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ABSTRACT
Knowledge-sharing communities like Wikipedia and auto-
mated extraction methods like those of DBpedia enable the
construction of large machine-processible knowledge bases
with relational facts about entities. These endeavors lack
multimodal data like photos and videos of people and places.
While photos of famous entities are abundant on the Inter-
net, they are much harder to retrieve for less popular entities
such as notable computer scientists or regionally interesting
churches. Querying the entity names in image search en-
gines yields large candidate lists, but they often have low
precision and unsatisfactory recall.
Our goal is to populate a knowledge base with photos of

named entities, with high precision, high recall, and diver-
sity of photos for a given entity. We harness relational facts
about entities for generating expanded queries to retrieve
different candidate lists from image search engines. We use
a weighted voting method to determine better rankings of an
entity’s photos. Appropriate weights are dependent on the
type of entity (e.g., scientist vs. politician) and automati-
cally computed from a small set of training entities. We also
exploit visual similarity measures based on SIFT features,
for higher diversity in the final rankings. Our experiments
with photos of persons and landmarks show significant im-
provements of ranking measures like MAP and NDCG, and
also for diversity-aware ranking.
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1. INTRODUCTION

1.1 Motivation
Advances in automatic information extraction and the

proliferation of large knowledge-sharing communities like
Wikipedia have enabled the construction of large general-
purpose knowledge bases with an entity-relationship or
RDF-like data model. Projects along these lines include DB-
pedia [3], Freebase [1], TrueKnowledge [2], TextRunner [4],
or YAGO [24]. These are rich sources of facts about people,
locations, organizations, sports events, etc. For example,
they would know the Alma Mater of scientists and awards
that they have won, spouses and “romantic affairs” of en-
tertainment stars, or the location and architect of culturally
important buildings (churches, temples, museums, castles,
etc.). However, the knowledge bases are still fairly sparse
in terms of multimodal information about entities, like pho-
tos, videos, audio recordings, etc. Even Wikipedia does not
know how Moshe Vardi (professor at Rice University) or the
Five-Finger Tower in Darmstadt (a German city) look like.

On the other hand, photos and videos of people and land-
marks have become abundant on the Internet. Web 2.0 por-
tals such as Flickr and Youtube even offer extensive tags
and metadata (e.g., GPS coordinates), but these are often
noisy or incomplete, and sometimes wrong. Recently, vari-
ous projects such as [21, 26, 30, 22, 31, 10, 8, 32] have started
analytic mining of photo-tag or photo-GPS co-occurrences
in order to improve the semantic organization of such data
collections. However, with the exception of ImageNet [10]
discussed below, none of them addresses the integration of
photos into knowledge bases with formalized notions of en-
tities, types, and facts.

Our goal in the work described in this paper is to popu-
late an existing knowledge base with photos of people and
landmarks. We use YAGO [25], which contains about 2 mil-
lion typed entities, including all people, buildings, moun-
tains, lakes, etc. from Wikipedia, and about 20 million re-
lational facts like birthdates, awards, etc. In principle, it
is not difficult to find photos of people or monuments using
search engines like images.google.com or images.bing.com
or searching flickr.com by tags. This works well for en-
tertainment stars, important politicians, and tourist attrac-
tions. However, it remains difficult to find photos for entities
in the ”long tail”: lesser known but still notable people and
places. Typically, a direct query with the entity name re-
turns many photos with good results in the top ranks but
quickly degrading precision with decreasing ranks. For a
human user who knows the entity of interest, it may be



good enough if the top 10 or top 20 contain a handful of
correct photos, but this is insufficient for automatically en-
hancing a high-quality knowledge base. Moreover, even for
more prominent targets, it is desirable to have a diverse col-
lection of photos (e.g., from different time periods), some
of which might be rare and difficult to locate using search
engines. In some cases, the ambiguity of the entity name
dilutes the search engine results. An example is the Berke-
ley professor and former ACM president David Patterson.
None of the top-20 Google results (as of July 2009) show
him; most show the governor of New York (whose name is
actually David Paterson). The top-20 Bing results include
several photos of our target entity, but it is difficult even
for a human and extremely difficult for the computer to dis-
criminate these from the photos of other people (with the
same or very similar name).
None of the methods in the photo-tag-mining projects

mentioned above can solve this problem. The closest project
to our work is ImageNet [10], which enhances the WordNet
thesaurus [11] with photos. In contrast to our goal, however,
the task there is to find representative photos of seman-
tic classes such as towers, churches, mosques, cats, tigers,
etc. There is no consideration on photos of individual enti-
ties such as the Five-Finger tower in Darmstadt, the Blue
Mosque in Istanbul, etc. Moreover, a small number of good
photos is considered sufficient, whereas we aim at finding a
large number of diverse photos for the same named entity.

1.2 Problem Statement
We consider named entities e of different types t, for

example, scientists, politicians, buildings, mountains, etc.
We assume that, for each type t, we have specific relations
Ri(subject e, object o) (i = 1..m(t)) populated in the knowl-
edge base. These could be, for example, the affiliation, Alma
Mater, and scientific field for scientists; the geographic areas
(country, state, city) of activities and political positions held
by politicians; the country and height of mountains and the
person who climbed it first; and so on. We can use these
facts to generate specific queries that we can send to image
search engines or other services on the Internet. Finally, we
assume that we have training data for each entity type t:
examples of photos and their URLs that correctly show a
given entity, for a small set of entities.
Our goal is to automatically gather photos for other, pre-

viously unseen, entities of known types. We focus on people
and places who are notable but not extremely prominent,
or have ambiguous names. We aim at both high precision
and high recall, so that quality measures like MAP (mean
average precision) or NDCG (normalized discounted cumu-
lative gain) are maximized across a large set of results for
the same entity. Note that the target entities are disjoint
from the training entities. We only need to know the type-
specific relations (and any information learned about them).
In fact, we would typically train with popular entities, but
apply our method to less known ones which may not even
have a photo in Wikipedia.

1.3 Contribution
Our approach constructs a set of expanded queries for

each entity of interest, where the expansions are automat-
ically derived from already known facts in the knowledge
base. For example, to find photos of the Berkeley professor
David Patterson, we would use the hasAffiliation or worksIn-

Field relations of YAGO and search for “David Patterson
Berkeley” or “David Patterson computer science”. These ex-
panded queries are then posed to image search engines. The
collected results are ranked based on aggregating the results
from different query expansions, with specific weights for
different expansions. The weights are automatically learned
from training samples. This approach can be seen as a form
of (probabilistic) consistency checking of search engine re-
sults, as reflected in the overlap of the results for different
expansions. In addition, we consider image-content simi-
larities among different result candidates, using SIFT and
MPEG-7 features.

The novel contribution by this paper has the following
salient properties: 1) We show how to harness relational
facts about named entities for gathering diverse photos of
the entities with high precision and high recall. 2) We de-
velop robust methods for estimating model parameters, so
that our approach is applicable to a wide variety of different
entity types. 3) We integrate image-similarity computations
for improving the final ranking of result photos. 4) Our ex-
perimental studies demonstrate the practical viability of our
approach.

The rest of the paper is organized as follows. Section 2
briefly reviews related work. Section 3 presents our scoring
model and its training and ranking algorithms. Section 4
discusses how image similarity measures can be harnessed
for an alternative ranking with improved diversity. Section
5 presents our prototype implementation. Section 6 demon-
strates our experimental results.

2. RELATED WORK
Photo retrieval by visual similarity has been investigated

very extensively; see [9] for a recent survey. Internet image
search engines, on the other hand, index and retrieve photos
primarily by keywords and other non-visual context that
surround a photo on a Web page [16]. But they do provide
options for smart processing like re-ranking obtained results
by visual similarity or filtering them by photo types (e.g.,
person faces). Also, it seems that they employ models or
heuristics for diversifying the top-ranked results, but details
are not public.

Recently, a number of projects have focused on enhancing
the semantic organization of image data collections: Tiny-
Image [26], LabelMe[22], the work by Yao et. al. [31], and
ImageNet [10]. TinyImage [26] is a dataset of low resolu-
tion images collected from the Internet by sending all nouns
in WordNet[11] as queries to several image search engines.
It uses the hypernymy relation of WordNet in conjunction
with nearest-neighbor methods to automatically classify the
retrieved images. LabelMe [22] is a large collection of im-
ages with ground truth labels to be used for object detection
and recognition research. It aims at object class recogni-
tion (e.g., bridge) as opposed to instance recognition (e.g.,
Golden Gate Bridge), and learning about objects embedded
in a scene (incl. bounding boxes and polygons). Similarly to
LabelMe, Yao et. al. [31] have developed a labeling frame-
work with rich representations for scene-level geometry, ob-
ject segmentations and decompositions, and local geometric
features.

ImageNet [10] is the closest project to our work. Unlike
the projects sketched above, ImageNet addresses the prob-
lem of integrating photos into a knowledge base with formal-
ized entities and types, namely, WordNet. It builds a large-



scale labeled image collection based on the taxonomic hierar-
chy of WordNet. To this end, ImageNet exploits the hyper-
nymy relation between entity classes and nearest-neighbor-
based classification with visual features. While ImageNet
focuses on finding photos of semantic classes such as towers,
churches, etc., our work in this paper addresses photos of in-
dividual entities such as the Five-Finger tower in Darmstadt,
the Blue Mosque in Istanbul, etc. Moreover, ImageNet con-
siders a small number of good photos as sufficient, whereas
we aim at finding a large number of diverse photos for the
same named entity.
Other projects [8, 21, 30, 32] pursue the dual aim of min-

ing text and visual information to learn tagging-like prop-
erties of images. Crandall et. al. [8] present techniques to
automatically identify places shown on photos, using corre-
lations between photos with GPS metadata and tagged but
GPS-less photos on flickr. Quack et. al. [21] propose an
unsupervised-learning approach to structure, interpret, and
annotate large photo collections. Yagnik et. al. [30] present
a learning paradigm to address the problem of learning face
models for people names. Similarly, Zhao et. al. [32] pro-
pose a system that can learn and recognize faces by com-
bining signals from weakly labeled text in image and video
corpora.
Some systems that focus on photo management and re-

trieval make use of ontologies [13, 20]. Gupta et. al. [13]
propose Medialife, a system that captures semantic relations
between the concepts of images. The goal is to support life
chronicle queries such as create an album of 20 photos of my
son’s graduation party ordered by time. To achieve this task,
Medialife builds a model upon a personal ontology to create
and incrementally update an information association graph
over a collection of photos and annotations. Popescu et. al.
[20] propose RetrievOnto, an ontology-based IR system that
supports both keyword-based and query-by-example search.
The ontology is used to reformulate queries and to structure
the resulting images. It is also used to perform content-based
search in different subsets of the conceptual hierarchy.
All of the above projects exploit some form of semantic

information about images to provide automatic annotation
tools, and improve data retrieval and the organization of
photo collections. However, none of them pursues the inte-
gration of photos of individual entities into knowledge bases
with formal notions of typed entities and relational facts.
Our unique goal in this paper is to automatically populate
such a knowledge base with diverse sets of photos of different
types of people and landmarks.

3. SCORING MODEL

3.1 Ensemble Voting Model
The easiest way of obtaining photos of a given entity (per-

son or landmark) is by using the entity’s name to issue a
query to an image search engine. However, the results with
this simple approach are often unsatisfactory. Even if good
results appear on some of the top ranks, the entire rank-
ing, say the top-100 results, is noisy and contains a sig-
nificant number of incorrect photos or near-duplicates (al-
though more and better photos exist at much lower ranks).
We exploit the knowledge base to issue a variety of mean-
ingful query expansions, each separately, and then analyze
the results and rankings of different queries for agreement.
This can be seen as an ensemble voting method to arrive

at a consistent ranking of the entire pool of retrieved photos.
The ensemble consists of different queries q1(e), q2(e), . . . ,
qm(e) about the entities of interest. Query q1(e) always is
just the common name of the entity; all other queries are
generated from specific relations that the knowledge base
has for the given entity type t(e). For example, we dis-
criminate people into types like scientists, actors, pop mu-
sicians, politicians, etc. Interesting relations for generating
queries are birthdate, affiliation, Alma Mater, scientific field
or genre, awards, contributions (publications, movies, songs
and albums, etc.), and so on. Different entity types should
favor different relations even if they were applicable uni-
formly, for reasons explained below.

In principle, the queries q2 through qm would only yield
subsets of the results that we obtain from the simple name
query q1. However, the results exhibit significant differences
in their rankings. As search engines often return hundred
thousands of results, we can practically access only top-
ranked subsets of the query results, so that virtually no
two queries show any subset-superset relationship. There-
fore, photos returned by (the top-100 or top-1000 of) many
queries for the same entity are more likely to be correct
matches.

Each query expansion assigns high ranks to photos from
Web pages where the query keywords appear prominently
and close to the photos. Although this is an oversimplified
view of how modern image search engines work, it reflects
the essence of their ranking criteria. Thus, accepting a photo
if and only if multiple queries agree on the photo being rele-
vant can improve the precision of the overall result set. Each
query“votes” for a photo, and receiving many votes indicates
a better result.

Binary Voting. More formally, with each photo p in
the union of the result sets (actually the top-k prefixes of
the result lists that we retrieve) of queries qi(e) (i = 1..m)
for entity e, we associate indicator variables Xi(p) (p =
1..∣results∣) set to 1 if p occurs in the result of query qi(e)
and 0 otherwise. Then the voting score of a photo p with
regard to entity e is computed by the aggregation:

s(p, e) =
∑

i=1..m

Xi(p)

On first glance, it seems that this method merely helps im-
proving the precision of the overall results by simple ensem-
ble voting. However, it can also improve recall and diversity
of the results for a given entity. The reason is that we are
not able to retrieve the complete result for a given qi(e)
from any of the big search engines. Thus, running different
queries whose results have very different ranks in different
queries allows us to fetch a wider variety of photos at afford-
able cost.

Weighted Voting. Not all of the possible query expan-
sions qi(e) have good yield. Some are overly specific and
thus return too few results. An example would be adding
the exact birthday of a person to the person’s name; there
are not that many biographies on the Web that have this
information and at the same time contain a good photo.
In contrast, query expansions with the birth year are often
helpful in disambiguating an entity (e.g., Jim Gray or David
Patterson whose names are fairly common). Other query ex-
pansions are too unspecific, lose focus, and are susceptible
to topic drifting. For example, expanding a musician’s name
with names of songs or albums may return photos of the al-



bum cover. On the positive side, however, many expansions
help in focusing the photo search. For example, searching
for computer scientists who wrote popular text books sim-
ply by person names often returns book covers or figures
from a book; in some cases search engines return photos of
collaborators or former students. These problems may be
overcome by query expansions that add the affiliation, an
important award, or similarly salient facts about the person
of interest.
The variability in the precision and recall of different

query expansions is taken care off by giving different weights
wi to the various queries qi(e) in our voting scheme. It is
straightforward to extend our approach into a weighted vot-
ing score:

s(p, e) =
∑

i=1..m

wiXi(p)

The weights in this scheme could be the same across all
entity types or specifically chosen for each type. The latter
is more powerful and indeed advantageous for our scenarios.
For example, while the birth year is a beneficial expansion
for scientists, it is not nearly that helpful for musicians.
Parameter Estimation. The proper weights for a given

entity type can be learned from explicitly labeled training
data. We assume that we have at least a few correct photos
of a few entities, for each type. These may be celebrities or
famous landmarks where photos are ample (incl. photos in
Wikipedia); the test cases for our calibrated model would
then be less prominent entities. We estimate the query-
specific weights wi for a set T of training entities of type
t, each with a ground-truth set of correct photos P (e) and
query results Qi(e) for query expansion qi(e), by:

wi =
1

∣T ∣

∑

e∈T

∣Qi(e) ∩ P (e)∣

∣P (e)∣

The weights wi do not reflect the true fraction of correct
photos retrieved by query qi because we do not have ground-
truth labels for all photos in the result set of qi. The wi

values reflect the relative recall of the various query expan-
sions.
Rank-based Voting. A final piece of information that

we can exploit in the scoring function is the fact that In-
ternet search engines return ranked lists rather than result
sets. Photos at higher ranks are usually better matches,
with a higher likelihood of really showing the entity of inter-
est. This is a reasonable postulate regardless of our treat-
ing search engines as black boxes. It suggests moving from
binary voting to rank-based voting, with the same query-
specific weighting. Let ri(p) denote the rank of photo p in
the result of query qi. These are numbers 1, 2, etc., with
low numbers denoting high ranks. The score of p should
thus decrease with the value of ri(p), which leads to rank-
ings based on the following scoring formula for result pools
gathered by retrieving the top k results of each qi:

s(p, e) =
∑

i=1..m

wi

k + 1− ri(p)

k

3.2 Logistic Regression Model
Instead of the above direct estimation of model parame-

ters, we could alternatively model our problem as a classi-
fication task for recognizing correct photos or as a regres-
sion problem for scoring the retrieved results, and then use

Bayesian arguments for parameter learning. Consider the
following binary random variables:
Y = a given photo is a true photo of target entity e

Xi = a given photo is retrieved by the query qi(e)
and the integer-valued random variable:
Ri = a given photo is returned at rank Ri by query qi. We

can devise a Bayesian standard model that reasons about the
probability P [Y ∣X1 . . . Xm] or, analogously, a rank-based
model using Ri instead of Xi variables. If we assume the
maximum-entropy principle for unobserved data, this leads
to a logistic-regression model of the following form [19]:

P [Y ∣X1 . . . Xm] =
exp(

∑

i=1..m wiXi)

1 + exp(
∑

i=1..m wiXi)

where wi are feature weights that are learned by maximiz-
ing the (regularized) log-likelihood of the training data using
Quasi-Newton optimization methods. A new test photo is
accepted by a logistic-regression classifier if its in-class prob-
ability exceeds the out-of-class probability. An analogous
model can be learned with rank-based features Ri.

4. RANKING WITH VISUAL SIMILARITY
Query result lists for entities may contain many dupli-

cate or near-duplicate photos. Since one of the goals in this
work is to find rankings of diverse images, we need a way
to capture similarity or identity of photos. Merely compar-
ing result images by their URI’s does sometimes not give
satisfactory results. There are many identical photos for
a given entity with different URI’s. Moreoever, there are
many near-duplicates that have, for example, different sizes,
slightly different illuminations, or are simply cropped. As
a remedy, we exploit visual similarities in order to remove
near-duplicates and produce a better diversity-aware rank-
ing of the images.

We can use visual similarities in two different steps of
the scoring model described in Section 3: in the parameter
estimation step, and in the final result ranking step.

Parameter estimation. We make use of photo similari-
ties as follows. As in Section 3, assume that we estimate
query-specific weights wi for a set T of training entities
of type t, each with a ground-truth set of correct photos
P (e) and query results Qi(e) for query expansion qi(e). The
weights wi can be alternatively estimated by checking how
many of the images in Qi(e) are similar to the images of the
ground-truth set P (e). More formally:

wi =
1

∣T ∣

∑

e∈T

∑

p∈P (e)

∑

x∈Qi(e)
sim(x, p)

∣P (e)∣

where sim(x, p) is a binary variable set to 1 if x and p are
similar images in the sense described below and 0 otherwise.
This way we boost the weights for “good” relations, which
find photos that are similar to those in the ground-truth set.

Final ranking. With these similarity-enhanced weights,
we can compute the ranked results for a new entity as out-
lined in Section 3. But we can further enhance this rank-
ing into a potentially better one by the following proce-
dure. For each photo p in the union of result lists of queries
qi(e)(i = 1..m) for entity e we compute its voting score by
the aggregation:

s(p, e) =
∑

i=1..m

wi

⎛

⎝

∑

x∈Qi(e)

sim(x, p)
k + 1− ri(x)

k

⎞

⎠



where k is the number of results of qi(e) and ri(x) is the
rank of photo x in qi(e)’s result list. This way we give high
ranks to those images that have many near-duplicates in the
result lists across all queries. In fact, this happens often for
the entities that are notable but not famous. They have very
few photos and the result lists of their queries have many
photos with different URI’s but very similar content.
Visual Features. We estimate visual similarities of pho-

tos using SIFT-based feature descriptors [18]. The SIFT
feature descriptors are specific for each image and are based
on particular points of interest in the image. The descriptors
are known to be invariant under affine transformations and
also robust to changes in the illumination. After estimating
the feature descriptors for each image p in the union of result
lists of queries qi(e)(i = 1..m) for each entity e, we need to
check if two images are similar. We do this by performing
the following steps. For every two images we find the nearest
neighbor matchings between the two sets of feature descrip-
tors. We use kd-Trees [6] and a Best-Bin-First algorithm
[5] for finding approximate nearest neighbors. Having the
feature correspondences, we apply RANdom SAmple Con-
sensus (RANSAC) [12] to find the best affine transformation
of the two images. With RANSAC we geometrically verify
if the images are indeed near-duplicates and hence obtain
higher precision in the results.
The computations described above are expensive. So to

reduce their costs, we perform a filtering step beforehand, by
using MPEG-7 global feature descriptors [23]. We use Edge-
Histogram and Scalable-Color descriptors to identify those
images that have high differences in these two descriptions,
and thus save SIFT-based comparisons between clearly dis-
similar photos.

5. IMPLEMENTATION
We have implemented the presented scoring models in a

Java-based prototype system. The overall system archite-
ture is illustrated in Figure 1. The system consists of five
major components:

∙ The query generator obtains relational facts about en-
tities from the knowledge base and generates keyword
queries from them. Queries always contain the original
entity name as well.

∙ The photo search component invokes queries on dif-
ferent photo search engines and retrieves the top-100
results for each query.

∙ The parameter estimation uses the results for the train-
ing entities to compute best suitable weights for the
voting model or for the logistic-regression classifier.
For the latter we use the ridge logistic regression pro-
vided by the WEKA toolkit [29].

∙ The result ranking applies the scoring model in order
to rank the results for new entities. For the logistic-
regression model, the regression function values are
used for ranking.

∙ As an optional component, the visual similarity test-
ing can be applied to two photos for near-duplicate
detection, or to an entire set of photos. In the latter
case, the photos are grouped into equivalence classes of
near-duplicates (see Section 4). For visual similarity,
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Figure 1: System architecture

we have used MPEG-7 and SIFT features. The extrac-
tion procedures for these features are implemented by
the Lire [17] and IVT[14] software libraries.

At training time, the query generator invokes photo search
to retrieve photos of the training entities, and then uses the
results for parameter estimation. Optionally, the retrieved
photos are grouped by the photo similarity testing, which re-
sults in different parameter values for the scoring model. At
harvesting time, the query generator and photo search work
the same way, but for new, previously unseen, entities. The
retrieved photos are fed into the result ranking, which uses
the parameters previously learned from the training entities.
The ranking can optionally use photo similarity testing for
grouping near-duplicates and showing only per-group repre-
sentatives to the user. This aims to enhance the diversity
of the final results. Finally, the best photos gathered this
way are added to the knowledge base, along with informa-
tion about their provenance and confidence (based on our
scoring model).

6. EXPERIMENTS

6.1 Setup
We evaluated the scoring models for normal ranking (Sec-

tion 3) and diversity-aware ranking with visual similarity
(Section 4), using binary relevance assessment on a set of
result rankings. We used four classes of entities: scientist,
politician, religious building, and mountain. Each class con-
tains 15 training entities and 10 test entities (disjoint from
the training set). Each of the training entities has between
10 and 100 hand-selected photos, depending on whether the
entity is highly notable or not so notable. To generate the
queries for each entity we use relational facts specific for
each class. Table 1 lists a few test entities and a subset of
their relational facts.

For each test entity we posed the generated queries to
Google and Bing for the people classes and to Google and
Flickr for the landmark classes. We collected the top 100
from each result list, and applied our scoring models. We
showed the entire pool of results to human judges for rele-
vance assessment. The judges considered a photo as relevant
if they could clearly recognize the target entity, possibly af-
ter reading the Web page where the image was found. For



Google Bing/Flickr
Original Voting Regression Original Voting Regression

MAP 0.6200 0.7181 0.6004 0.6144 0.6837 0.5450
scientist NDCG 0.8181 0.9141 0.8211 0.8285 0.8909 0.8182

BPREF 0.6002 0.7553 0.7039 0.6642 0.7683 0.6572

MAP 0.7885 0.8011 0.7190 0.7302 0.7586 0.6739
politician NDCG 0.9376 0.9453 0.9064 0.9138 0.9291 0.8786

BPREF 0.7373 0.7804 0.7062 0.7469 0.8135 0.7489

MAP 0.7284 0.7721 0.6958 0.7800 0.8389 0.8000
building NDCG 0.8669 0.9069 0.8519 0.8750 0.9073 0.8909

BPREF 0.6274 0.7455 0.6498 0.6597 0.7405 0.6624

MAP 0.8053 0.8303 0.8204 0.8571 0.8466 0.8053
mountain NDCG 0.9308 0.9562 0.9480 0.9637 0.9608 0.9485

BPREF 0.6696 0.7101 0.6885 0.7266 0.7120 0.6859

Table 2: Evaluation measures for normal result rankings.

Entity Relational Facts

class scientist

Alfred Louis field: Mathematics
institution: Saarland University

David Patterson known for: RISC, RAID
institution: University of CA, Berkeley
awards: ACM IEEE Eckert-Mauchly
Award

Niklaus Wirth Alma Mater: ETH Zürich
awards: Turing Award
known for: Pascal, Algol W, etc.

class politician

Jon Huntsman political party: Republican
position: Governor of Utah, etc.

Ignatz Bubis birthplace: Breslau; death year: 1999
profession: Jewish leader

Niels Annen political party: SPD
position: Jusos, etc.

class religious building

Wat Arun location: Bangkok
known for: Buddhist temple
names: Temple of the Dawn, etc.

Einsiedeln Abbey known for: Benedictine monastery
location: Switzerland, etc.

Boyana Church location: Sofia
known for: Boyana Master, etc.

class mountain

Siula Grande location: Peru; height: 6344
range: Cordillera Huayhuash

Mount Ararat names: Mountain of Pain
location: Dogubayazit
location: Agri Province, Turkey

Dreieckhorn range: Bernese Alps; height: 3811
location: Switzerland

Table 1: Examples for entities and relational facts.

the people classes, not only personal photos were accepted,
but also when the person could be recognized in a group
with others. For the landmark classes the judges accepted
images that show the place including unusual perspectives,
but disgarded those images that did not show anything spe-
cific for the place and could have been taken in many other
places (e.g., a close-up of a snow patch on a mountain).
For each entity type and search engine we compare three

methods: 1) the original search engine rankings, 2) our vot-
ing results using rank-based weighted voting, and 3) the
rankings from the standard regression model with binary

features. We present results for two different kinds of rank-
ings: a) normal rankings and b) diversity-aware rankings
with visual similarity. For the former we considered photos
to be duplicates only by URI comparison. For the latter
we used near-duplicate grouping by visual similarity; in this
case only one representative of each cluster was shown to
the human judges.

To compare the results of the different methods, we use
three quality measures: Mean Average Precision (MAP),
Normalized Discounted Cumulative Gain (NDCG), and a
preference-based measure (bpref). The MAP measure is the
mean of the precision scores obtained at the ranks of each
relevant image, which is an interpolated approximation of
the area under the precision-recall curve. It is computed as
follows:

MAP (E) =
1

∣E∣

∣E∣
∑

j=1

1

Rj

Rj
∑

k=1

precision@(rankjk)

where E is the set of test entities ej , Rj is the number of
relevant photos {p1, . . . , pRj

} for ej , and rankjk is the rank
of the ktℎ relevant photo. Additionally, we compute NDCG
to measure the usefulness (gain) of images based on their
(geometrically weighted) positions in the result list. It is
computed as follows:

NDCG(E, k) =
1

∣E∣

∣E∣
∑

j=1

Zkj

k
∑

i=1

2rel(j,i) − 1

log2(1 + i)

where Zkj is a normalization factor calculated to make
NDCG at k equal to 1 in case of perfect ranking, and rel(j, i)
is the relevance score of an image at rank i for entity ej . In
our setting, relevance scores rel(j, i) were binary.

Recall that our use of search engine queries can practically
retrieve only a small subset of the full result sets, the top 100
in our setup. By inspecting only the top k results for each
query, it is impossible to know whether a relevant image
has not been found at all or simply because the rank of
the image is higher than k. And some sophisticated queries
may return less than k results. This situation is rectified as
follows (using TREC-style practice). Consider m methods
(runs) under comparison. Each method returns a ranked
list, truncated at rank k. Suppose we have a total of N

distinct results from all the result lists (N ≤ k×m)). From
the N results, the human assessors give us a set of R relevant
images. The next step is to pad each result list with the



Google Bing/Flickr
Original Voting Regression Original Voting Regression

MAP 0.5605 0.6318 0.5428 0.5187 0.6015 0.5438
scientist NDCG 0.7943 0.8778 0.7989 0.7751 0.8619 0.8287

BPREF 0.6327 0.8086 0.8061 0.7118 0.7971 0.7630

MAP 0.7271 0.7679 0.6615 0.6564 0.7210 0.6258
politician NDCG 0.9151 0.9358 0.8703 0.8858 0.9174 0.8603

BPREF 0.7477 0.8460 0.7933 0.7083 0.8259 0.7754

MAP 0.6650 0.7259 0.6715 0.7292 0.8222 0.7782
building NDCG 0.8453 0.8782 0.8394 0.8603 0.9041 0.8850

BPREF 0.5726 0.8085 0.7449 0.6313 0.7892 0.7322

MAP 0.7637 0.8219 0.8287 0.8235 0.8284 0.8051
mountain NDCG 0.9208 0.9540 0.9567 0.9540 0.9567 0.9494

BPREF 0.6054 0.7573 0.7691 0.6691 0.7400 0.7102

Table 3: Evaluation measures for diversity-aware result rankings.

entity name birth year field institutions political party positions

scientist 0.594/1.3 0.328/0.829 0.411/1.066 0.314/ 0.814 n/a n/a
politician 0.579/1.254 0.314/0.731 n/a n/a 0.461/0.878 0.367/0.66

Table 4: Normal weights / similarity weights for the scientist and politician classes using Google.

entity name location height range known for

building 0.598/1.448 0.514/1.222 n/a n/a 0.351/0.863
mountain 0.573/1.079 0.354/0.703 0.256/0.619 0.294/0.616 0.257/0.622

Table 5: Normal weights / similarity weights for the religious building and mountain classes using Google.

missing relevant images. For each method mj that has Rj

(Rj < R) relevant results and k results overall, we add the
remaining R − Rj relevant results on (virtual) ranks k + 1,
k+2, etc. If method mj has only k′ < k results overall, then
we consider ranks k′ + 1, k′ + 2,⋅ ⋅ ⋅ ,k as non-relevant and
add the remaining R − Rj relevant results at ranks k + 1,
k+2, etc. This way all methods are evaluated as if they had
100% recall, based on the pooled results of all methods, and
we can compute the standard MAP measure.
Note that because 1) the true recall can be much larger

than our pooled result set and 2) each method in our
setup typically returns a very small subset of the full re-
call (top-100 out of potentially many thousands of photos),
the padded result lists tend to have similar MAP values
when R >> k. For this reason, we also computed the bpref
measure which is highly correlated to MAP when complete
information is provided and more robust otherwise. For a
bounded ranked list with top k results and a total of R rel-
evant results, bpref(k) is defined as follows:

bpref(k) =
1

R

∑

r

1−
∣#n ranked ℎigℎer tℎan r∣

k +R

where the summation ranges over the ranks r of relevant
result and #n counts non-relevant results. bpref does not
depend on potential results (from the pool of all methods’
results) on ranks > k. Thus, it does not degrade as much as
MAP when R >> k.

6.2 Results
Normal Ranking. The results for normal ranking are

shown in Table 2. For all baselines Google, Bing, and Flickr,
our voting method almost always improves all three mea-

sures MAP, NDCG, and bpref. (The one exception is the
Flickr ranking for mountains; see discussion below.) We
observe that the gains vary depending on the entity type.
For example, for the scientist class, when using Google, the
MAP value increases from 0.62 to 0.7181. In contrast, for
the politician class the absolute improvement is less than 2%.
We note that bpref shows higher gains for reasons discussed
above. Similar observations hold for Bing and Flickr. The
results also show that the logistic regression model does not
perform well in the grand total. Our unusual notion of “fea-
tures” derived from noisy query results seems to be difficult
to handle by standard machine learning. However, for a few
individual entities, the regression model actually performed
best.

Tables 4 and 5 show the weights for (a subset of) different
types of relational facts that our voting method uses, based
on its parameter estimation from the training entities. Note
that the weights are not normalized (and do not need to be).
Not surprisingly, the original name tends to have the highest
weight, and there are big differences in the usefulness of the
other relations. The most useful relations were: the field for
scientists, the party for politicians, and the location for the
two landmark classes.

Diversity-Aware Ranking with Visual Similarity.
We have also applied the extended scoring model with vi-
sual similarity to the three methods Original, Voting, and
Regression. In this case, near-duplicates are clustered and
only one representative of each cluster is included in the fi-
nal result list. Table 3 shows the different measures for these
diversity-aware rankings. Similarly to the results with nor-
mal ranking, our voting method consistently improves all
three measures (now without any exceptions). On average,



Google Bing/Flickr
Original Voting Regression Original Voting Regresssion

Alfred Louis 0.0199 0.8095 0.0783 0.0849 0.7672 0.4546
scientist David Patterson 0.1300 0.5690 0.4326 0.1566 0.6846 0.7712

Emmy Noether 0.8382 0.8917 0.8472 0.9079 0.9561 0.9573

Ignatz Bubis 0.5390 0.7363 0.6378 0.6948 0.7489 0.6862
politician Jon Huntsman 0.8510 0.9516 0.9534 0.8187 0.8451 0.8517

Renate Blank 0.5069 0.5902 0.4744 0.5240 0.6646 0.6200

building Church of Christ Pantocrator 0.3012 0.6776 0.4128 0.3618 0.7789 0.5660
San Lorenzo 0.0289 0.1422 0.0689 0.0195 0.0303 0.0195

mountain Pilatus 0.4061 0.5327 0.5292 0.8794 0.8860 0.9099
Mönch 0.3092 0.6685 0.7557 0.9861 0.9958 0.8719

Table 6: Examples for MAP values of normal rankings for individual entities.

Google Bing/Flickr
Original Voting Regression Original Voting Regresssion

David Patterson 0.1054 0.4164 0.2626 0.1439 0.5512 0.5718
scientist Emmy Noether 0.5928 0.6981 0.6471 0.7482 0.8416 0.8891

William Vickrey 0.4986 0.6911 0.5848 0.5579 0.6726 0.5782

Ignatz Bubis 0.5496 0.6956 0.5626 0.5903 0.6974 0.6008
politician Stephen Crabb 0.5615 0.6178 0.4697 0.5488 0.6792 0.4421

Luisa Diogo 0.7657 0.8228 0.7863 0.7203 0.7669 0.6812

building Church of Christ Pantocrator 0.2335 0.4418 0.2647 0.3346 0.7685 0.5916
Boyana Church 0.7546 0.7817 0.7075 0.7379 0.8444 0.7997

mountain Tre Cime di Lavaredo 0.9542 0.9738 0.9884 0.8330 0.8685 0.8165
Aiguille d’Argentière 0.7871 0.7881 0.6735 0.8758 0.8953 0.8770

Table 7: Examples for MAP values of diversity-aware rankings for individual entities.

the gains over the baseline competitors were even higher here
than in the normal ranking comparison. The bpref measure
shows the largest improvements. For example, for scientists
using Google, our method improved bpref from 63% to 80%
and achieved a similar gain for politicians. For buildings, we
gained even more: from 57% to 80%; and even for the dif-
ficult mountain class, the bpref improvement is substantial
(from 60% to 75%).
But there are again major differences in the magnitude of

the improvement, depending on the entity type. Note that
the absolute values of MAP, NDCG, and bpref are slightly
lower than for normal rankings, because duplicates and near-
duplicates of good results are now discounted. Also, the rela-
tive weights of different types of relational facts are adjusted
(see Tables 4 and 5) because visual similarity is considered
for the photos of the training entities as well. For example,
the knownFor relation is additionally boosted with visual
similarity, relative to other relations such as location. In
fact, our experiments show that this leads to better results.

6.3 Discussion
Our experimental results show our voting method almost

always outperforms the native rankings of image search en-
gines, by a significant margin. Sometimes, however, the
gains are small and generally depend on the entity type or
even on the individual instance. In the following, we discuss
some of the specific strengths of our method by means of
anecdotic examples. We also point out limitations of our
approach.
Specific strengths. We are performing particularly well

for entities with ambiguous names or when an entity is very

rare in the Internet photo space. Examples are shown in
Tables 6 for normal ranking and 7 for diversity-aware rank-
ing. Figure 2 shows top-ranked result photos, with visual-
similarity clustering, for our method vs. those ranked high
by image search engines. Each block shows the top-5 clusters
(from top to bottom). Only up to 3 photos per cluster are
shown; some clusters contained many photos, others were
small.

In the scientist class, the search engines confused David
Patterson with the New York governor Paterson. This is
shown in the upper right part of Figure 2. Our voting
method’s result is not perfect either, but at least has 4 cor-
rect (groups of) photos in the top 5. William Vickrey, in the
upper left part of Figure 2, turned out to be a difficult case
because many of his photos are on content-rich Web pages
with lists of Nobel Prize winners in Economy and many pho-
tos. Here, our top-5 results are perfect, whereas the search
engine got only 3 out of 5 results right. Other difficult cases
were Emmy Noether, as search engines also returned win-
ners of an Emmy Noether Fellowship (by the German Sci-
ence Foundation, named after her), Alfred Louis, as his last
name is also a common first name. In the politicians class,
we performed particularly well on lesser known people such
as Ignatz Bubis or Renate Blank. Their names do occur of-
ten in news about parliamentary debates and other events
of this kind, but these news contain photos of other people
related to the same event.

We observed similar effects for the two landmark classes.
For example, the mountain Pilatus, shown in the lower left
part of Figure 2, turned out to be ambiguous because there
is also an aircraft model called Pilatus. For landmarks, some



individual entities were challenging due to the fact that they
are often mentioned on tourist sites that have many photos
but not for every attraction that they talk about. For ex-
ample, in the Google results for the Church of Christ Pan-
tocrator (in Nessebar, Bulgaria), shown in the lower right
part of Figure 2, 3 out of the top 5 results are wrong. They
show an icon and a relief from other churches and a simi-
lar but different church, all of which are mentioned together
on popular tourist sites about Balkan culture. In contrast,
our voting model avoided two of these bad results and thus
achieved 80% precision in the top 5 results. In general, for
entities of this difficult nature, we achieved major gains over
the baseline competitors.
Limitations. Although we aimed at entities in the “long

tail” of notable but not famous people and places, the need
for manually assessing the correctness/relevance of results
entailed that our test entities were actually a mix of still
fairly popular entities and some lesser known ones. For the
popular entities, it was virtually impossible to beat the top-
100 results of the two image search engines (unless the en-
tity name was highly ambiguous). When search engines can
choose from result sets with hundred thousands of photos,
their ranking criteria obviously work extremely well. Thus,
for famous people such as Frank Wilczek or Nelson Man-
dela we could not gain anything over Google and Bing, and
occasionally even lost slightly in precision.
Likewise, for popular places, Flickr seems like a gold stan-

dard, given its rich tagging assets, and Google also per-
formed extremely well. For example, the results for Wat
Arun or Mount St. Helens could simply not be beaten. We
realized, however, that Flickr tags are sometimes noisy; for
example, an entire photo series on a Himalaya trip was uni-
formly tagged with “Himalaya”, “India”, “Tibet”, “Everest”,
“Kailash”, etc., although it is geographically impossible to
have both Mount Everest and Mount Kailash displayed in
the same photo. Unfortunately, these wrong tags also misled
our method. In this regard, it would be interesting to use
voting across results of different search engines. The combi-
nation of results from Flickr and Google, for different query
expansions, may have the potential for overcoming this issue
with noisy tags.

7. CONCLUSION
Retrieval and ranking of photos has received great atten-

tion in the prior literature. In this paper, we viewed this
problem from the new angle of populating a knowledge base
about people and places with a large set of diverse pho-
tos. In contrast to previous work on photos of celebrities,
we aimed at a general approach for different entity types
and paid particular attention to entities in the long tail of
popularity.
For pragmatic reasons, our experiments were limited to

retrieving only the top 100 results for each query expan-
sion. Exploring many thousands of per-query results may
be worthwhile in order to find rare photos, and could also
add to the diversity-aware rankings with visual similarity.
On the other hand, it does pose efficiency and scalability
challenges. For exotic entities - local politicians, mountains
off the beaten path, or cultural landmarks of regional inter-
est -, the relational facts that we build on also tend to include
some equally rare details. To overcome this issue, it may be
interesting to generalize our model to allow instance-specific
weights instead of weights on a per-entity-type basis. We

are currently investigating these potential enhancements of
our approach.
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