
Language-model-based Ranking for Queries on
RDF-Graphs

Shady Elbassuoni
Max-Planck Institute for

Informatics
Saarbrücken, Germany

elbass@mpii.de

Maya Ramanath
Max-Planck Institute for

Informatics
Saarbrücken, Germany
ramanath@mpii.de

Ralf Schenkel
Max-Planck Institute for

Informatics
Saarbrücken, Germany
schenkel@mpii.de

Marcin Sydow
∗

Polish-Japanese Institute of Information Technology
Warsaw, Poland

msyd@pjwstk.edu.pl

Gerhard Weikum
Max-Planck Institute for

Informatics
Saarbrücken, Germany
weikum@mpii.de

ABSTRACT

The success of knowledge-sharing communities like Wikipedia and
the advances in automatic information extraction from textual and
Web sources have made it possible to build large “knowledge repos-
itories” such as DBpedia, Freebase, and YAGO. These collections
can be viewed as graphs of entities and relationships (ER graphs)
and can be represented as a set of subject-property-object (SPO)
triples in the Semantic-Web data model RDF. Queries can be ex-
pressed in the W3C-endorsed SPARQL language or by similarly
designed graph-pattern search. However, exact-match query se-
mantics often fall short of satisfying the users’ needs by returning
too many or too few results. Therefore, IR-style ranking models
are crucially needed.

In this paper, we propose a language-model-based approach to
ranking the results of exact, relaxed and keyword-augmented graph-
pattern queries over RDF graphs such as ER graphs. Our method
estimates a query model and a set of result-graph models and ranks
results based on their Kullback-Leibler divergence with respect to
the query model. We demonstrate the effectiveness of our ranking
model by a comprehensive user study.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—retrieval models, search process

General Terms

Languages, Design, Experimentation

∗Work performed when the author was visiting the Max-Planck
Institute for Informatics.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

Keywords

entity, language, model, ranking, rdf, relationship, search, semantic

1. INTRODUCTION
Building entity-relationship (ER) graphs has received consider-

able attention in the recent database, IR, and WWW literature. For
example, information-extraction techniques [10, 28] have been suc-
cessfully applied to textual as well as semi-structured Web sources
such as Wikipedia, to build large-scale “knowledge repositories”
such as DBpedia [3], Freebase [12], YAGO [31], and also community-
specific collections such as DBLife [9] or Libra [25]. These repos-
itories typically contain entities such as people, locations, movies,
companies, conferences, etc. and the relationships between them
such as bornIn, actedIn, hasGenre, isCEOof, isPCmemberOf, and so
on. Such data conceptually forms a large graph with nodes corre-
sponding to (typed) entities and edges denoting (typed and possibly
weighted) relationships, and it can be conveniently represented in
the form of subject-property-object (SPO) triples of the Semantic-
Web data model RDF [27]. When triples are extracted from Web-
pages, they can be associated with a variety of weights, including,
extraction confidence, “witness” count (the number of times the
triple was seen in the corpus), entity extraction confidence, etc.

Similar kinds of ER graphs arise in Web 2.0 settings, for ex-
ample, in social-tagging communities such as librarything.
com. Here RDF is again a convenient way of representing the
wealth and diversity of data items such as user groups, friendships,
annotations, ratings, etc. In contrast to traditional databases, there
is not necessarily a prescriptive schema and the data providers –
humans – strongly prefer a relaxed pay-as-you-go approach. Over-
all, RDF-style ER graphs nicely capture the entire spectrum from
loose collections of data items to curated databases. Searching
these kinds of data sources enables capturing underlying semantics
of the data; a task often difficult to achieve with traditional Web
Search.

As an example, consider a snapshot of a movies ER graph, shown
in Figure 1. Entities are enclosed in boxes and the relationships
between them are indicated by directed edges. The same graph can
be expressed as a set of RDF triples, as shown in Table 1. We refer
to an edge of the graph, together with its two nodes, as an ER fact
or, equivalently, as an SPO triple.

Search on this kind of ER/RDF data is naturally expressed by
means of structured graph-pattern queries. As an example, con-

Vicky_Cristina_Barcelona

Match_Point

American_Movie

BAFTA_Award
hasWonPrize

hasWonPrize

Tea_Leoni

type

type

type

type

type

type

directed directed

actedIn actedIn

Scarlett_Johansson

actedIn

English_Movie

Hollywood_Ending

Academy_Award

Woody_Allen

actedIn

directed

wrote

Figure 1: Example of an entity-relationship graph

Subject (S) Property (P) Object (O)

Woody_Allen directed Match_Point
Woody_Allen directed Hollywood_Ending
Woody_Allen actedIn Hollywood_Ending
Woody_Allen hasWonPrize Academy_Award
Woody_Allen hasWonPrize BAFTA_Award
Scarlett_Johansson actedIn Match_Point
Tea_Leoni actedIn Hollywood_Ending
Match_Point type English_Movie
Hollywood_Ending type English_Movie
Vicky_Cristina_Barcelona type English_Movie

Table 1: A subset of RDF triples for the ER graph in Figure 1

sider a query which asks for all movies directed by Woody Allen
in which he played a role. Based on a syntax similar to that of the
W3C-endorsed query language SPARQL [30], we can express the
query as shown in Table 2. This query consists of 2 triple patterns

with variable names starting with a question mark. Patterns are
combined by a logical conjunction, which is denoted by the dot.
A result graph is a subgraph of the underlying knowledge-graph
which binds the variables and matches the constants in the query.

Solely using the expressive but Boolean-match SPARQL-like
languages is often too restrictive. Users prefer seeing a ranked re-
sult list rather than a list of unranked matches. For example, for
the query in Table 2, well-known movies like “Hollywood Ending”
or “Manhattan” should precede less-known movies like “Stardust
Memories”. Additionally, if the user is interested only in movies set
in New York, the query could be augmented with keywords “New
York” to promote, in the ranking, movies such as “Manhattan” and
demote movies such as “Hollywood Ending”.

Consider another example query asking for movies by Woody
Allen in which both Woody Allen and Scarlett Johansson played
roles. As shown in Table 3, an exact match would yield only one

result for this query (the first result). But, there are many movies
in which Woody Allen had multiple responsibilities and in which
Scarlett Johansson had a role. For example, Scarlett Johansson
acted in “Match Point” which Woody Allen wrote and directed.
This result can be returned only when the original query is relaxed

– that is, an approximate match to the original query is allowed.
Table 3 shows examples of such approximate matches.

These considerations suggest that it is desirable to have an IR-
style ranking model for ER-graph languages like SPARQL. Also, it

Query

Woody_Allen directed ?x .
Woody_Allen actedIn ?x

Results

Woody_Allen directed Hollywood_Ending .
Woody_Allen actedIn Hollywood_Ending
Woody_Allen directed Stardust_Memories .
Woody_Allen actedIn Stardust_Memories
Woody_Allen directed Manhattan .
Woody_Allen actedIn Manhattan

Table 2: Example query and 3 unranked results

Query

Woody_Allen actedIn ?x .
Scarlett_Johansson actedIn ?x .
Woody_Allen directed ?x

Results

Woody_Allen actedIn Scoop .
Scarlett_Johansson actedIn Scoop .
Woody_Allen directed Scoop
Woody_Allen wrote Vicky_Cristina_Barcelona .
Scarlett_Johansson actedIn Vicky_Cristina_Barcelona .
Woody_Allen directed Vicky_Cristina_Barcelona
Woody_Allen wrote Match_Point .
Scarlett_Johansson actedIn Match_Point .
Woody_Allen directed Match_Point

Table 3: Example query and 3 exact and approximate results

should be possible to express keyword conditions together with the
structured predicates of SPARQL patterns and approximate matches
to the query should be allowed. This would be in analogy to prior
work on XML IR which has enhanced XPath and XQuery by var-
ious forms of text-search and ranking capabilities (see, e.g., [2, 8]
and references given there). However, in contrast to XML trees,
we now need to address the more difficult setting of graphs and a
potentially much higher structural and typing diversity. The latter
also distinguishes our scope from prior work on keyword search
over relational graphs (for example, [4]).

Contribution and Outline. In this paper, we investigate triple-
pattern queries and show how to augment them with keyword search.
This can be seen as the SPARQL counterpart of XPath-FullText.
Our main contribution is a novel ranking model based on statistical
language models (LMs) for exact, relaxed, and keyword-augmented
queries.

LMs are the state-of-the-art foundation of modern IR [23, 33]
and will be explained in Section 3. They are based on generative
probabilistic models for text features in documents. Our new ap-
proach advances such models into the realm of RDF graphs and
provides a seamless model for exact, relaxed and keyword-augmented
graph-structured queries consisting of triple patterns. Our frame-
work is described in section 4.

Our ranking model, described in Section 5, constructs LMs for
the query and for each possible result graph, and ranks the results
based on the Kullback-Leibler (KL) divergence between the query
and result-graph LMs. We conducted a user study on two real-
life datasets – excerpts of IMDB (imdb.com) and LibraryThing
(librarything.com) – to show the quality of our search-result
rankings. The results of our user study are reported in Section 7.
We start by outlining related work.

2. RELATED WORK
Our work on ranking of the results to structured queries in RDF

graphs is closely related to work on IR over structured data. Based
on the types of data and queries handled, we classify prior work
on ranking as follows: i) keyword queries on unstructured data
(documents), ii) structured queries on structured data, iii) keyword
queries on structured data, and iv) keyword-augmented structured
queries on structured data. We make the following broad classi-
fication of ranking techniques: i) structure-based ranking and ii)
content-based ranking. Many of the related works that we refer
to incorporate both measures (especially in the case of XML IR).
It is not possible to compare any of these techniques to our work
because of our unique setting of graph queries over a single knowl-
edge graph , and with graphs as results (except for [20]; see discus-
sion below). For example, some of these systems deal with graphs,
but allow only keyword queries [4], others allow both structured
and keyword queries, but are limited to tree patterns rather than
graphs and they return trees as results [15, 1].

2.1 Keyword Queries on Unstructured Data
The main technique that we use from the standard IR literature is

that of language models (LMs) and KL-divergence for result rank-
ing [21]. An overview is given in Section 3.

In recent years, keyword querying has been carried over to the
extended setting of entity search and ranking, also referred to as
expert finding [11, 26, 29]. Here, results are named entities (e.g.,
companies, products, publications, authors), but the queries are still
keyword-based. In most of these approaches, entities are assumed
to be embedded in textual form in Web pages and other traditional
kinds of documents. For the approaches that treat entities as first-
class citizens [25], see Subsection 2.3 below. Extended forms of
LMs and PageRank-inspired spectral analyses are used to rank the
entities that qualify for a keyword query.

The key difference to our setting is that our corpus is a single
redundancy-free knowledge graph instead of a set of documents,
our queries are triple patterns rather than keywords and the output
is a ranked list of result graphs instead of documents. We describe
how to adapt language modeling techniques for this new setting.

2.2 Structured Queries on Structured Data
Ranking for structured queries has been investigated, to a small

extent, for restricted forms of SQL queries. Result ranking mod-
els have been developed for selection-join queries, using either
tf*idf-based models [7] or probabilistic-IR models [5] that lever-
age attribute-value statistics in both the database and the workload.
It is not possible to carry over these techniques to our setting of
schema-less and redundancy-free graph-structured data.

The closest work to this paper is the ranking model in the NAGA
system [20]. NAGA introduced a query language similar to SPARQL
triple patterns and used a (simpler) LM for computing a notion of
informativeness. But NAGA can rank only exact matches to a given
query; so the ranking is helpful only for the too-many-answers case
but not for the too-few-answers problem. In contrast, our current
work goes beyond this limited setting by supporting query relax-
ation and introducing a new notion of keyword-augmented queries.

2.3 Keyword Queries on Structured Data
The major classes of work that belong to this category include:

i) keyword search on XML data which returns a ranked list of trees,
ii) keyword search on graphs which returns a ranked list of Steiner
trees [4, 18, 16, 13] (the exception is [22] which returns graphs),
and iii) entity search on records which returns entities [25, 6]. The
result ranking in each of the above is based on the structure of the

results [4, 19] (usually based on aggregating the number or weights
of nodes and edges), or on a combination of these properties with
content-based measures such as tf*idf [6, 16, 22] or language mod-
els [25].

Structure-based Ranking: Our work handles structured queries
over structured data and returns graphs as results. More impor-
tantly, all the result graphs are of the same structure (since the in-
put query determines the result graph structure). As a consequence,
purely structure-based measures such as aggregation over the nodes
and edges in the result (as in Steiner tree scoring) would not work
well in our setting.

Content-based Ranking: When we deal with purely structured
queries, content-based ranking is irrelevant. The reason is that both
the triples in the underlying knowledge-base as well as the triple
patterns in the query are crisp. That is, the subject, predicate and
object in both triples and triple patterns are dealt with holistically,
rather than as a set of terms. For example, it is unlikely that the
same entity occurs repeatedly in the result graph unless the query
demands it and hence no meaningful tf component can be asso-
ciated with it. However, the situation changes when we associate
each triple with keywords and allow keywords to set the context
in the query. Here, content-based scoring such as tf*idf scoring is
indeed relevant.

In our evaluation, we adapt an LM-based content ranking tech-
nique described in [25] to our setting and use this ranking as a com-
petitor. Note that [25] ranks entities only, while our ranking model
goes beyond this to treat triples in a holistic manner by taking into
account the relationships between entities.

2.4 Keyword-augmented Structured Queries
on Structured Data

XML IR like XPath Full-Text search falls into this category [15,
1]. XPath forms the tree-structured part of the query, while key-
word conditions can be specified at each branch of the tree-pattern
query. An important difference between XML IR and our setting
is that in the former, it is possible to have results of different sizes,
while in our case, the results are all of fixed structure. And so,
the structure-based aspects are not as relevant to our setting as the
content-based ones. The content-based ranking is again based ei-
ther on tf*idf scores [1] or language models [15].

3. BACKGROUND
We start with a brief overview of the use of language models

and KL-divergence in ranking results to keyword queries on text
document corpora (see [14, 21] for more details).

The main intuition in the technique is to envision probabilistic
processes for the generation of queries and documents. The given
query and the set of documents are seen as samples from their re-
spective distributions. For a (query, document) pair, if the under-
lying probability distributions are “close”, then we conclude that
the document is highly relevant to the query. Hence the key task is
to accurately estimate a query model for the query and document
models for each document and to then compare the resulting prob-
ability distributions.

The closeness between the query model and a document model
is measured by the Kullback-Leibler divergence (KL-divergence),
commonly used to measure the “distance” between two probability
distributions:

KL(Q||D) =
∑

w

Q(w)log
Q(w)

D(w)

where Q and D are probability distributions corresponding to the

query and document respectively and KL(Q||D) measures the di-
vergence of D from Q and the summation is over all terms w in
the corpus. Note that the KL-divergence model of retrieval is a
generalization of the query-likelihood method which estimates the
probability of the document LM generating the query [32].

A language model estimates the probability of a term seen in
the sample using the maximum likelihood estimate and smoothes
it with a background model to avoid overfitting. Let w be a word
in a document D (or query Q). Then, the probability of w in the
document model is given by:

P (w) = λP (w|D) + (1 − λ)P (w|C)

where P (w|D) is the probability of w in the document D and
P (w|C) is the probability of w in the corpus C. Each of these
probabilities are estimated as the fraction of occurrences of term w
in the document and the corpus, respectively. For the query model,
the role of C could be taken by query or click logs. The parameter
λ controls the influence of the smoothing component P (w|C) and
is usually set empirically or by statistical learning procedures.

The topic of this paper, however, is ranking the results of graph
structured queries, possibly augmented with keywords. Though the
techniques we use are analogous to those described above, the fact
that we support graph queries requires significant changes to the
estimation procedure. The ranking model which we propose seam-
lessly incorporates both structured as well as keyword-augmented
structured queries.

4. FRAMEWORK

Knowledge Graph. Formally, a knowledge graph is a labeled
multi-digraph G = 〈V, A, lV , lA, L〉, where L is a set of labels,
V is a set of nodes, A ⊆ V × V × L a set of labeled arcs, lV :
V → L is an injective function that returns the label of a node and
lA : A → L is an injective function that returns the label of an arc
such that lA((u, v, l)) = l for any (u, v, l) ∈ A. Intuitively, the
nodes represent entities and arcs represent relations between them.

A knowledge graph G = 〈V, A, lV , lA, L〉 can be represented
as a set of RDF triples T (G) = {t1, . . . , t|A|} where each triple
ti = 〈s, p, o〉 from T corresponds to exactly one arc (u, v, l) ∈ A
so that s = lV (u), o = lV (v) and p = lA((u, v, l)) and represent
subject s, object o, and property p. Figure 1 and Table 1 show
examples of a knowledge-graph and the corresponding set of RDF
triples, respectively.

Additionally, a keyword-augmented knowledge graph G is de-
rived by enriching the knowledge graph with a function
KG : A → 2KEY assigning a finite set of keywords to an arc of G
(KEY is a possibly infinite set of potential keywords). Intuitively,
each triple is associated with a set of keywords derived from the
documents from which it was extracted.

A witness count c(t) is associated with triple t. The witness
count indicates the number of times the triple was seen and ex-
tracted from the corpus (the corpus could be the Web) and gives a
measure of “importance”. In addition, for each keyword wi (text
term in IR jargon) associated with t, a witness count c(t; wi) is also
stored. For example, suppose that we extracted the triple Woody_Allen

directed Manhattan from 30 different Web pages, so the witness
count c(t) for this triple is 30. If 20 out of these 30 contain the
word “divorced”, the fact-term witness count c(t; divorced) is 20.

Each extracted triple could be associated with a confidence value,
reflecting the accuracy of the employed extraction method (e.g.,
regular-expression matching vs. natural-language parsing vs. sta-
tistical learners) and the authenticity and authority of the data sources.

We scale down the witness count of a triple based on its confi-
dence, by multiplying the witness count with the confidence value.

4.1 Purely Structured Graph Queries

Query. A query Q is a graph Q = 〈V, A, lV , lA, LAB ∪V AR〉,
where V AR is a set of variables such that LAB ∩ V AR = ∅. We
assume that lV (u) 6= lA((u, v, l)) 6= lV (v) for any (u, v, l) ∈ A.
If the label of any node or arc in a query is a variable we refer to its
triple representation as a triple pattern.

For example, the following graph query asking for a married
couple and a movie that they both have acted in consists of three
triple patterns: ?x marriedTo ?y . ?x actedIn ?m . ?y actedIn ?m.

Query Result. Let B = 〈V, A, lV , lA, LAB〉 be a knowledge
graph and Q = 〈V ′, A′, lV ′ , lA′ , LAB ∪ V AR〉 a query. We will
say that a subgraph D = 〈V ′′, A′′, lV , lA, LAB〉of B matches the
query Q if there exists a bijective function f : V ′′ → V ′ such that
the conjunction of the following conditions holds: i) entity match:
lV (v) = lV ′(w) or lV ′(w) ∈ V AR, for any v ∈ V ′′ and w ∈ V ′

and ii) relation match: lA(a′′) = lA′(a′) or lA′(a′) ∈ V AR for
any a′′ ∈ A′′ and a′ ∈ A′. The result to the query Q is the set of
subgraphs of B that match the query.

4.2 Keyword-augmented Structured Queries

Example Query Woody_Allen produced ?x .
Woody_Allen directed ?x

Example Query Woody_Allen produced ?x{murder lover} .
with keywords Woody_Allen directed ?x

Relaxed Queries

Woody_Allen ?y ?x{murder lover} .
Woody_Allen directed ?x
Woody_Allen produced ?x{murder} .
Woody_Allen ?y ?x
Woody_Allen produced ?x .
Woody_Allen ?y ?x
Woody_Allen ?z ?x .
Woody_Allen ?y ?x

Extreme Query ?w ?z ?x .
?w ?y ?x

Table 4: Query Framework

A keyword-augmented query allows keywords to be associated
with one or more triple patterns in the query.

For example, the query Woody_Allen directed ?x{murder lover}

could be issued to ask for movies which Woody Allen directed and
which had murder and lovers as a theme. The top-ranked results
for such a query would include Match Point and Manhattan Murder
Mystery.

As another example, consider the following query with two triple
patterns: ?x hasGenre Comedy{academy award} . ?y directed ?x.
This query could be issued to retrieve all comedies that have been
mentioned with the terms “academy award” (e.g., were nominated
for an academy award or have won an academy award), along with
their directors.

Different triple patterns can have different keywords associated
with them. For example, if we wanted to retrieve pairs of actors
who played roles of detective and gangster, respectively, in the
same movie, we could express this query as: ?x actedIn ?m{police

detective} . ?y actedIn ?m{gangster} with different keywords for each
triple pattern. Note that it is not possible to express this query with
a single global keyword condition.

4.3 Relaxed Queries
Query relaxation, in our setting, alleviates the problem of ”too

few results” and increases recall by allowing for approximate match-
ing of queries. For example, consider a structured query asking for
movies which were both directed and produced by Woody Allen:
Woody_Allen directed ?x . Woody_Allen produced ?x.

The above query would return a single answer (there is only one
movie which was both produced and directed by Woody Allen).
However, there are many more movies in which Woody Allen had
more than one responsibility. For example, he directed and wrote
Vicky Cristina Barcelona, he directed and acted in Scoop, etc. But
none of these results is a match for the original query. The only
way to retrieve these results is to run relaxed versions of the original
query. For example, we could formulate a relaxed query as follows:
Woody_Allen directed ?x . Woody_Allen ?y ?x.

The above query keeps the first triple pattern intact – that is, the
movies returned should have been directed by Woody Allen – but
the second pattern is relaxed and only requires that Woody Allen
be somehow connected to the movie.

There is some prior work on query relaxation for structured queries
(for example, [1, 34], but they are neither comprehensive nor di-
rectly applicable to our setting). We also note that the focus of this
paper is on proposing a ranking model which seamlessly encom-
passes exact, relaxed and keyword-augmented graph-structured queries
and so, a thorough investigation of query relaxation techniques is
beyond the scope of this work. We use the following simple, yet
useful relaxation model to illustrate our ranking techniques.

Generating Relaxed Queries. We relax a triple pattern by
replacing one or more of its constants with a variable. For exam-
ple, the query Woody_Allen produced ?x{new york} can be relaxed
to Woody_Allen ?y ?x{new york} by replacing the relation produced

by a variable. The keywords themselves could be “relaxed”, by
choosing a subset of keywords or no keywords to remain in the
query. The previous example could be relaxed to Woody_Allen ?y

?x by removing all keywords, in addition to replacing produced by
a variable. Clearly, the larger the number of keywords and con-
stants in the pattern, the larger the number of possible relaxations.
Extending this to the entire query, a relaxed query contains one or
more relaxed patterns. It is possible to systematically generate a
number of relaxed queries from the given query by choosing all
possible triple-pattern relaxations.

Weighting Relaxed Queries. A relaxed query can be weighted,
relative to the original query from which it is derived. This is useful
when the actual query execution considers both the original and the
relaxed query and integrates query results from both.

We use the number of relaxations (that is, the number of con-
stants substituted with variables) in a query to weight the query.
The larger the number of relaxations, the lower the weight. This
implies that the original query gets the highest weight, and relaxed
queries with the same number of relaxed queries get equal weight.

Table 4 summarizes our querying framework (note that only a
subset of relaxed queries are shown in the table). The final relax-
ation, termed “extreme”, simply consists of two patterns of vari-
ables only. However, valid results would bind the first entities of
both patterns as well as the second entities of both patterns to the
same values, while the relation could be bound to different con-
stants. Extreme relaxations could be useful especially in combina-
tion with keyword conditions, as a means of keyword-only search.
An exact match to any of the relaxed queries is considered to be an
approximate answer to the original query.

5. RANKING MODEL
Our ranking model estimates a query LM PQ for the generation

of query Q and a result-graph LM PG for the generation of a result
graph G (a subgraph of the knowledge base B). The result graphs
are ranked in increasing order of the KL divergence between the
query LM and the result-graph LM. The KL divergence between
the two gives a measure of relevance of G with respect to Q.

We make two distinctions in our setting as compared to tradi-
tional keyword queries on documents. First, there is no notion of
a document in our setting. Instead, we have a large graph of facts
from which subgraphs can be constructed. And so, result units are
constructed on-the-fly depending on the query. More specifically,
if a query contains n-triple patterns, then any graph with n triples
(an n-triple tuple) is considered to be a potential result. In the gen-
eral case, we need not restrict the number of triples to n. However,
we enforce this restriction since we are interested only in exact-
structure matches (which will naturally contain n triples) to both
original and relaxed queries.

Second, queries are made up of triple patterns, while results are
made up of triples. A probability distribution over triple patterns is
incomparable to a probability distribution over triples. We need to
overcome this “vocabulary gap” in order to compare the query and
result-graph LMs. We do this through a notion of “query instantia-
tion”. This is described in the next subsection.

5.1 Query Language Model

Triple (ti) c(ti)
t1. Spielberg directed Schindler’s_List 200
t2. Spielberg directed Munich 50
t3. Spielberg produced Men_in_Black 20
t4. Spielberg directed Jaws 50
t5. Tarantino directed Kill_Bill 100
t6. Jaws hasGenre Thriller 100
t7. Schindler’s_List hasGenre War 20
t8. Munich hasGenre War 200
t9. Men_in_Black hasGenre Comedy 150
t10. Kill_Bill hasGenre Thriller 30

Table 5: Small knowledge base with triples and witness counts

q̂1 PQ(t) q̂2 PQ(t)
t1 200/300 t6 100/500
t2 50/300 t7 20/500
t4 50/300 t8 200/500

t9 150/500
t10 30/500

Table 6: Query LM estimation for a query with two patterns.

q1 = Speilberg directed ?x . q2 = ?x hasGenre ?y

Let Q = {q1, ..., qn} be a query with n triple patterns where
qi is a triple pattern. An instantiation of a triple pattern qi is a
match to the triple pattern qi. A triple pattern can have multiple
instantiations. Let q̂i denote the set of instantiations of qi.

We define the query LM as a probability distribution over n-
tuples of the form T = {t1, ..., tn}, where ti is a triple. Assuming
independence among triples,

PQ(T) =
∏

i

PQ(ti) (1)

where PQ(T) is the probability of the n-tuple in the query LM and
PQ(ti) is the probability of triple ti.

We now describe how to estimate PQ(ti) in the cases of exact
and relaxed queries as well as keyword-augmented queries.

Exact Matching. Let q̂i be the set of triples which match the
triple pattern qi and c(ti) be the number of witnesses of triple ti.
The probability PQ(ti) is then estimated as follows:

PQ(ti) =

c(ti)
∑

t∈q̂i
c(t)

if ti ∈ q̂i

0 otherwise

(2)

As an example, consider the small knowledge base shown in Ta-
ble 5. It shows the triples as well as their witness counts. Now
consider a query with two patterns: Spielberg directed ?x. ?x has-

Genre ?y asking for all movies directed by Spielberg and their gen-
res. The query is factorized into two patterns, as shown in Table 6,
and each pattern is instantiated. The probabilities of the triples in
the instantiation are then calculated based on their witness counts
and the sum of witness counts in the instantiation set. The probabil-
ities computed in this way are then used in Equation 1 to calculate
n-tuple probabilities in the query model.

Keyword Augmentation. Probability estimation for keyword-
augmented queries proceeds analogously to the procedure described
above, with a few subtle differences. Each triple in the knowledge
base is augmented with a term (keyword) (see Section 4) and the
same triple is repeated with different terms if it has multiple terms
that need to be associated with it. c(ti; wk) is the number of wit-
nesses for triple ti occurring with term wk.

We now need to compute the probability of keyword-augmented
triple patterns of the form qi = q[w1, ..., wm] where q is a simple
triple pattern and wk is an associated keyword.

As before, we need to estimate PQ(ti), the probability of a triple
ti in the query LM. However, since now we have a context, in the
form of terms w1, ..., wm, we actually need to estimate the prob-
ability PQ(ti|w1, ..., wm). That is, the probability of the triple ti,
given the context w1, ..., wm. Assuming independence between
keywords, we calculate the triple probability as

PQ(ti|w1, ..., wm) =
m
∏

k=1

[αPQ(ti|wk) + (1 − α)P (ti)] (3)

where PQ(ti|wk) is the probability of ti given the single-term con-
text wk, P (ti) is the smoothing component, and the parameter
α controls the influence of smoothing. Note that it is crucial to
smooth the probabilities, since otherwise PQ(ti|w1, ..., wm) = 0
if ti is not associated with at least one term wk in the context. We
use uniform smoothing (i.e, a uniform probability distribution for
P (ti)). Now, in order to estimate the first component of Equation
3, let q̂i be the set of triples which match the triple pattern q. Then,

PQ(ti|wk) =

c(ti; wk)
∑

t∈q̂i
c(t; wk)

if ti ∈ q̂i

0 otherwise

(4)

With the use of Equation 3 to compute the triple probabilities, we
no longer need to explicitly relax keywords in the query. For exam-
ple, for the triple pattern Woody_Allen directed ?x{murder lover}, we
need not generate the following relaxations: Woody_Allen directed

?x{murder}, Woody_Allen directed ?x{lover}. This is because the
smoothing component automatically takes care of the case when
one or more keywords are not present with the triple.

We use Equation 4 in Equation 3. The latter is then used in
Equation 1 to calculate the n-tuple probabilities.

Relaxed Queries. As mentioned in Section 4, our ranking model
is applicable to any kind of relaxation scheme. In general, let q0

i be
the original triple pattern and let qj

i be a relaxation.
We now need to compute the probability of a triple ti in the query

LM. Intuitively, we should weigh ti higher if it is a match for the
original triple pattern, and lower if it is a match for a relaxed ver-
sion. In addition, we need to make distinctions among the relaxed
pattern versions – that is, if ti is a match to a relaxation with only
one constant replaced with a variable, then it should be weighted
higher than if it were a match to a relaxation with two constants
replaced with variables. With these aspects in mind, we estimate
the probability of ti in the query LM as a mixture model:

PQ(ti) = λ0P
0

Q(ti) + λ1P
1

Q(ti) + ... + λjP
j
Q(ti) (5)

where P j
Q(ti) denotes the probability of ti for the relaxation qj

i ,
λi weighs the contribution of each component and

∑

i λi = 1.

P j
Q(ti) is computed according to Equation 4 or 2 depending on

whether or not keywords are part of the triple pattern. In general,
the λi are set based on the “closeness” of the relaxed pattern to the
original one. In our case, we compute the λ’s based on the number
of relaxations in the pattern, as described in Section 4.3.

5.2 Result-Graph Language Model
The main complexity of our technique is in the estimation of

the query LM. In contrast, the estimation of the result-graph LM is
straightforward. For query Q with n triple patterns, we are inter-
ested in potentially relevant results consisting of n triples. We only
rank results that match the structure of the original query or one of
its relaxations. Given a potential result graph T = {t1, t2, ..., tn},
we estimate its language model PG. Analogously to the query LM,
PG is a probability distribution over n-tuples where

PG(T) = βP (T |G) + (1 − β)P (T |B)

and the parameter β controls the influence of smoothing. P (T |G)
is 1 if G = T and 0 otherwise (since the result graph G contains
only the n-tuple T). For the smoothing component, we assume
independence between triples:

P (T |B) =
n

∏

i=1

P (ti|B)

where P (ti|B) is estimated given the entire knowledge base and
its entirety of witnesses, and is equal to:

P (ti|B) =
c(ti)

∑

t∈B c(t)

For example, consider the relaxed query Q = Spielberg ?r ?x (of the
original query Spielberg directed ?x) and consider the single triple
(1-tuple) T = Spielberg produced Men_in_Black as a possible result
graph for the relaxed query. P (T |B) is set to 20/920 according to
the knowledge base of Table 5 (independently of Q).

5.3 Result Ranking
Given the query LM and result-graph LMs for all n-tuples T ,

we now compute the KL-divergence between the query LM PQ of
query Q and the result-graph LM PG of result G as follows:

KL(Q||G) =
∑

i

PQ(Ti)log
PQ(Ti)

PG(Ti)

Triples

id arg1 relation arg2 #witnesses

1 Brad_Pitt actedIn Se7en 3,210,000
2 Brad_Pitt actedIn Babel 483,000
3 Brad_Pitt hasWon Saturn_Award 354,000
4 Woody_Allen directed Manhattan 857,000
5 Manhattan hasGenre Comedy 266,000
...

Table 7: Sample Database: Triples Table

Keywords

tid term stem tf #witnesses

1 serial seria 4 217,000
1 killer kill 7 483,000
1 cops cop 9 60,000
4 york york 2 535,000
4 divorce divorc 4 103,000
...

Table 8: Sample Database: Keywords Table

The result graphs are then returned to the user in ascending order
of KL-divergence.

6. IMPLEMENTATION

6.1 RDF Repository
We use an Oracle11g database as the storage back-end for triples.

A single table stores all triples and witness counts with the fol-
lowing schema: Triples(id, arg1, relation, arg2,

witness-count). The keywords associated with each triple are
parsed and stored in a separate table with the following schema:
Keywords(tid, term, stem, tf, witness-count),
where tid is the triple id in table Triples, term is the keyword as
present in the witness from which the triple was extracted, stem is
the stemmed version of the keyword, tf is the number of times the
keyword occurred in the witness, and witness-count is the number
of witnesses from which the triple was extracted and contained the
keyword. An example database is shown in Tables 7 and 8. Indices
are created on each column and beneficial column combinations.

6.2 Query Processing
All graph queries are translated into SQL to be evaluated over

the database. Each query involves a set of self-joins that utilizes
the indices on the Triples table to run efficiently. For example,
consider the query to find married couples who have acted in the
same movie: ?x marriedTo ?y . ?x actedIn ?m . ?y actedIn ?m. This
query is translated to SQL over the Triples table as follows:
SELECT T1.arg1, T1.arg2, T2.arg2

FROM TRIPLES T1, TRIPLES T2, TRIPLES T3

WHERE

T1.relation = ’marriedTo’ AND

T2.relation = ’actedIn’ AND

T3.relation = ’actedIn’ AND

T1.arg1 = T2.arg1 AND

T2.arg2 = T3.arg2 AND

T1.arg2 = T3.arg1

The SQL statement representing the query is executed and the
list of matching tuples are retrieved. These tuples represent the set

of candidate results that need to be ranked. Each tuple is broken
into its constituting triples, which are then used to construct the
query LM as described in Section 5. Additionally, the query is
relaxed, and for each relaxed query the same procedure is applied.
Finally, the overall query LM is computed as a mixture model of the
original query LM and all relaxed queries LMs. Once the query LM
is constructed, the KL-divergence between each matching tuple and
the constructed query LM is computed and the tuples are ranked in
ascending order according to the KL-divergence values.

In general, the query processing times ranged from a few seconds
to tens of seconds for queries with more than 3 triple-patterns. Our
analysis showed that the running time was mainly dominated by the
DB execution time, which is highly dependent on the underlying
storage system. This calls for exploring other alternatives to store
the triples. For example using the RDF-specific RDF-3X engine
[24] which supports efficient SPARQL query processing (note that
it does not support ranking).

7. EXPERIMENTAL EVALUATION

7.1 Setup
To evaluate the effectiveness of our ranking model, we conducted

a comprehensive user study over two datasets using the Amazon
Mechanical Turk service. The first dataset was derived from a sub-
set of the Internet Movie Database (IMDB) and the second dataset
was derived from the LibaryThing community, which is an online
catalog and forum about books. The data from both sources was
automatically parsed and converted into RDF triples. Since each
triple is present only once in both data sources, we had to estimate
the witness count for the triples. In order to do so, we relied on
the Web corpus. We issued queries to a major search engine, with
the subject and object of the triple as keywords, and set the witness
count to the number of hits returned by the search engine.

In addition, each triple was also augmented with keywords de-
rived from the data source it was extracted from. In particular, for
the IMDB dataset, all the terms in the plots, tag-lines and keywords
fields were extracted, stemmed and stored with each triple. For the
LibraryThing dataset, since we did not have enough textual infor-
mation about the entities present, we retrieved the books’ Amazon
descriptions and the authors’ Wikipedia pages and used them as
sources of keywords for the triples. An overview of the datasets is
given in Table 9.

#entities Some Entity Types #triples Some Relationship Types

IMDB Dataset

59,000 movie, actor 600,000 actedIn, directed
director, producer hasWonPrize, marriedTo
country , language produced, hasGenre

LibraryThing Dataset

48,000 book, author 700,000 wrote, friendOf
user, tag hasTag, type

Table 9: Overview of the datasets

7.2 Evaluation Queries
We used 2 different sets of evaluation queries. The first set con-

sisted of pure structured queries that ranged from simple single-
pattern queries to complex multi-pattern graph queries. We con-
structed 16 queries for the IMDB dataset and 8 queries for the Li-
braryThing dataset. A subset of the evaluation queries used and the
corresponding number of triple patterns for both datasets are shown
in Table 10.

The second set consisted of keyword-augmented queries. Again,
we constructed 16 queries for the IMDB dataset and 8 queries for
the Librarything dataset. The queries were structured queries as-
sociated with one or more keywords. A subset of the evaluation
queries used and the corresponding number of triple patterns for
both datasets are shown in Table 11. The keywords shown in square
brackets were associated with the appropriate triple patterns.

For all queries, we retrieved both exact and approximate matches
and aggregated them using the weighting scheme described in Sec-
tion 5. The relaxed queries were generated using the simple tech-
nique of replacing one or more constants in the original query with
a variable.

IMDB

Structured Query Q |Q|
An academy awarded movie produced in Australia 2

A thriller movie and its director 2

A married couple who acted in the same movie 3

An academy award for best director winner directing an
Academy award for best actor winner in a movie

4

A family movie produced in the year 1995 and an actor/actress
that played a role in that movie and also acts in comedies

5

LibraryThing

Structured Query Q |Q|
A mystery and thriller book and its writer 2

A classic 20th century book and its writer 3

A writer that writes both fiction and non-fiction books and one
book from each category

4

A series book and its writer 2

A book and its writer 1

Table 10: Subsets of Purely Structured Queries

IMDB

Keyword-augmented Query Q |Q|
A comedy movie about [weddings] 1

An award winning actor/actress that acted in a movie that has
something to do with [Spielberg]

2

An award winning director who directed a movie that is based
on a [true story]

2

A romance movie produced in the year 2001 and has some-
thing to do with [Paris]

2

An academy award for best actor winner who acted in a movie
with an academy award for best actress winner and the movie
has something to do with [love] or [relationship]

4

LibraryThing

Keyword-augmented Query Q |Q|
A book that has something to do with [wizards] and has a se-
quel and its writer

2

A book that has something to do with [Spain] and its writer 1

A classic book and its writer and either the book or the writer
won a [Pultizer] award

2

A fiction book about magic and its writer and the book has won
some [award]

3

A classic book that has something to do with [revolutions] and
its writer

3

Table 11: Subsets of Keyword-augmented Queries

7.3 Competitors
We compared our approach against a number of competitors that

represent state-of-the-art methods in ranking over structured data.
First, we compared against the work done on web object retrieval
(WOR) in [25] since they use language models in order to rank
results. This covers a class of competitors that deal with term-
frequency based ranking of results to keyword queries on struc-

tured data. Second, we compared to the class of rankers that utilize
graph properties to rank results to keyword queries over structured
data by adapting the Steiner weight scoring as used in the BANKS
system [18]. Finally, we compared to the closest work to ours,
the language-model-based ranking in the NAGA system [20]. We
describe how we adapted each competitor to rank graph results to
structured queries, possibly augmented with keywords, in the fol-
lowing. We also describe how we handle approximate matching
whenever applicable.

WOR: The key difference between WOR and our ranking ap-
proach is that we support ranking of graph results and treat triples
as first class citizens in our ranking model, while the objective of
WOR is to rank entities. Another key distinction is that WOR op-
erates on keyword queries only.

The technique assumes that an entity is associated with a set of
records extracted from web sources. This set of records forms a
“document” for the entity. The relevance of such a “document”
(and correspondingly, the entity associated with it) to a keyword
query is estimated using LMs. That is, the probability of the docu-
ment (correspondingly, the entity) generating the query is estimated
based on term-frequencies and the results are returned in decreas-
ing order of probabilities to the user.

We adapted the WOR techniques for ranking entities and ex-
tended them to rank graphs as follows. We treated triples as records
and for a given entity, all triples which contain that entity formed
the “document” for that entity. Given a structured query, whether
keyword-augmented or not, we retrieved all result graphs matching
the structure of the query. Since WOR supports keyword queries
only, we converted our evaluation queries into terms and computed
the rank of a result graph as the product of the probability of gen-
erating the bound entities in the graph given the query terms.

BANKS: The BANKS system enables keyword-based search on
graph databases. Given a keyword query, an answer is a subgraph
connecting some set of nodes that ”cover” the keywords (i.e, match
the query keywords). The relevance of an answer is determined
based on a combination of edge weights and node weights in the
answer graph. The importance of an edge depends upon the type
of the edge, i.e., its relationship and what nodes it connects. Node
weights on the other hand represent the static authority or impor-
tance of nodes and are set as a function of the in-degree of the node.

This directly applies to our setting. Given a query, whether purely
structured or keyword-augmented, we retrieved all result graphs
that matched the query or one of its relaxed versions. We then
ranked the result graphs based on a combination of edge weights
and node weights. The edges were weighted by the witness count
of the triple (edge), and nodes were weighted based on the average
in-degree of the node.

NAGA: In NAGA, the result graphs are ranked based on their
likelihood of generating the query triple patterns. This probabil-
ity was estimated using 3 different measures: 1) confidence of the
result, 2) compactness of the result and 3) informativeness of the
result. The first 2 components do not play a role in our setting,
since all our triples were extracted using the same method, and
thus all have the same confidence values. Compactness does not
play a role in the ranking as well, since all result graphs are of the
same size which is determined by the number of triple patterns in
the query. Thus, the only component that affects the ranking is
the informativeness component which we computed using the wit-
ness counts. The major difference between our ranking method
and that of the NAGA system is in the parameter estimation tech-
nique. Moreover, NAGA does not support approximate matching
and keyword-augmented queries.

7.4 Metrics
For the user study, we pooled the top-10 results obtained from

each technique (including ours) and presented them to the eval-
uators in random order. Each result was evaluated by 7 anony-
mous users on the Amazon Mechanical Turk service. The eval-
uators were required to indicate whether the result was “highly
relevant”, “relevant”, “somewhat relevant”, “undecidable”, “irrel-
evant” or “wrong”. To measure the ranking quality of each tech-
nique, we used the Discounted Cumulative Gain (DCG) [17], which
is a measure that takes into consideration the rank of relevant doc-
uments and allows the incorporation of different relevance levels.
DCG is defined as follows

DCG(i) =

{

G(1) if i = 1
DCG(i − 1) + G(i)/log(i) otherwise

where i is the rank of the result within the result set, and G(i) is
the relevance level of the result. We set G(i) to a value between
0 and 5 depending on the evaluator’s assessment. For each result,
we averaged the ratings given by all evaluators and used this as the
relevance level for the result. Dividing the obtained DCG by the
DCG of the ideal ranking we obtained a Normalized DCG (NDCG)

which accounts for the variance in performance among queries.

7.5 Results

Purely structured queries with relaxation

Dataset OWN WOR BANKS NAGA

IMDB 0.880 0.751 0.777 0.798

LT 0.876 0.787 0.721 0.869

Keyword-augmented queries with relaxation

Dataset OWN WOR BANKS NAGA

IMDB 0.884 0.722 0.782 0.776

LT 0.853 0.835 0.690 0.782

Table 12: Avg. NDCG for all evaluation queries

The results of our user evaluation are shown in Table 12. The re-
ported NDCG values were averaged over all evaluation queries. In
the case of purely structured queries, our ranking model outper-
forms all competitors for both datasets. In particular, for the IMDB
dataset, we achieved more than 17% significant gain in NDCG
over WOR with a one-tailed paired t-test p-value of 0.047, and
more than 13% over BANKS with a p-value of 0.004. Similar-
ily, for the Librarything dataset, we achieved more than 11% gain
in NDCG over WOR with a p-value of 0.078 and more than 21%
over BANKS with a p-value of 0.013.

The effectiveness of our ranking model is especially visible in
the case of keyword-augmented queries. Our ranking approach
again outperforms all competitors for both datasets. For the IMDB
dataset, We achieved a gain of more than 22% over WOR with a
p-value of 0.020 and 13% over BANKS with a p-value of 0.002
and similarily, for the librarything dataset.

Analysis. We outperformed WOR since it supports only entity
ranking, and thus does not take into consideration the relations be-
tween the results. It also supports keyword queries only, and the
ranking is based on term-frequencies. This is in contrast to our ap-
proach of treating a triple holistically (using witness counts), rather
than as a set of terms. This indicates that when the objective is to
rank graphs, it is better to treat triples holistically, rather than as a
combination of entities.

For BANKS, we adapted their technique to our setting, but their
ranking still depends on the static properties of the result graphs.

Even weighting edges using our witness counts proved to be in-
sufficient to deliver better quality results. And the fact that our
system has a clear-cut ranking model for exact+relaxed queries as
opposed to BANKS that does not, resulted in better results with our
approach.

Our closest competitor in terms of setting and technique is NAGA.
Even though, NAGA returns a ranked list of result graphs to struc-
tured queries, it supports neither approximate matching nor keyword-
augmentation. Thus, while many purely structured queries had
similar result lists, when testing our technique as a whole with re-
laxation, NAGA’s techniques failed to give effective results. Sim-
ilarly, the lack of explicit support for keywords in NAGA resulted
in less effective ranking for keyword-augmented queries.

Examples. In Table 13 we show some example evaluation queries
over the IMDB dataset. For each query, the top-4 results returned
by our own approach, as well as the 3 other competitors are given.
Due to space limitation, we just show the bound entities (i.e., matches
to the variables in the queries). Next to each result, we also show
the average relevance value given by the evaluators (column titled
Rel.). Recall that each result was given a relevance value between
0 and 5, with 5 corresponding to highly relevant results.

For query Q1 asking for thriller movies, the top-4 results re-
turned by our approach (OWN) are all well-known movies, as com-
pared to both WOR and BANKS. The results returned by BANKS
are not even thriller movies. This is due to the fact that even though
BANKS ranking can be adapted to approximate matches, the way
approximate and exact matching are later aggregated only depends
on the static properties of the result graphs (i.e., edges and nodes
weights).

The top-4 results returned by NAGA are the same as the ones re-
turned by our approach since both methods rely on witness counts
to estimate ranking probabilities. The superiority of our method
over NAGA is more clear in the case of keyword-augmented queries
and in the case where there are not enough exact matches to the
given query. For example, query Q2 (augmented with keywords
“true story”) asks for movies based on a “true story” and directed
by an award winning director. Our top-4 results are all movies
based on a true story, which is not the case in any of the other 3
result lists returned by the competitors.

Query Q3 illustrates the benefit of query relaxation. The query
asks for movies produced in Australia and that won an academy
award. In our dataset, there is only one exact match to this query,
namely, “Secrets of the Heart”. For lack of space, we only show
the top results for our own approach and for BANKS. We also
show the award the movie won and the production country, which
are bound entities for the relaxed queries. Recall that a query is
relaxed by replacing one of the constants (i.e., either Australia or
Academy_Award by a variable). Our method ranks the exact match
at the top, while approximate matches which includes movies which
have won an Academy_Award, but produced in another country, or
movies produced in Australia but have won other awards are ranked
lower. This is in contrast to the list returned by BANKS.

8. CONCLUSIONS
This paper has investigated ranking for a new brand of structured

queries on RDF graphs. Our model and algorithms are applicable to
all kinds of RDF databases, enabling ranked retrieval for SPARQL
language and paving the way for a new form of SPARQL-FullText
extension.

Our approach makes extensive use of IR methodology, specif-
ically, statistical language models, leveraging it in the realm of
structured and semistructured graph data. The presented user-study

Q1 A thriller movie and its director

Rank OWN Rel. WOR Rel.

1 Batman_Begins, Christopher_Nolan 4 Deadly_Intruder, John_McCauley 3.43
2 Murder!, Alfred_Hitchcock 4 Robotix, Wally_Burr 3
3 Spider-Man_3, Sam_Raimi 3.71 Like_Minds, Gregory_J._Read 2.71
4 Eyes_Wide_Shut, Stanley_Kubrick 3.86 Khoey_Ho_Tum_Kahan, Ajab_Gul 2.86

Rank BANKS Rel. NAGA Rel.

1 -30-, Jack_Webb 2.86 Batman_Begins, Christopher_Nolan 4
2 Kill!, Kihachi_Okamoto 2.57 Murder!, Alfred_Hitchcock 4
3 If...., Lindsay_Anderson 2 Spider-Man_3, Sam_Raimi 3.71
4 Hit!, Sidney_J._Furie 2.71 Eyes_Wide_Shut, Stanley_Kubrick 3.86

Q2 An award winning director who directed a movie that is based on a [true story]

Rank OWN Rel. WOR Rel.

1 Martin_Scorsese, Good_fellas 3.14 Joel_Lamangan, Babangon_Ako’t_Dudurugin_Kita 0
2 Steven_Spielberg, Schindler’s_List 3.43 Tracy_Seretean, Big_Mama 3.14
3 Peter_Jackson, Heavenly_Creatures 3.29 Ben_Burtt, The_American_Gangster 2.71
4 Bernardo_Bertolucci, Little_Buddha 3.19 David_Frankel, Why_We_Fight 3.29

Rank BANKS Rel. NAGA Rel.

1 Baz_Luhrmann, Australia 3.29 Clint_Eastwood, Million_Dollar_Baby 2.86
2 Woody_Allen, Vicky_Cristina_Barcelona 3.57 Eddie_Murphy, Harlem_Nights 2.71
3 Christopher_Nolan, Batman_Begins 2.14 Robert_Altman, Health 3
4 Mel_Gibson, Braveheart 3 Mel_Gibson, Braveheart 3

Q3 An academy awarded movie produced in Australia

Rank OWN Rel. BANKS Rel.

1 Secrets_of_the_Heart, Academy_Award, Australia 3.71 Chiranjeevi, Padma_Bhushan, India 1.57
2 Before_Sunset, Academy_Award, USA 2.57 Three_Seasons, Independent_Spirit_Award, UK 1.43
3 Innerspace, Academy_Award, USA 1.86 Charlie_Chaplin, Academy_Honorary_Award, India 2
4 Beneath_Clouds, Australian_Film_Institute_Award, Australia 3.29 Separate_Tables, Academy_Award, USA 1.71

Table 13: Examples of IMDB queries and top-ranked results

demonstrates the potential of our method. In addition, our query re-
laxation techniques showed significant gains in the NDCG metric.

Our future work includes investigating graph-query relaxations
more thoroughly and improving our query processing efficiency to
return top-k results.

9. REFERENCES
[1] S. Amer-Yahia, N. Koudas, A. Marian, D. Srivastava, and D. Toman. Structure

and content scoring for xml. In VLDB, 2005.

[2] S. Amer-Yahia and M. Lalmas. Xml search: languages, inex and scoring.
SIGMOD Record, 35(4), 2006.

[3] S. Auer, et. al. Dbpedia: A nucleus for a web of open data. In ISWC/ASWC,
2007.

[4] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword
searching and browsing in databases using banks. In ICDE, 2002.

[5] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum. Probabilistic information
retrieval approach for ranking of database query results. ACM Trans. on

Database Syst., 31(3), 2006.

[6] T. Cheng, X. Yan, and K. C.-C. Chang. Entityrank: Searching entities directly
and holistically. In VLDB, 2007.

[7] W. W. Cohen. Integration of heterogeneous databases without common
domains using queries based on textual similarity. In SIGMOD, 1998.

[8] W. B. Croft and H.-J. Schek. (Eds.). Special issue on database and information
retrieval integration. VLDB J., 17(1), 2008.

[9] P. DeRose, X. Chai, B. J. Gao, W. Shen, A. Doan, P. Bohannon, and X. Zhu.
Building community wikipedias: A machine-human partnership approach. In
ICDE, 2008.

[10] A. Doan, L. Gravano, R. Ramakrishnan, and S. Vaidyanathan. (Eds). Special
issue on managing information extraction. SIGMOD Record, 37(4), 2008.

[11] H. Fang and C. Zhai. Probabilistic models for expert finding. In ECIR, 2007.

[12] Freebase: A social database about things you know and love.
http://www.freebase.com.

[13] K. Golenberg, B. Kimelfeld, and Y. Sagiv. Keyword proximity search in
complex data graphs. In SIGMOD, 2008.

[14] D. Hiemstra. Using Language Models for Information Retrieval. PhD thesis,
University of Twente, Enschede, 2001.

[15] D. Hiemstra. Statistical language models for intelligent XML retrieval. In
Intelligent Search on XML Data, 2003.

[16] V. Hristidis, H. Hwang, and Y. Papakonstantinou. Authority-based keyword
search in databases. TODS, 33(1), 2008.

[17] K. Järvelin and J. Kekäläinen. Ir evaluation methods for retrieving highly
relevant documents. In SIGIR, 2000.

[18] V. Kacholia, et.al. Bidirectional expansion for keyword search on graph
databases. In VLDB, 2005.

[19] G. Kasneci, M. Ramanath, M. Sozio, F. M. Suchanek, and G. Weikum. Star:
Steiner tree approximation in relationship-graphs. In ICDE, 2009.

[20] G. Kasneci, F. M. Suchanek, G. Ifrim, M. Ramanath, and G. Weikum. Naga:
Searching and ranking knowledge. In ICDE, 2008.

[21] J. D. Lafferty and C. Zhai. Document language models, query models, and risk
minimization for information retrieval. In SIGIR, 2001.

[22] G. Li, B. Ooi, J. Feng, J. Wang, and L. Zhou. Ease: an effective 3-in-1 keyword
search method for unstructured, semistructured and structured data. In
SIGMOD, 2008.

[23] X. Liu and W. B. Croft. Statistical language modeling for information retrieval.
In Annual Review of Information Science and Technology 39, 2004.

[24] T. Neumann and G. Weikum. RDF-3X: a RISC-style engine for RDF.
Proceedings of the VLDB Endowment, 1(1):647–659, 2008.

[25] Z. Nie, Y. Ma, S. Shi, J.-R. Wen, and W.-Y. Ma. Web object retrieval. In WWW,
2007.

[26] D. Petkova and W. Croft. Hierarchical language models for expert finding in
enterprise corpora. Int. J. on AI Tools, 17(1), 2008.

[27] W3c: Resource description framework (rdf). www.w3.org/RDF/.

[28] S. Sarawagi. Information extraction. Foundations and Trends in Databases,
2(1), 2008.

[29] P. Serdyukov and D. Hiemstra. Modeling documents as mixtures of persons for
expert finding. In ECIR, 2008.

[30] W3c: Sparql query language for rdf. www.w3.org/TR/rdf-sparql-query/.

[31] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A large ontology from
wikipedia and wordnet. J. Web Sem., 6(3), 2008.

[32] C. Zhai. Statistical language models for information retrieval: A critical review.
Foundations and Trends in IR, 2(3), 2008.

[33] C. Zhai and J. D. Lafferty. A risk minimization framework for information
retrieval. Inf. Process. Manage., 42(1), 2006.

[34] X. Zhou, J. Gaugaz, W.-T. Balke, and W. Nejdl. Query relaxation using
malleable schemas. In SIGMOD, 2007.

