of displayed scenes must be 
adjusted in real time [Lueb97, Lind96, Redd98].  In many other 
less interactive applications, models must be simplified to contain 
fewer polygons, while preserving visual appearance [Garl97, 
Garl99, Hink93, Ross93, Turk92].  Image generators must 
determine where and if to add additional image detail [Boli98, 
Rama99].  Finally, image compression algorithms must preserve 
appearance while reducing image size [Cosm93, Gers92]. 

How can visual quality and fidelity be measured?  This paper 
focuses on this question.  Ultimately, visual quality can only be 
assessed by human observers.  We compare and contrast three 
different experimental measures of visual quality: naming times 
[Wats00], ratings [Cosm93, Mart93] and forced choice 
preferences.  However, the interactive demands of many 

applications requiring control of visual fidelity do not allow 
experimentation, which has led many researchers to develop 
automatic measures of visual fidelity [Boli98, Cign98, Daly93, 
Lubi93, Rama99].  These measures have then been incorporated 
into image generation and simplification algorithms [Lind00, 
Vole00].  We evaluate some of these automatic measures by 
comparing their results to those of the experimental measures 
studied herein. 

In the following sections, we review the rating, preference, and 
naming time experimental fidelity measures; present a brief 
survey of existing automatic fidelity measures; and discuss the 
small body of computer graphics literature that uses experimental 
fidelity measures or evaluates automatic fidelity measures.  We 
then present our comparisons and evaluations of several 
experimental and automatic fidelity measures in the context of 
model simplification. 

2 EXPERIM ENTAL FIDELITY M EASURES 
Ratings and preferences have been widely used in the 

experimental sciences to obtain relative judgments from human 
participants.  With ratings, observers assign to a stimulus a 
number with a range and meaning determined by the 
experimenter.  With preferences, observers simply choose the 
stimulus with more of the experimenter identified quality.  Both 
represent conscious decisions, and so both have proven useful in a 
wide array of settings, including discomfort ratings in psychiatry, 
political and popular polling, and the social sciences.  With regard 
to visual fidelity, the experimentally defined meaning or quality 
of the underlying scales used usually references “quality”  or 
“similarity” . 

Naming time, the time from the appearance of an object until an 
observer names it, has a long history of use in cognitive 
psychology.  Existing research has already shown that naming 
time indexes a number of factors that affect object identification, 
including the frequency of an object’s name in print, the 
proportion of people who call the object by a particular name and 
the number of different names in use for it [Vitk95].  Factors of 
interest to computer graphics researchers include viewpoint 
[Joli85, Palm81], familiarity [Joli89] and structural similarity 
[Bart76, Hump95].  In work of particular interest for this study, 
researchers have shown repeatedly that natural objects take longer 
to name than manmade artifacts [Hump88].  They hypothesize 
that natural objects are structurally more similar to one another, 
requiring more disambiguation than artifacts. 

3 AUTOM ATIC FIDELITY M EASURES 
Although these experimental measures of visual fidelity can be 

quite effective, time or resources often do not allow their use.  In 
such cases researchers and application builders often turn to 
automatic measures of visual fidelity. 

For level of detail control, researchers estimate error by tracking 
the deviation of geometry in the image plane [Lueb97, Lind96], 
and possibly modulating the importance of this error with 
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knowledge of human perception [Redd98].  On the other hand, 
model simplification researchers have long used three 
dimensional (3D) measures of distance [Ross93], curvature 
[Hink93, Turk92], or volume [Lind99] since one typically does 
not know what part of the model an user may be observing, and 
these measures are view independent.  Lindstrom [Lind00] has 
measured fidelity for simplification by taking virtual snapshots of 
the model being simplified from several view points, and then 
measuring the difference between the snapshots taken before and 
after the simplification with mean squared error (MSE) (see 
below).  Although it was not used in actual simplification, 
Cignoni, Rocchini, and Scopigno [Cign98] have offered the Metro 
tool, which allows users to evaluate the quality of already 
simplified models with 3D measures of distance and volume. 

In the fields of image generation and compression, researchers 
have focused on view dependent automatic fidelity measures that 
compare the quality of images.  The MSE measure simply finds 
the mean of the squared pixel by pixel differences between the 
original and approximate images (often the differences are 
normalized by the squared value of the pixel in the original 
image).  However, recently several shortcomings of MSE were 
noted [Giro93] and more complex measures were built based on 
numerical models of the early stages of the human visual system 
[Boli98, Daly93, Lubi93].  These were then used to evaluate 
image compression algorithms and incorporated into image 
generation algorithms [Boli98, Rama99, Vole00]. 

4 PREVIOUS FIDELITY EXPERIM ENTS 
The study of visual fidelity measures and their is are just 

beginning to make their way into computer graphics research.  
Rushmeier, Rogowitz and Piatko [Rush00] used a fine grained, 
one dimensional experimental rating (or scaling) system to 
evaluate the effects on fidelity of approximations in geometry and 
texture.  They found indications that the ability of texture to hide 
approximations in geometry depends on the coarseness of the 
original geometry.  Pellachini, Ferwerda and Greenberg [Pell00] 
used similarity ratings combined with multidimensional scaling 
and magnitude estimation to derive a perceptually equidistant 
gloss space. 

An initial perceptual evaluation of the automatic fidelity 
measure designed by Daly was performed by Martens and 
Myszkowski [Mart93].  They found a high correlation between 
the Daly measures and observer ratings of texture masked objects.  
Previously we [Wats00] used naming times as an experimental 
fidelity measure to examine the effects of model simplification.  
After duplicating the natural/manmade effect discussed above and 
confirming that naming times were sensitive to simplification, we 
turned to an evaluation of several automatic fidelity measures.  
We found that at severe simplifications, the automatic measure 
designed by Bolin (BM) [Boli98] was the most reliable, with 
MSE and maximum 3D distance also fairly reliable.  However, at 
more moderate simplifications none of the automatic measures 
reliably modeled naming time. 

5 EXPERIM ENTAL M EASURE STUDY 
Our evaluation of the naming time, rating, and preference 

fidelity measures took the form of an experiment using these 
measures as the dependent outcomes. This experiment had two 
goals: to learn about the relative strengths and weaknesses of 
these measures in their responses to model and image fidelity, and 
to provide an experimental test bed for our evaluation of 
automatic fidelity measures in the following section. 

5.1 M ethods 
Here we outline experimental methodology and detail our 

experimental stimuli.  For full detail, please see the appendix. 

Stimuli were created from 36 3D polygonal models (31 in the 
public domain; 5 from a commercial source). None contained 
color, texture, material, or vertex normal information. Half the 
models represented manmade artifacts and the other half were 
representations of animals. Each of these models was simplified 
using two simplification algorithms (Vclust [Ross93] and Qslim 
[Garl97]) resulting in two levels of simplification each. We chose 
these algorithms because they are widely used and according to 
prevailing opinion, produce models differing widely in visual 
fidelity.  Thus this experiment had three independent variables: 
simplification type (Vclust vs. Qslim), simplification level (three 
levels including unsimplified), and object type (animals vs. 
artifacts).  These were varied within participants. 

Models were simplified in two stages. First, Qslim was used to 
simplify all models to the number of polygons contained in the 
smallest model in the set (3700 ±50). We refer to these as the 
“standards”  (0% simplification), and label a member of this set s. 
Second, the standards were simplified using Qslim and Vclust by 
removing 50% and 80% of the original 3700 polygons. We refer 
to members of the resulting four model sets as q5, q8, v5 and v8. 
There were thus five examples of each of the 36 objects, for a 
total of 180 stimuli. 

Each stimulus image was uniformly scaled to 591 pixels in 
width and displayed in the center of the screen.  The rating and 
preference task stimuli each consisted of two exemplars of a 
single object model that were scaled to 400 pixels in width and 
displayed side-by-side, each centered within a 512(w) x 768(h) 
pixel space.  Figure 1 shows a stimulus simplified at 80% by 
Qslim and Vclust. 

Naming task.  Participants were asked to name each object as 
quickly and accurately as they could. They were told that some 
pictures would be simplified representations and were shown 
printed examples. 

Rating task. All four simplified exemplars of an object were 
rated against the standard ((s, q5), (s, q8), (s, v5) and (s, v8)). 
Each participant rated all 36 objects once at each simplification 
type and level. Stimuli were presented in a random order. 

Participants were told that on each trial their task was to rate the 
likeness of the picture on the right against the standard picture on 
the left, using a 7-point scale. They had four practice trials. 

Preference task. Exemplars of both simplification types were 
compared at the same simplification level (e.g. (q5, v5) or (q8, 

Figure 1: One stimuli from the experimental set.  At the top is the 
original, the middle Qslim 80%, at the bottom Vclust 80%. 
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v8)). There were 36 objects, each with two simplification types 
and two simplification levels, for a total of 72 comparisons. The 
left-right position of the Qslim (Vclust) example was distributed 
evenly throughout the trials. Participants had four practice trials.  
Participants were asked to choose which picture in the set was a 
better example of each object.   

5.2 Results 
5.2.1 Naming Times 

Figure 2 shows the mean naming times as a function of object 
type, simplification algorithm, and simplification level.  It can be 
seen that all three factors affected performance: animals were 
named more slowly than artifacts, naming times were longer with 
increasing simplification, and naming times were longer with 
Vclust (see Table 1).  There were no interactions between object 
type and simp level.  Reassuringly, this replicates the main trends 
of our earlier study [Wats00].  In the only interaction, the effect of 
simp type varied with simp level (see Table 2).  Figure 3 shows 
the data averaged over type of model.  Clearly the Vclust 

algorithm was much more devastating to naming times than Qslim 
at the higher levels of simplification. 

We corroborated these observations with analyses of variance 
(ANOVAs) on the naming time means averaged two ways.  For 
details on these analyses please see the appendix. 

5.2.2 Ratings and Preferences 
Rating results are shown in Table 3, averaged two ways.  Figure 

4 shows the average similarity ratings as a function of object type, 
simplification type, and simplification level.  Participants were 
sensitive to simplification level and rated the 50% simplified 
objects closer to the “ ideal” than the 80% simplified objects (5.2 
versus 3.7).  Second, they also clearly thought that the Qslim-
simplified objects were closer to the ideal than were the Vclust-
simplified objects (5.0 versus 3.9).  Third, simplification type 
interacted with simplification level; similar to the naming time 
data, there was less of a difference between the algorithms when 
objects had been simplified to 50% (5.6 versus 4.7 for Qslim and 
Vclust, respectively) than when they had been simplified to 80% 
(4.3 versus 3.1). 

Figure 2: Naming times as a function of simplification type, 
simplification level, and object type. 

Figure 3: Naming times averaged across object type as a function 
of simplification type and level. 

Var iable Avg By ANOVA 
object type participants F(1,35) = 10.24 

simp level participants F(1,35) = 13.59 

simp level objects F(1,33) = 13.80 

Table 1: 2 way analysis on naming times averaged 
over simp type.  All effects p<.05. 

 

Var iable Avg By ANOVA 
simp type participants F(1,35) = 5.29 

simp level participants F(1,35) = 13.59 

simp level objects F(1,33) = 13.80 

stype x slevel participants F(1,35) = 4.70 

Table 2: 3 way analysis on naming times without 
standard models.  All effects p<.05. 

Figure 4: Ratings by simplification type, simplification level, and 
object type. 
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In all of these respects, ratings results were similar to naming 
time results.  However, ratings and naming times differed in their 
response to object type.  Ratings did not respond simply to object 
type, and in fact there was an interaction between object type and 
simp type: the animal models were rated closer to the standard 
when they had been simplified using the Qslim algorithm (5.1 
versus 4.9 for animals versus artifacts, respectively), but the 
artifacts were rated as being closer to the standard when they had 
been simplified using Vclust (3.8 versus 4.0 for animals versus 
objects). 

In the preference results, there were main effects for both object 
type and simplification level (see Table 4 and Figure 5).  
Essentially, the preference for Qslim-simplified stimuli was 
greater for the animal models than for the artifact models (90.1% 
versus 77.0%), and it was greater for 80% objects than for the 
50% objects (86.5% versus 80.6%). 

6 AUTOM ATIC M EASURE STUDY 
We now turn our attention to automatic measures of visual 

fidelity, and their ability to predict experimental measures of 
fidelity provided by human observers.  Such automatic measures, 
if effective, could be quite useful in evaluating the effectiveness 
of various algorithms -- and if efficient enough, might even be 
incorporated into the algorithms themselves.  We examine three 
tools for measuring fidelity: an implementation of the image 
comparison algorithm described by Bolin and Meyers [Boli98] 
(BM), mean squared image error (MSE), and the Metro tool from 
Cignoni, Rocchini and Scopigno [Cign98]. 

6.1 M ethods 
Both BM and MSE accept as input an ideal image and an 

approximate image, and return summary measures of the 
difference between these images.  MSE returns a single number as 
its estimate.  BM returns a difference image, with the value at 
each image location estimating the ability of viewers to perceive 
the local difference between the images.  Since we require a 
single value summarizing image fidelity, we use the average of all 
the local values contained in the difference image.  For both MSE 
and BM, the images used were the same images used in 
experimentation. 

Metro accepts as input two similar 3D polygonal models, and as 
a result is not sensitive to viewpoint.  It returns rough estimates of 

the difference in volume between the two models.  It also samples 
the two surfaces at multiple points, and measures the distance 
from each point on the first (pivot) model to the surface of the 
other model.  It returns three summaries of these distance 
measures.  The first is the mean of these distances, obtained by 
normalizing the sum of the distances with the surface area of the 
pivot model.  The second simply squares each of the summed 
distances before normalization.  The third is the maximum of the 
measured distances.  Metro returns its summaries in model 
coordinates, as well as in coordinates normalized by the diagonal 
of the pivot model bounding box and the diameter of the smallest 
sphere that encloses the pivot model. 

Our evaluation of Metro’s fidelity measures includes the 
volume difference (MetroVol), as well as each of the mean 
(MetroMn), mean squared (MetroMSE) and maximum 
(MetroMax) summaries.  All three distance summaries were 
normalized by the diagonal of the pivot model bounding box.  For 
the maximum summary, we used a Metro option that returned the 
Hausdorf distance, that is, that found the maximum of two-sided 
distance measurements both from the first model to the second, 
and the second to the first. 

We found four sets of automatic fidelity measures for each of 
the 36 models in the experimental set.  If, for a given model, s is 
the standard, q5 and q8 are versions of s simplified by Qslim 50% 
and 80% respectively, and v5 and v8 are versions of s simplified 
by vertex clustering 50% and 80% respectively, then we found 
sets of fidelity measures for each of the following four model 
pairs: (s,q5), (s,q8), (s,v5) and (s,v8).  For each of these pairs, the 
set of fidelity measures included BM, MSE, MetroMn, 
MetroMSE, MetroMax and MetroVol.  For Metro, we always 
used s as the pivot.   

To each fidelity measure in each model pair set we compared 
experimental measures.  For naming times, we used the time for 
the non-standard model in the pair (e.g. for (s,q5), we used the 
time it took to name q5, or name(q5)).  For ratings, we used the 
rating of the non-standard model in comparison to the standard 
(e.g. rate(s,q5)). 

Automatic measures compared to experimental preference 
measures took a special form.  Typically persons will compare 

Var iable Avg By ANOVA 
simp type participants F(1,35) = 243.56 

simp type objects F(1,33) = 100.97 

simp level participants F(1,35) = 264.29 

simp level objects F(1,33) = 388.86 

stype x slevel participants F(1,35) = 32.23 

stype x slevel objects F(1,33) = 11.75 

stype x otype participants F(1,35) = 29.51 

Table 3: 3 way statistical analysis on ratings.  All 
effects p<.05. 

 

Var iable Avg By ANOVA 
object type participants F(1,35) = 79.68 

object type objects F(1,33) = 5.25 

simp level objects F(1,35) = 18.20 

Table 4: 2 way analysis on preferences.  All effects 
p<.05. 

Figure 5: Preferences for Qslim by simp level and object 
type. 

216



two stimuli for quality by judging which of the two is closer to a 
visually presented or completely cognitive ideal.  Therefore the 
automatic measures we compared to experimental preferences 
were constructed from the previous measured pairings, and took 
the form p5 = (meas(s,q5) - meas(s,v5)) and p8 = (meas(s,q8) - 
meas(s,v8)), where meas is one of the six measures we evaluated.  
p5 and p8 predict preference among the 50% and 80% simplified 
models, respectively, with a positive result predicting a preference 
for Vclust, a negative result for Qslim.  We also compared naming 
times and ratings to p5 and p8.  These comparisons used the 
differences in naming times and ratings across simplification type 
(e.g. (name(q5) – name(v5)) and  (rate(s,q5) – rate(s,v5))). 

6.2 Results 
Table 5 shows automatic fidelity measure correlations to 

naming times and ratings used to judge quality with (at least 
implicit) reference to an ideal.  Each correlation measure reflects 
comparisons for both simplification levels within a simplification 
type.  Where correlations are presented in bold, the associated 
automatic measure accounts for a marginally significant (p < 0.1) 
proportion of the variation in the experimental measure.  Where 
they are also italicized, the automatic measure accounts for a 
significant (p < 0.5) proportion of experimental variation. 

All automatic measures with the exception of MetroVol were 
very successful predictors of quality as judged by ratings.  
Correlations were quite high, with ANOVAs indicating that a 
statistically significant portion of experimental variance was 
accounted for.  Note that correlations are consistently negative, 
since low automatically measured error correlates consistently 
with high experimental ratings.  Correlations are slightly worse 
for animals as opposed to artifacts, and for Qslim as opposed to 
Vclust. 

The automatic measures were much less successful at predicting 
quality as judged by naming times.  Correlations were in this case 
generally positive, since low automatically measured error 
correlates to short naming times.  The most successful automatic 
fidelity measures were BM, MSE and MetroMn.  The striking 

failures here are the consistently low correlations for Qslim, and 
to a lesser degree, the lower correlations for animals, echoing the 
same trends in the ratings correlations. 

We performed in-depth analyses of the automatic measures by 
treating their results as dependent variables in ANOVAs much 
like those used for the experimental measures, with simplification 
type, simplification level, and object type as independent 
variables.  We present these results in Table 6.  Table values in 
italics represent F values from analyses averaged across objects 
for each participant, rather than averaged across participant for 
each object.  We graph the means for two of the better measures, 
BM and MetroMn, by objects in Figures 6 and 7, and show for 
comparison naming time and ratings graphs averaged over 
participants for each object.  All measures, whether automatic or 
experimental, were significantly affected by simplification level.  
Most measures were significantly affected by simplification type 
and the interaction of simplification type and level.  The effect of 
object type, however, differed greatly across the measures, 
whether experimental or automatic. 

Table 7 shows automatic fidelity measure correlations to 
preferences and naming time and rating differences used to judge 
which of two stimuli has superior quality.  Each correlation 
measure again reflects comparisons for both simplification levels.  
Where correlations are presented in bold, the automatic measure 
accounts for a marginally significant (p < 0.1) proportion of the 
variation in the experimental measure, where they are also 
italicized, the automatic measure accounts for a significant (p < 
0.5) proportion of experimental variation.  The automatic measure 
differences are negative if Qslim has less error, while rating 
differences and preferences are positive if Qslim is rated more 
highly or preferred, giving negative correlations.  Since naming 
time differences are negative if Qslim produces the more 
recognizable model, correlations to it are largely positive.  In 
general, the automatic measures correlated quite well to 
experimental preferences, less well to differences in ratings, and 
quite poorly to differences in naming times.  Again correlations 
were worse for animals than for artifacts. 

7 DISCUSSION 
In this section we review our experimental and automated 

findings, make some recommendations on the use of fidelity 
measures, and provide some suggestions as to how automatic 
fidelity measures and the applications that use them might be 
improved. 

7.1 L imitations 
However, before we do so, we should note the limitations of our 

studies.  We begin with a consideration of our stimuli.  First, we 
have limited ourselves to the study of one almost optimal view of 
each object.  Second, this study has focused on approximations 
made in model geometry, rather than in the illumination model, 
model texture, or in attributes such as color or per-vertex normal 
vectors.  In addition, we have focused on recognition of objects 
presented in isolation, rather than in more natural scenes 

Fidelity 
Measures 

Simp 
Type 

Simp 
Level 

SType 
x 

SLevel 

SType 
x 

OType 
Three 
Way 

Naming 5.29 13.80 4.70   
Rating 100.97 388.86 11.75 29.51  

BM 11.73 108.08 6.31   
MSE 78.31 100.12 37.55   

MetroMn 56.48 192.71 32.27 8.02 8.18 
MetroMSE 23.58 135.08 14.72 8.67 7.03 
MetroMax  32.86    
MetroVol  6.68 7.82   

Table 6: Significant ANOVAs for naming times, 
ratings and automatic fidelity measures.  Italics 
represent participant analyses. 

Naming Times Ratings 
All Models Animals Ar tifacts All Models Animals Ar tifacts Automatic 

Measure Qslim Vclust Qslim Vclust Qslim Vclust Qslim Vclust Qslim Vclust Qslim Vclust 
BM -0.07 0.30 -0.07 0.21 -0.03 0.41 -0.62 -0.60 -0.43 -0.54 -0.72 -0.67 
MSE 0.07 0.31 0.02 0.14 0.18 0.48 -0.67 -0.71 -0.68 -0.71 -0.74 -0.77 

MetroMn 0.03 0.31 0.00 0.24 0.10 0.38 -0.65 -0.77 -0.77 -0.78 -0.66 -0.77 
MetroMSE -0.04 0.25 -0.20 0.27 0.06 0.22 -0.46 -0.55 -0.21 -0.53 -0.56 -0.60 
MetroMax -0.05 0.27 -0.16 0.26 0.04 0.28 -0.60 -0.73 -0.52 -0.75 -0.66 -0.72 
MetroVol 0.19 0.14 -0.07 0.08 0.41 0.19 -0.21 -0.13 -0.58 -0.34 0.00 -0.04 

Table 5: Correlations of naming times and ratings to automatic fidelity measures. 
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containing several objects in their context.  Finally, models are 
often used in interactive applications with viewpoint and model 
motion, while all of the stimuli presented and studied here were 
static.  Removing these limitations in further studies would 
certainly increase the generality of our results.  At the same time, 
such changes would increase variation in those results, and stiffen 
the challenge posed to the various automatic measures of visual 
fidelity, which would have to model a more complex 
experimental response.  For example, the introduction of 
viewpoint and non-geometric experimental factors would 
certainly reduce the effectiveness of the Metro measures, at least 
in their current form. 

In order to limit the scope of our experimentation, we also made 
choices in the use of our automatic measures.  In particular, we 
chose BM as a quickly executing representative of those measures 
that model the early stages of human vision.  But BM is a 
specialization of other slower measures ([Daly93, Lubi93]) that 
might be more effective (though BM was proved very effective in 
these results).  BM and related measures were also developed for 
stimuli more complex (and more challenging) than those used 
here.  Difference image summarizations other than the averaging 
used here might also increase measure effectiveness. 

7.2 Confirmations 
As we have noted above, our naming time results were largely 

in agreement with the results we obtained earlier in [Wats00].  We 
also found that simp level has the effect one would intuitively 
expect on the rating and preference measures.  In agreement with 
prevailing opinion, Qslim was by all measures a more effective 
simplification tool than Vclust.  Many have conjectured that 
simplification techniques show their mettle at low polygon counts.  
These results are in agreement with that hypothesis, with a simp 
level and simp type interaction showing that there is little 
difference between Qslim and Vclust at 50% simplification, a 
large difference at 80%. 

7.3 Surprises 
Ratings and preferences indicated that though Qslim is 

generally a better simplifier than Vclust, it simplifies animals 
most effectively.  This may indicate that a specialization of Qslim 
for more regularly curved (or planar) surfaces is possible.  On the 
other hand, Vclust is more effective when simplifying artifacts – a 
hint that Vclust’s regular sampling approach is most effective 
when used with models typical of CAD/CAM applications, which 
contain many coplanar polygons and regularly curved surfaces. 

Naming times did not respond to object type with the same 
complexity as ratings and preferences, instead, they were 
uniformly longer for animals.  This is most likely a clue to the 
different natures of these experimental measures: while naming 
times probe subconscious perception from the low through the 
higher cognitive levels, ratings and preferences seem to sample 
very low level processes, avoiding the natural/manmade effect.  
(However, ratings and preferences are notoriously vulnerable to 
higher level, conscious cognitive qualities assigned to the axis of 
comparison). 

In line with these differences in the experimental results, the 
automatic measures were poor predictors of naming times, but 
excellent predictors of experimental ratings, preferences, and to a 
lesser extent, differences in ratings.  BM, MSE, and MetroMn 
were particular success stories in this respect.  Obviously the 
differing experimental responses to object type played a role in 
these correlative trends. 

However, correlations were low even within simplification and 
object type, where only simplification level was varying.  We see 
two possible reasons for this.  First and most simply, naming 
times are very variable, much more so than ratings and 
preferences.  Obtaining good correlations to them within 
simplification and object type may require the use in experiments 
of larger model stimuli libraries and more participants.  Second 
and more provocative, although it is certain that in general, 
increasing simplification increases naming times; we noticed that 

Figure7: BM response to simplification type, simplification 
level, and object type, vs. naming time by object. 

Figure 6: MetroMn response to simplification type, 
simplification level, and object type, vs. ratings by object. 

Table 7: Correlations of preferences, naming time differences, and rating differences to 
automatic fidelity measures. 

Naming Diffs Rating Diffs Preferences Automatic 
Measure All Anims Ar tifs All Anims Ar tifs All Anims Ar tifs 

BM 0.21 0.23 0.23 -0.36 -0.23 -0.38 -0.37 -0.27 -0.35 
MSE 0.26 0.15 0.37 -0.44 -0.25 -0.54 -0.33 -0.42 -0.27 

MetroMn 0.18 0.20 0.21 -0.42 -0.21 -0.47 -0.42 -0.41 -0.32 
MetroMSE 0.04 0.17 -0.03 -0.21 -0.25 -0.15 -0.27 -0.42 -0.16 
MetroMax 0.13 0.19 0.14 -0.41 -0.16 -0.45 -0.43 -0.40 -0.34 
MetroVol -0.06 0.17 -0.17 -0.05 0.19 -0.15 -0.04 0.16 -0.11 
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for several models, increasing simplification reduced naming 
times.  We will call this the distillation effect.  There are 
precedents for this in the psychology literature [Ryan56, Edel99].  
The basic notion is that by removing detail that allows fine 
grained identification of an object, the speed of coarse grained, 
categorizing identification is improved.  The distillation effect 
seems to occur particularly often for animal models simplified 
with Qslim, and may explain some of the negative correlations 
(again, within simplification and object type) in Table 5.  
Automatic measures do not model this effect, reducing 
correlations. 

7.4 Implications 
For simplification.  Our results indicate that simplification 

effectiveness varies by all experimental measures as a function of 
object type.  This suggests the possibility of simplification 
algorithms that specialize in, or adapt to, different types of 
models.  As simplification researchers continue their work, they 
should pay particular attention to the quality of their models at 
low polygon counts.  Our results also suggest that mean distance 
is a more important heuristic for simplification than maximum 
distance.  The rating and preference measures are well modeled 
by the automatic measures reviewed here, which should prove 
useful when comparing algorithms, or even during the process of 
simplification itself. 

For use of experimental measures.  All of the measures vary in 
the degree of explicit visual comparison they require of the 
viewer.  With preferences, this comparison is very explicit.  With 
ratings, the comparison is to some (at least cognitively imagined) 
visual ideal.  Comparison may be involved in the process probed 
by naming times, but it is certainly not an explicit comparison 
between two visual images.  It may be telling that this least 
comparative of experimental measures was also most poorly 
modeled by the automatic measures. 

What is fidelity?  Is it visual similarity to the original?  Or is it 
successful communication of the original concept?  The notion of 
fidelity most relevant in the current application should indicate the 
experimental measure that is most appropriate.  During the 
processes of simplification, image compression and generation, 
the goal is typically one of appearance preservation in the face of 
each of a long series of minor alterations.  Preferences, ratings, 
and their correlating automatic measures are probably the most 
appropriate indices for these applications.  However, when 
making cross algorithm comparisons, the compared images or 
models are the result of very different, very long series of these 
alterations, and the appropriate notion of fidelity is less clear. 

It is intriguing to note that in almost all computer graphics 
applications, users never make an explicit visual comparison.  At 
most, they compare a currently displayed example with a 
previously displayed one.  In highly interactive applications, this 
comparison, if it indeed occurs, is certainly cursory at best.  In 
these sorts of settings, the naming time measure might be most 
appropriate, and the distillation effect, if it indeed exists, most 
effectively exploited.  It is also intriguing to imagine a non-
photorealistic pursuit of the distillation effect in its extreme. 

For automatic measures.  Many of these measures can be used 
for purely numerical ends, ensuring for example that a given 
approximation does not deviate from the original by more than 
some constant error.  We do not consider such applications here. 

Our results indicate that MetroVol is a poor predictor of visual 
fidelity and quality as indexed by any of our experimental 
measures, at least at the levels of geometric simplification (3700 
polygons and below) examined here.  BM, MSE, and MetroMn 
were excellent predictors of fidelity as measured by ratings and to 
a lesser extent preferences and rating differences.  Unfortunately, 
we found no fully reliable predictors of the conceptual sort of 

fidelity measured by naming times.  For now, the best automatic 
predictor of naming times and their differences is MSE, with BM 
and MetroMn coming very close behind.  Given the poor 
correlations of all three of these measures with Qslim, these 
naming time predictors must be used with extreme skepticism, if 
at all. 

For future work.  These results raise many intriguing questions.  
First, do they generalize?  We are currently investigating how 
well these results hold across differ viewpoints, and would like to 
examine the effects of both background and interactive motion.  
The element of comparison embodied both by these measures and 
typical graphics applications clearly needs further research, as 
does the hypothesized distillation effect.  Obviously our automatic 
measures must improve their ability to model naming times.  This 
will require understanding and modeling object type effects.  In 
the long run, research into the object type and distillation effects 
may lead to new simplification algorithms. 

8 CONCLUSION 
This paper described our research into the experimental and 

automatic measurement of visual fidelity.  Measuring visual 
fidelity is fast becoming crucial in the fields of model 
simplification, level of detail control, image generation, and 
image compression.  In our study, we manipulated fidelity by 
applying two different model simplification algorithms to 36 
polygonal models, divided into models of animals and manmade 
artifacts, producing approximating models at two different 
polygon counts.  We examined the visual fidelity of these models 
with three different experimental measures: naming times, ratings, 
and preferences.  All the measures were sensitive to the type of 
simplification algorithm used and the amount of simplification, 
however they responded differently to model type.  We then 
analyzed model visual fidelity with several automatic measures of 
visual fidelity.  These automatic measures proved to be good 
predictors of ratings and preferences, but only mediocre predictors 
of naming times. 
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10 APPENDIX: EXPERIM ENTAL DETAILS 
Experimental methodology.  Participants performed the naming, rating, 

and forced-choice preference tasks on the same set of items during a 
single session. All participants completed the naming task first because 
seeing a stimulus once reduces its subsequent naming time [Joli85]. 
Similarly, all  participants performed the rating task prior to the preference 
task because it was possible that performing the preference task first could 
contaminate rating judgments by increasing the subjective distance 
between the less preferred object and the standard. 

The virtual field of view used in forming stimuli was always 40 degrees 
and the virtual eye point was always at a distance that was twice the length 
of the bounding box.  Views were generally directed towards the mean of 
a model’ s vertices, but 14 models required centering corrections because 
vertex distributions were not uniform.  Each model was interactively 
rotated so that it was displayed in a canonical 3/4 view that revealed a 
reasonable level of detail across the models [Palm81].  Each model was 
illuminated with one white (RGB=[1,1,1]) light located at the eye point. 
All models were assigned the same white color and flat shaded, and 
displayed on a black background. 

The images were displayed on a 17-inch Microscan CRT, with 
participants sitting approximately 0.7 m from the display. Participants 
performed the naming task by speaking into a hand-held microphone. 
Responses for the rating and preference tasks were entered on the 
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computer keyboard.  Thirty-six undergraduate volunteers from the 
University of Alberta pool participated in the experiment. 

For the naming task, stimuli were organized into six groups of six 
stimuli each.  There were three groups for each simplification algorithm, 
and within algorithms, one group for each level of simplification (0%, 
50%, and 80%).  Each group contained three animal models and three 
artifact models.  Stimuli were cycled through the groups such that across 
participants, each stimulus appeared once in each of the six experimental 
conditions (2 simp type x 3 simp level).   

Each participant saw all 36 models only once; 12 were standards, 12 
were simplified using Qslim, and 12 were simplified using Vclust; 6 of 
each of the simplified models were seen at 50% simplification and 6 were 
seen at 80% simplification.  There were eight practice trials.  On each 
trial, the experimenter pressed the space bar, a fixation cross appeared for 
750 ms, the picture appeared on the screen, the participant named the 
picture, and the picture disappeared as soon as a name was said. Naming 
times were recorded from stimulus onset to the participant’ s response. 

For the rating task, on each trial the participant pressed the space bar, 
and after a delay of 250 ms the standard and comparison pictures appeared 
on the screen and disappeared as soon as a rating was entered. 

For the preference task, subjects pressed the “ A”  and “ K”  keys to 
choose the left and right stimuli, respectively.  The participant pressed the 
space bar; after a delay of 250 ms the pictures appeared and then 
disappeared as soon as a preference was entered. 

The models: ant, bear, bicycle, blender, bunny, camera, car, chair, cow, 
dinosaur, dog, dolphin, dump truck, elephant, fighter jet, fish, helicopter, 
horse, kangaroo, lion, microscope, motorcycle, piano, pig, plane, raven, 
rhino, sandal, shark, ship, skateboard, snail, sofa, spider,  tank, tomgun. 

Analysis of experimental measure results.  Three kinds of trials were 
excluded from naming time analyses.  First, we excluded naming times 
measured during spoiled trials (e.g., trials in which participants failed to 
trigger the microphone with their first vocalization – 4.6% of all trials).  
Second, we excluded naming times from trials in which a participant’ s 
response was an error (e.g., calling a picture of a sandal a “ rocket”  – 0.3% 
of all trials).  Finally, we computed the overall mean of the remaining 
naming times and excluded trials that were more than 3 standard 
deviations longer than this average.  These outliers comprised only 1.5% 
of the remaining trials.  

For naming times and ratings, examining the relationship of object type 
to simp level required averaging over simp type for a two way analysis, 
because unsimplified objects were necessarily the same for both the Qslim 
and Vclust.  Additional three way analyses were performed by excluding 
the unsimplified objects.   

Most analyses used two ANOVAs, one averaged over objects (the 
participant analysis) and one averaged over participants (the object 
analysis).  For the participant ANOVA on the preference data, we counted 
the frequency of times that each participant chose the Qslim-simplified 
model in each of the four object type and simplification level conditions, 
and converted the results to percentages.  For the item analysis, we 
counted the frequency of participants who chose the Qslim model for each 
of the objects in each of the conditions. 
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