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ABSTRACT
The Semantic Web has made huge progress in the last
decade, and now comprises hundreds of knowledge bases
(KBs). The Linked Open Data cloud connects the KBs in
this Web of data. However, the links between the KBs are
mostly concerned with the instances, not with the schema.
Aligning the schemas is not easy, because the KBs may differ
not just in their names for relations and classes, but also in
their inherent structure. Therefore, we argue in this paper
that advanced schema alignment is needed to tie the Se-
mantic Web together. We put forward a particularly simple
approach to illustrate how that might look.
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1. INTRODUCTION
Recent years have seen a rise of large knowledge bases

(KBs). Endeavors such as YAGO [20], DBpedia [1], NELL
[5], and KnowItAll [9] have constructed huge KBs of mil-
lions of facts. These projects are complemented by com-
mercial projects such as Freebase [22], Google’s knowledge
graph, Evi.com (bought by Amazon), and Facebook’s Graph
Search. Thanks to the Semantic Web, RDF [24] has estab-
lished itself as a widely accepted standard of knowledge rep-
resentation. Many of the KBs overlap in their instances. All
of the above KBs, e.g., contain cities and places. All KBs
that feed from Wikipedia, such as YAGO, DBpedia, Free-
base, and Google’s knowledge graph, share a large part of
their entities. Consequently, many of the (public) KBs have
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been connected in the Linked Open Data Cloud [14] (LOD).
The LOD cloud provides sameAs links between equivalent
entity identifiers across KBs. Altogether, the LOD cloud
provides hundreds of millions of such links, thus intercon-
necting billions of statements.

These links, however, concern mostly instances. The
schema of the KBs, i.e., the class hierarchy and the relations
of the KBs, have not yet been mapped at large scale. This
entails that, although the instances are aligned, the data
is not interoperable. A query formulated in the schema of
one KB will not have answers in another KB – even if the
desired information is there, and even if the instances have
been linked between the two resources. Hence, despite the
great advances of linked open data, the KBs are still to a
large degree disconnected databases.

A standard data integration solution based on manually
defined mappings would not scale-up to the hundreds of KBs
on the Semantic Web. Recent work [19] has allowed find-
ing relation and class alignments across KBs at large scale.
However, this approach requires the KBs to have the same
structure: One relation in one KB has to correspond to one
relation in the other. Real-data examples show us that this
is not always the case. For example, if the user asks for
the country of birth of Elvis, then one KB may express
this by the relationship wasBornInCountry. Another KB, in
contrast, may require a join of the relationship wasBornIn-
City with the relationship locatedInCountry. This problem
is particularly prevalent in cases where one KB distinguishes
between the entity and its label, while the other one does
not. For example, one KB could say sang(Elvis, “All Shook
Up”), while the other one could say sang(Elvis, allShook-
Up), label(allShookUp, “All Shook Up”). Such a structural
mismatch would derail any alignment system that assumes
isomorphic KBs. Consequently, any query evaluation algo-
rithm that uses them would miss relevant query plans.

Another important issue faced by a data integration sys-
tems is the translation of literal values from one KB to an-
other. For example, different KBs may use different labels
for the same entities. MusicBrainz uses abbreviated names
for countries, stating e.g. livedIn(Elvis, ”DE”). YAGO, on
the other hand, uses complete names for countries. If the
data of MusicBrainz were integrated directly into YAGO,
the result would be inconsistencies.

This leaves us to conclude that, even though KBs talk
about the same entities, they often talk about them in dif-
ferent languages. Even though they say the same things, or
even complement each other, and even though they use the
same knowledge representation format, they are not able to



“understand” each other. The reason is a structural mis-
match between the schemas of the KBs. Our vision is that
this structural mismatch be overcome. We would like to see
a Semantic Web where the KBs are not just linked by their
instances, but also by their relations and classes – irrespec-
tive of structural differences, and across different schemas.
This would allow users to make full use of the data and links
of the Semantic Web.

To illustrate how such an alignment could look, we resort
to a simple, yet very effective technique. We assume that
some of the instances of two KBs have already been aligned.
Then we coalesce the two KBs to a single KB, and apply rule
mining [10]. This yields what we call ROSA rules: Logical
rules that reveal complex relationships between properties
and concepts of the KBs. This idea subsumes state-of-the-
art ontology matching [19], in that it can find equivalences
of relationships, equivalence to the inverse of a relationship,
and the subsumption of relationships. However, it goes fur-
ther by finding that one “hop” in one KB can correspond to
a several hops in the other. It can find that one literal in
one KB corresponds to a different constant in the other KB,
or that one class in one KB corresponds to a relationship in
the other. We hope that, by this illustration, we can open
up the door for a new, and exciting, area of research.

2. RELATED WORK
Scope. Several aspects of KB alignment have been ad-
dressed in recent work: the alignment of classes [12, 11],
the alignment of classes together with relations (T-Box) [2,
6, 18], and the alignment of instances (A-Box) [14, 13, 3].
Holistic approaches have been investigated in [19, 23].

In the present paper, we agree that the alignment of in-
stances has been solved to a large degree. However, we
are concerned that state-of-the-art solutions for the schema
alignment of KBs are not yet mature enough.
Instance-Based Approaches. Some approaches [23, 19]
can align the instances and the schema of two KBs at the
same time. ILIADS [23] combines a clustering algorithm
based on lexical, graph-structure and data instance statis-
tics with a logical inference to check the consistency of the
mappings. Most large KBs, however, do not come with the
OWL axioms on which ILIADS relies. PARIS [19] develops
a probabilistic model for graph alignment. However, both
ILIADS and PARIS assume that one relation or class in one
KB corresponds to one relation or class in the other KB. In
practice, this is often not the case.
Schema Alignment. Schema matching solutions such as
CLIO [16] typically rely on database constraints, which are
often unavailable for KBs. Some schema matching systems
are able to align KBs [2, 6, 18]. [2] expects as input OWL
descriptions and ignores data instances. [6] develops a user-
assisted approach. [18] proposes a tool collection for infor-
mation integration. In our vision, the alignment of KBs
would happen fully automatically and without the need for
database constraints.
Data Translation. The approach of [4] argued for the in-
troduction of more complex mapping rules, which are able
to express data translations. However, such formalisms have
not yet been widely adopted due to scalability issues. In
this work, we propose to focus on mining a small, yet ex-
pressive set of mappings patterns, which capture many real-
data cases. The actual translation of data from one KB to
another KB shares resemblance to the query discovery prob-

lem [16]. Query discovery and schema matching are seen as
complementary and independent problems [15]. Query dis-
covery solutions are not directly applicable to KBs as they
are data model dependent or rely on database constraints.
Furthermore, the data transformations that we envision go
beyond data restructuring.
Association Rule Mining for Ontology Alignment.
To our knowledge, there are only few works that mine rules
for KB alignment [7, 21]. These works focus exclusively
on the alignment of hierarchies of entities. Our vision goes
beyond this goal. We would like to express more complex
mappings and actual data transformations.

3. PRELIMINARIES
RDF KBs. This paper assumes that the KBs are repre-
sented in RDF 1. An RDF KB is a set of triples of the form
<x,r,y>, called facts, where x is the subject, r the relation
and y the object. This paper uses the logical notation r(x,y).
We assume that, for every relation r, there is also the inverse
relation r−1, i.e., if the KB contains r(x, y), then it also im-
plicitly contains r−1(y, x). Facts state relationships between
entities of a KB (e.g. married(Elvis, Priscilla)). Facts may
also define the schema of the KB, i.e., its class hierarchy,
and its relations with domains and ranges.
Horn rules. The main idea of this paper is to reconciliate
schemas by finding correlations across ontologies. For this
purpose, we will use Horn rules. These are based on atoms.
An atom is a fact that contains at least one variable as ar-
gument. A Horn rule consists of a head and a body where
the head is a single atom and the body is a conjunction of
atoms. We denote Horn rules by an implication

B1, B2 . . . Bn ⇒ r(x, y),written as ~B ⇒ r(x, y)

where each Bi is an atom. As example, consider the rule:

hasChild(x, y), isCitizenOf(x, z) ⇒ isCitizenOf(y, z)

We say that two atoms are connected if they share at least
one variable. A rule is connected if every atom is transitively
connected to every other atom of the rule. Non-connected
rules are normally not interesting. A Horn rule is closed
if every variable in the rule appears at least twice (as in
our example). Closed Horn rules are particularly interest-
ing because if the variables of the body are substituted by
constants so that they match facts in a KB, we can infer
concrete facts. We consider only closed rules.
Rule Mining. Learning logical rules from datasets is the
central topic of research in the field of Inductive Logic Pro-
gramming (ILP). Conceptually, ILP learns (Horn) rules from
a set of positive and negative examples, where the goal is to
find hypotheses that cover all the positive examples and none
of the negative examples. Since KBs usually do not contain
negative data, different ILP approaches resort to different
strategies to generate negative examples.

A vanilla association rule mining approach [8] could sim-
ply regard all absent data as counter-examples. By using
absence of evidence as evidence of absence, however, this
measure violates the Open World Assumption that most
KBs make. To address this issue, Muggleton has devel-
oped a positive-only learning evaluation score for ILP with-
out counter-examples [17]. This approach generates counter-
examples randomly. The AMIE approach [10] uses yet an-

1http://www.w3.org/TR/rdf-primer/
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other strategy to generate counter examples: the Partial
Completeness Assumption (PCA). The PCA assumes that
a KB knows either all or none of the r-attributes of some x.
This is true for functional relations. It is also true for well
documented KBs or for KBs that are extracted from well
documented sources. Under this assumption, we count as
counter-examples for a rule ~B ⇒ r(x, y) only those instances
x that have r relations, but not r(x, y). This yields the fol-
lowing confidence measure:

pcaconf( ~B ⇒ r(x, y)) :=
#(x, y) : ∃z1, ..., zm : ~B ∧ r(x, y)

#(x, y) : ∃z1, ..., zm, y′ : ~B ∧ r(x, y′)

Here, z1, ..., zm are the free variables of the body, and
#(x, y) : A is the number of pairs (x, y) that fulfill A.
Thereby, the PCA confidence takes into account that KBs
can be incomplete. [10] shows that the PCA confidence con-
sistently identifies the rules that make the largest number of
correct predictions. Therefore, we use the PCA confidence
also in our setting.
Coalescing KBs. We are interested in discovering complex
schema relationships between two given KBs K1 and K2 in
RDF format. We assume that the instances of the KBs have
already been aligned, at least in part. This can be done by
a (partial) substitution σ, which maps the instances of K1

to the sameAs counterparts from K2 if any, or to themselves
otherwise. It leaves literals unchanged. As pointed out in
[19], different KBs may use the same relation (as given by
a URI) in different ways. Therefore, we use a substitution t
that substitutes all relation names in K1 so as to make sure
they are different from the relation names in K2. With this
in mind, we coalesce the two KBs as follows:

K = {r′(σ(x), σ(y)) | r(x, y) ∈ K1 ∧ r′ = t(r)} ∪ K2

This definition entails that we have two sets of relations:
rel(K1) = t(πrelation(K1)) and rel(K2) = πrelation(K2). Our
coalesced KB subsumes both KBs. We could restrict our-
selves to the part that is common to both KBs, but then
many alignments are lost because of missing data. We leave
the detailed study of different coalescing techniques for fu-
ture work.
ROSA rules. On the coalesced KB K, we will mine rules.
We are particularly interested in rules that express KB align-
ments. We call them ROSA rules:2

Definition 1. A ROSA rule from a KB K1 to a KB K2

is a rule mined on the coalesced KB K, such that the relations
of the body belong to rel(K1), and the relation of the head
belongs to rel(K2).

This definition is asymmetric in the sense that we can
mine ROSA rules from K1 to K2 and from K2 to K1. ROSA
rules express one type of cross-schema alignments.
KBs. For our experiments, we mined ROSA rules on the
following KBs:

YAGO 2s: We used the facts about instances contained
in the datasets yagoFacts and yagoLiteralFacts, with 2.9M
entities and 22.8M facts in total. We also used, though
separately, the instance data contained in yagoSimpleTypes,
which comprises 5.4M rdf:type statements.

2ROSA = Rule for Ontology Schema Alignment. For con-
venience, and with a slight redundancy, we speak of “ROSA
rules”.

r(x, y) ⇒ r′(x, y) (R-subsumption)

r(x, y) ⇔ r′(x, y) (R-equivalence)

type(x,C) ⇒ type′(x,C′) (C-subsumption)

r1(x, y), r2(y, z) ⇒ r′(x, z) (2-Hops alignment)

r(z, x), r(z, y) ⇒ r′(x, y) (Triangle alignment)

r1(x, y), r2(x, V ) ⇒ r′(x, y) (Specific R-subsumption)

r(y, V ) ⇒ r′(x, V ′) (Attr-Value translation)

r1(x, V1), r2(x, V2) ⇒ r′(x, V ′) (2-Value translation)

Figure 1: ROSA Rules (r ∈ rel(K1), r′ ∈ rel(K2)).

DBpedia 3.8: We used the person data and raw infobox
properties datasets, which together contain 11M facts about
2.1M entities. We also used the ontology infoboxes dataset,
which has 13.2M rdf:type statements about 2.3M entities.

Freebase: We used information about people, which
comprises 19M facts about 2.7M subjects. In addition, we
used the instance facts, which comprise 140M rdf:type state-
ments about 74M entities.

IMDb: We used a custom crawl of IMDb, similar to the
one in [19]. It comprises 722K entities and 12M facts.

We use the namespace prefixes Y , D, F , and I for these
KBs, respectively. ROSA rules require pre-existing instance
alignments. For the first three KBs, we used the instance
alignments from the Linked Data cloud. For IMDb, we used
the gold standard instance alignments provided by [19].

For the actual mining of rules, we use the AMIE system
[10]. AMIE can mine rules on large KBs in a few minutes.

4. ALIGNMENT PATTERNS
Goal. Our goal is to illustrate the complex schema align-
ments that are necessary to make two KBs interoperable.
Some of the interesting alignments are given by ROSA rules.
Given two KBs, we mine rules from the first KB to the sec-
ond, and from the second to the first. In the following,
assume that we mine from a KB K1 to a KB K2 on their
coalesced KB K.
Rule Patterns. Figure 1 groups some useful ROSA rules of
up to 3 atoms into patterns. Arguments in lower case denote
variables, whereas uppercase letters refer to constant values.
Since we assume that every relation r is also present in its
inverse, r−1, the patterns also comprise rules that involve
a swap of arguments. We will now discuss each of these
patterns in detail. For each pattern, we show some mined
rules together with their PCA confidence.
R-subsumption. We say r′ subsumes r, if (∀) r(x, y) ∈ K,

r(x, y) ⇒ r′(x, y)

This rule holds when two ontologies contain semantically
close relations with different levels of specificity. In this re-
spect, the rule can capture subPropertyOf relationships, as
defined in the RDF Schema. For instance, in YAGO the rela-
tionship between an author and his œuvre is labelled gener-
ically with Y:created, while DBpedia defines more specific
relations such as D:writer for authors or D:musicalArtist
for singers. To show this, we ran AMIE on a coalasced
KB built from YAGO and DBpedia. AMIE found 360 R-



subsumption alignments. We show the top 3 3 with their
PCA confidences:

D:musicalArtist(x, y) ⇒ Y:created(y, x) (90%)

D:musicalBand(x, y) ⇒ Y:created(y, x) (90%)

D:mainInterest(x, y) ⇒ Y:isInterestedIn(x, y) (88%)

R-equivalence. If two relations r and r′ subsume each
other, then they are semantically equivalent. In our frame-
work, this translates to two ROSA implications. We define
the confidence of an equivalence rule as the minimum of the
PCA confidences of the two implications. On DBpedia and
YAGO, we mined a total of 88 R-equivalence rules. The top
3 by PCA confidence are:

Y:directed ⇔ D:director (98%)

Y:wroteMusicFor ⇔ D:musicBy (97%)

Y:isCitizenOf ⇔ D:nationality (96%)

C-subsumption. A C-subsumption is a rule of the form

type(x,C) ⇒ type’ (x,C′)

where type is the rdf:type relationship in one KB, and type’
is the rdf:type relationship in the other KB. If all instances
of class C are also instances of class C′, then C′ subsumes
C, i.e. rdfs:subClassOf (C, C′). Class alignment is a crucial
task in ontology integration, because instance information
frequently constitutes a significant part of the contents of
any ontology. As we did for R-subsumption rules, we used
AMIE to align the instance data of YAGO and DBpedia.
We show the top 3 alignments (from a total of 59) where
the inverse implication holds with low confidence.

Y:type(x,Y:Site) ⇒ D:type(x,D:PopulatedPlace) (97%)

Y:type(x,Y:Site) ⇒ D:type(x,D:Settlement) (95%)

D:type(x,D:Athlete) ⇒ Y:type(x,Y:Person) (91%)

C-equivalence patterns follow immediately by combining C-
subsumption rules with their corresponding inverse implica-
tions.
More complex patterns. Rules with constants or with
more than 2 atoms increase the size of the search space
drastically. As a consequence, rule mining finds many more
rules. Some of the rules are soft rules. These do not express
an a priori alignment, but rather a correlation that happens
to be in the data. The rules can still be of use for reason-
ing [4], but are of more contingent nature. The following
patterns all produce some soft rules with high PCA confi-
dence. Therefore, we show as examples some handpicked
interesting rules from the results. Our goal is to show that
some quite complex alignments do exist between the KBs,
even if we cannot identify them automatically yet.
2-Hops subsumption. A KB can express a relationship
between two entities by passing through an intermediate en-
tity (a blank node for example), while another KB expresses
the same relationship by a single fact. This structural dif-
ference between two KBs can be captured by 2-hops sub-
sumption rules of the form

r1(x, y), r2(y, z) ⇒ r′(x, z)

3We look only at R-subsumptions A ⇒ B whose inverse
B ⇒ A has a low PCA confidence, because otherwise the
subsumption is an R-equivalence.

For instance, in IMBb, the attribute country-of-birth points
to the name of the country, while in YAGO it points to
the country entity, which has a label attribute. By running
AMIE on YAGO and IMDb, we mined the ROSA rule

Y:wasBornIn(x, y),Y:label(y, z) ⇒ I:bornIn(x, z) (37%)

Some of the top 2-hops subsumption alignments found by
AMIE between YAGO and Freebase are soft rules:

Y:married(x, y),Y:child(y, z) ⇒ F:children(x, z) (73%)

Triangle Alignments. The case where the body atoms
of a 2-hops subsumption have the same relation is partic-
ularly interesting, because it can capture sibling relation-
ships, co-author links and other relationships that denote
co-participation. We call such rules triangle alignments. As
an example, consider the following rule that we mined on
YAGO and Freebase:

Y:child(x, y),Y:child(x, z) ⇒ F:sibling(y, z) (37%)

Specific R-subsumption. An R-subsumption may be-
come more specific by adding an attribute-value constraint
to one of the arguments in the body of the rule. The follow-
ing example was extracted from YAGO and Freebase:

Y:graduated(x, y),Y:type(y,Univ.) ⇒ F:institution(x, y) (98%)

The corresponding R-subsumption, Y:graduated(x, y) ⇒
F:institution(x, y), has a PCA confidence of only 88%. In
this example, the type constraint strengthened the precision
of the mapping by also aligning the ranges of the relations.
Attribute-Value Translation. Different conventions for
entity labels, as well as missing links between the literal
values across KBs, require ROSA rules of the form

r(x, V ) ⇒ r′(x, V ′)

We call these rules attribute-value translations, because they
provide a bridge between the semantics of predicate-object
combinations across KBs. By allowing constants in the ar-
guments of the rules, AMIE mined translations between gen-
ders in YAGO and IMDb (99% confidence), as they are rep-
resented as URIs in YAGO and as literals in the IMDb crawl.

We also found translations between places in YAGO and
their corresponding timezones in DBpedia, such as:

Y:locatedIn(x, Italy) ⇒ D:timeZone(x,CET) (100%)

Y:locatedIn(x,California) ⇒ D:timeZone(x,PST) (100%)

2-Value Translation. Differences in the verbosity of two
ontologies can be captured by ROSA rules of the form

r1(x, V1), r2(x, V2) ⇒ r′(x, V ′)

This rule says that a fact about an entity in K1 is mapped to
two different facts about the same entity in K2. An example
mined from YAGO and Freebase (with 55% confidence) is:

F:type(x,Royal),F:gender(x,female) ⇒ Y:type(y,Princess)

We envision that adding functions to the translation rules
could address even more schema incompatibilities. For in-
stance, the following rule could translate between a KB that
concatenates first name and last name, and a KB that does
not:

firstName(x, y), lastName(x, z) ⇒ name(x, concatenate(y, z))



5. CONCLUSION
In this paper, we have argued that complex schema align-

ments are needed if we want to knit the Semantic Web to-
gether. To illustrate this, we have defined one class of such
alignments, the ROSA rules. We have shown that these
are easy to mine, and that they already comprise some in-
teresting types of alignments. Preliminary experiments on
real large-scale KBs have shown that there exist quite some
alignments that go beyond simple one-to-one mappings.

However, many challenges remain: Incompleteness in the
KBs means that it is challenging to make the distinction be-
tween subsumption semantics and equivalence semantics, or
to distinguish between soft and hard ROSA rules. This is
particularly true for complex patterns like 2-hop subsump-
tion or value translations, where the large number of soft
correlations means that we cannot yet identify meaningful
mappings automatically. Moreover, ROSA rules are just
one particular possibility of schema alignment. We envi-
sion that future work will describe and discover these (and
other) alignments in a more systematic fashion, thus finally
enabling a full interoperability between between the KBs of
the Semantic Web.
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