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ABSTRACT
Many modern applications are faced with the task of knowl-
edge discovery in entity-relationship graphs, such as domain-
specific knowledge bases or social networks. Mining an “in-
formative” subgraph that can explain the relations between
k(≥ 2) given entities of interest is a frequent knowledge dis-
covery scenario on such graphs. We present MING, a prin-
cipled method for extracting an informative subgraph for
given query nodes. MING builds on a new notion of infor-
mativeness of nodes. This is used in a random-walk-with-
restarts process to compute the informativeness of entire
subgraphs.

Categories and Subject Descriptors
H.0 [Information Systems]: General—knowledge discov-
ery

General Terms
Algorithms, Design

1. INTRODUCTION
Many modern applications exploit information organized

in entity-relationship (ER) graphs, such as domain-specific
knowledge bases (e.g. metabolic or regulatory networks
in biology, criminalistic networks for crime investigation,
etc.) or social networks (such as data sharing or business-
customer networks). One can represent them by relational
or ER models, XML with XLinks, or RDF triples. An ex-
ample of an ER graph is YAGO [17], which has been con-
structed by systematically harvesting semi-structured assets
of Wikipedia (e.g., infoboxes, categories, lists, etc.). The
YAGO graph consists of millions of nodes (representing en-
tities, e.g. persons, movies, locations, dates, etc.) and
tens of millions of labeled edges, representing facts about
entity pairs, such as Max Planck fatherOf Erwin Planck,
Max Planck isA Physicist, Max Planck bornIn Germany ,
etc. YAGO supports more than 100 relationship labels such
as isA, bornIn, citzenOf, marriedTo, etc.

Other examples for ER graphs are GeneOntology or
UMLS (in the biomedical domain), the graphs represented
by IMDB (in the domain of movies and actors), DBLP (in
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the domain of Computer Science publications), and LOD [3]
(for publishing interlinked Web data sets as RDF graphs),
etc.

A knowledge discovery task on such graphs is to determine
an “informative” subgraph that can explain the relations be-
tween k(≥ 2) entities of interest. Examples are queries that
aim at finding the relations between k given biomedical en-
tities, the connections between k criminals, the most rele-
vant data shared by k Web 2.0 users, etc. Formally, the
general problem that motivates this work is: given a set
Q = {q1, ..., qk}, k ≥ 2, of nodes of interest (i.e. query nodes)
from an entity relationship graph G and an integer b > k
(representing a node budget), find a connected subgraph S
of G with at most b nodes that contains all query nodes and
maximizes an “informativeness” function ginfo(S, Q).

As a concrete example, consider the query that asks
for the relation between Max Planck, Albert Einstein, and
Niels Bohr. An informative subgraph that captures their re-
latedness should reveal that all three of them are physicists,
scientists, Nobel Prize winners, etc., and should discourage
long or obscure connections (e.g. connections through per-
sons with same nationalities or same birth or death places
as some of the query entities). Figure 1 depicts a possible
answer.

Figure 1: Answer returned by MING on YAGO

The above problem comes with two subproblems: (1)
what is a good measure for representing the informative-
ness of relations between entities in ER graphs? (2) how
to determine the most informative subgraph for the given
query nodes? We address both problems in this work.

In previous approaches [16, 5, 7, 18, 8, 15], the notion of
subgraph importance is mainly based on structural proper-
ties of the underlying graph (e.g. indegree or outdegree of
a node, density or edge connectivity of a subgraph, etc.).
More related to our approach are techniques based on in-
fluence propagation like [7] or [18]. The approach of [7]
exploits a current-flow algorithm to determine an impor-
tant subgraph for two query nodes. The approach of [18],
CEPS, can handle more than two query nodes, and gives
a random-walk-based solution for retrieving the most “cen-
tral”nodes with respect to the query nodes, so called center-
pieces: nodes that are closely connected to most of the query



nodes. The centerpieces are exploited to mine an important
subgraph for the query nodes. All mentioned approaches
leave aside the problem of deriving measures for capturing
the semantic importance of nodes and edges in ER graphs.
Other, Steiner-tree-based, approaches [1, 11, 2, 12, 10, 6,
9, 13] have addressed the problem of retrieving the top-k
minimum-cost subtrees that closely interconnect the given
query nodes. Their result paradigm is tree-based. Hence,
these approaches are not directly applicable to our problem
of retrieving informative subgraphs.

Our approach gives a principled solution, while making
the semantic aspect of entities and relationships in ER
graphs a key ingredient for the measure of informativeness.
Our main contributions are the following:

1. We give a clean notion of informativeness for nodes
in ER graphs. Our informativeness measure builds on
a natural extension of the random surfer model that
underlies PageRank [4]. This measure is exploited to
capture the informativeness of entire subgraphs.

2. We present MING, a robust algorithm for mining
and extracting most informative subgraphs for k(≥ 2)
query nodes.

3. Based on user assessments, we demonstrate the quality
of MING in comparison to prior work.

2. ER-BASED INFORMATIVENESS
In the following definition we introduce ER graphs as

multi-graphs.

Definition 1 (ER graph). Let Ent and Rel be finite
sets of entity and relationship labels respectively. An ER
graph over Ent and Rel is a tuple G = (V, lEnt, ERel), where
V is a set of nodes, lEnt : V → Ent is an injective function,
ERel ⊆ lEnt(V )×Rel × lEnt(V ) is a set of labeled edges.

Since the direction of a relationship between two entities
can always be interpreted in the converse direction, we view
the edges of an ER graph as bidirectional. That is, we as-
sume that for each edge (u, r, v) ∈ ERel there is an edge
(v, r−, u) ∈ ERel, where r− represents the inverse relation
label of r.

For any subgraph S of an ER graph G, we denote by
Ent(S) the set of its labeled nodes (i.e., entities), and by
F (S) the set of its labeled edges (i.e., facts). Note that
F (S) contains edges of the form (α, β, γ), and that both
α, γ ∈ Ent(S).

Discussion We believe that in order to compute the infor-
mativeness of nodes in ER graphs, the link structure has to
be taken into account. But, as a matter of fact, edge direc-
tions in ER graphs do not always reflect a “clear” endorse-
ment. For example, the fact Albert Einstein isA Physicist
can be represented as Physicist hasInstance Albert Einstein.
Consequently, measures that build on the link-based en-
dorsement hypotheses such as PageRank [4] or HITS [14]
are not applicable in a straight-forward way. In general, we
argue that measures that rely on the graph structure alone
are not sufficient, since ER graphs represent only a limited
fraction of the real world.

Our informativeness measure for nodes overcomes these
problems by building on edge weights that are based on co-
occurrence statistics for entities and relationships. These
statistics are derived from the domain represented by the
ER graph. They will guide a random walk process on the
adjacency matrix of the ER graph.

2.1 Statistics-based Edge Weights
For each fact represented by an edge, we compute two

weights; one for each direction of the edge. Each of these

weights will represent a special kind of endorsement, ob-
tained from co-occurrence statistics for entities and relation-
ships.

Definition 2 (Fact Pattern, Match, Binding). Let
X be a set of entity variables (placeholders for entities). A
fact pattern from an ER graph G = (V, lEnt, ERel) is a triple
(α, β, γ) ∈ (Ent ∪ X) × Rel × (Ent ∪ X), in which either
α ∈ X or γ ∈ X, such that if α ∈ X then there exists
(α′, β, γ) ∈ ERel, and if γ ∈ X there exists (α, β, γ′) ∈ ERel.

Without loss of generality, let α ∈ X. The edge (α′, β, γ)
from G is called a match to the fact pattern (α, β, γ), and
the entity α′ is called a binding to the variable α.

Consider the fact pattern x isA Physicist, x ∈ X. The
facts Albert Einstein isA Physicist and Bob Unknown isA
Physicist are matches to the above fact pattern. In our ex-
ample, the fact Albert Einstein isA Physicist should have
a higher informativeness than Bob Unknown isA Physicist,
since Einstein is an important individual among the scien-
tists. More precisely, the binding Albert Einstein should be
more informative than Bob Unknown. To capture this no-
tion of informativeness, we introduce a probabilistic model.

Let (α, β, γ) be a fact pattern, where α ∈ X. Let α′ be a
binding of α. We estimate the informativeness of α′ given
the relationship β and the entity γ as:

Pinfo(α
′|β, γ) =

P (α′, β, γ)

P (β, γ)
≈ W (α′, β, γ)

W (β, γ)
(1)

where W (α′, β, γ) denotes the number of domain witnesses
for the fact α′ β γ, i.e., the number of its occurrences
in the underlying domain of the ER graph. Analogously,
W (β, γ) stands for the number of witnesses for the pattern
(∗, β, γ), where the wild card ‘∗’ can be any entity. The value

Pinfo(α
′|β, γ) is assigned as a weight to the edge γ

β→ α′.
In practice, these values can be estimated by means of

inverted indexes on a background corpus, e.g. a large Web
sample representing the domain of the ER graph. From the
indexes one can compute (co-)occurrence statistics for (pairs
of) entity names and estimate the needed parameters.

2.2 IRank for Node-based Informativeness
Our aim is an informativeness measure for nodes based

on random walks on the – now weighted – ER graph. Our
measure, coined IRank (Informativeness Rank), is related to
PageRank [4].

Let G = (V, lEnt, ERel) be an ER graph. Let u ∈ lEnt(V )
be an entity and let P (u) be the probability of encounter-
ing the entity u in the domain from which G was derived.

This value can be estimated as P (u) ≈ W (u)P
v∈Ent W (v)

, where

again W (u) denotes the number of occurrences of the en-
tity u in the underlying domain. P (u) can be viewed as an
importance prior for u.

In IRank, the random surfer may decide to restart his
walk from an entity u ∈ lEnt(V ) with probability propor-
tional to P (u). Alternatively, the surfer may reach u from
any neighboring entity v that occurs in an edge of the form
(v, r, u) ∈ ERel (given that the surfer is at one of these neigh-
boring entities of u).

Let N(u) denote the set of neighboring entities of u in G.
The probability of reaching u via one of its neighbors would
be proportional to:X

v∈N(u)

X
r

(v,r,u)∈ERel

Pinfo(u|r, v) · IR(v) (2)

where IR(v) denotes the probability that the surfer is at v.
Finally, the accumulated informativeness at a node u ∈

lEnt(V ) is given by:



IR(u) = (1−q)P (u)+q
X
v,r

(v,r,u)∈ERel

Pinfo(u|r, v)·IR(v) (3)

For practical reasons, the outgoing edge weights (i.e., the
Pinfo weights) for each entity u are normalized by the sum of
all outgoing edge weights of u. With this normalization step,
Equation (3) represents an aperiodic and irreducible finite-
state (i.e., an ergodic) Markov Chain. This guarantees the
convergence and the stability of IRank. Although IRank is
related to PageRank, the Pinfo values are crucial and make
a big difference in the random walk process.

2.3 Most Informative Subgraphs with MING
As a first step, MING extracts a subgraph C of G that

contains many connections between the query nodes. This
is a rather recall-oriented step; most of the spurious regions
of G are removed. The subgraph C can be extracted with
heuristics similar to the ones presented in [7]. In a second
step, we run the STAR algorithm [13] to determine a subtree
T of C that closely interconnects all entities from Q. As-
suming that T already captures some relatedness between
the query entities, each node v ∈ Ent(T ) is viewed as infor-
mative; these nodes are assigned the label ‘+’. Nodes on the
“rim” of C that do not represent query entities and have de-
gree 1, i.e., nodes that do not contribute to any connection
between query entities, are viewed as uninformative, and are
labeled ‘−’.

For each unlabeled node v ∈ Ent(C), we compute a score
P−(v), representing how uninformative v is, and a score
P+(v), representing how informative v is, with respect to
the query entities.

The informative subgraph mining problem can be stated
as follows.

Definition 3 (Informative Subgraph Mining).
Given the connected subgraph C, the set Q of query nodes,
and an integer node budget b >= |Ent(T )|, solve the tasks:

1. Determine for each v ∈ Ent(C) a label lab(v) ∈ {−, +}
as lab(v) = arg maxl∈{−,+} Pl(v).

2. Extract a connected subgraph S of C that contains T
and has the following properties: (1) every v ∈ Ent(S) is
labeled ‘+’, (2) S contains at most b nodes, (3) S maximizesP

v∈Ent(S) P+(v).

With the requirement that T be a subgraph of S, we guar-
antee that all query nodes are interconnected in the result
graph.

Classification Method Our intuition is the following. Let
l ∈ {−, +}. Consider all paths in C that connect any two
nodes labeled l and cross an unlabeled node v. The higher
the number of such paths, the higher the probability that
v is also labeled l. On the other hand, the longer these
paths, the smaller the probability that v is labeled l. To
estimate Pl(v), we need methods that capture and reward
robust structural connectivity and discourage long and loose
connections.

Consider a random walker that starts at a node labeled l
in C and finishes his walk again at a node labeled l. For an
unlabeled node v ∈ Ent(C), let Pl(v) denote the probability
that v is visited during this random walk. As depicted in
Figure 2, we estimate this probability as the composition
of two probabilities P 1

l (v) and P 2
l (v). P 1

l (v) represents the
probability that the random walker starts at any l-labeled
node and reaches v. P 2

l (v) represents the probability that
any l-labeled node is reached when the random walker starts
his walk at v. It is straightforward to see that Pl(v) =
P 1

l (v) · P 2
l (v).

In order to estimate P 1
l (v), we extend IRank into a Ran-

dom Walk with Restarts (RWR) process that restarts from

the nodes labeled l. The walk starts at any l-labeled node v
and follows the outgoing edges of v with a probability that
is proportional to the edge weights (as edge weights on C
we consider the Pinfo values from Equation (1)). The prob-
ability that our walk follows the outgoing edges of nodes
is dampened by a factor q. With a probability (1 − q) the
random walk restarts at any node labeled l.

Figure 2: Probability Pl composed of P 1
l and P 2

l .

In RWR processes long connectivity paths are discour-
aged in a natural way (by the restart probability). Further-
more, as reported in [19] and [18], RWRs have nice proper-
ties when it comes to capturing the structural connectivity
between nodes. They overcome several limitations of tra-
ditional graph distance measures such as maximum flow,
shortest paths, etc.

In order to compute P 2
l for an unlabeled node v, we could

use again RWRs. More precisely, we could run an RWR
for every unlabeled node v and compute P 2

l (v) as P 2
l (v) =P

u:lab(u)=l Pv(u), where Pv(u) would denote the stationary

probability of u as determined by the RWR starting at v.
However, there might be several hundreds of unlabeled nodes
in C, and running an RWR for each of the unlabeled nodes
is highly inefficient in practice. Hence, we estimate the P 2

l

in a more relaxed but more efficient way.
Let u be an unlabeled node in C. The probability of

having been at node u one step before reaching any node v
labeled l is given by:

P (u, 1) =
X

v:lab(v)=l
v∈N(u)

Pinfo(v|u) (4)

where N(u) denotes the set of neighboring nodes of u in C,
and Pinfo(v|u) is defined as:

Pinfo(v|u) :=
X

r
(u,r,v)∈F (C)

Pinfo(v|r, u)

Let L ⊆ Ent(C) denote the set of nodes labeled l in C.
Now, one can recursively define the probability that u is
reached s > 1 steps before any node labeled l as:

P (u, s) =
X

v∈Ent(C)\L

Pinfo(v|u) · P (v, s− 1) (5)

Intuitively, s represents the depth of the recursion. As
shown in Algorithm 1, the above recursion can be computed
in an iterative manner in time O(|F (C)|).

Algorithm 1 p2lEstimation(C)

1: X := {v|lab(v) = l}
2: for all v ∈ X do
3: P 2

l (v) = 1
|X|

4: end for
5: Y := ∅; U := Ent(C) \ L
6: while U is not empty do
7: for all adjacent nodes u, v with u ∈ U, v ∈ X do
8: compute P 2

l (u) =
P

v:lab(v)=l Pinfo(v|u)P 2
l (v)

9: insert u into Y
10: end for
11: U := U \ Y
12: X := Y ; Y := ∅
13: end while

In lines 1 - 4 of Algorithm 1, all nodes in X (which are
exactly the nodes labeled l) are assigned the same P 2

l value



1
|X| . The set U (line 5) contains in each iteration (lines 6

- 13) all unlabeled nodes that have no P 2
l value. In each

iteration, we exclude from U (line 11) all nodes for which a
P 2

l value was determined during the iteration (represented
by the set Y , line 5). At the end of each iteration the set X
is set to Y . In lines 7 - 10, for all adjacent nodes u, v with
u ∈ U and v ∈ X we compute P 2

l (u) (line 8). The algorithm
terminates when the set U is empty.

At this point, each node v of C has for each l ∈ {−, +}
a probability Pl(v) = P 1

l (v) · P 2
l (v). The label of each

node in v ∈ Ent(C) can now be easily determined by
lab(v) = arg maxl∈{−,+} Pl(v). Finally, the most informa-
tive subgraph of C is the one that consists of all nodes v for
which lab(v) = +. In case this subgraph has more than b
nodes, we successively remove from it the node v that does
not belong to T and has minimal P+(v). By the construc-
tion of our mining method, it is easy to see that S fulfills
the desired properties of Definition 3.

3. USER STUDY
Setting The focus of our evaluation has been on the user
perceived quality of MING’s answers. Therefore, in a user
evaluation, we compared the answers of MING to those re-
turned by CEPS [18]. As data set we used YAGO. The Pinfo

edge weights (see Equation (1)) for YAGO were approxi-
mated on the Wikipedia corpus, based on co-occurrences of
entity names in Wikipedia articles. In general, it is quite dif-
ficult for users to decide whether an ER graph that intercon-
nects a given set of query entities is informative, because: (1)
informativeness is an intuitive and also subjective notion, (2)
a user’s intuition has to be supported by the data in the un-
derlying ER graph, and (3) a user needs to have very broad
knowledge to assess the informativeness of a result graph
for any set of given query nodes (especially when the query
nodes represent rather obscure entities). Therefore, for this
evaluation, we generated queries in which the query nodes
represented famous individuals. YAGO is very rich in terms
of famous individuals and contains plenty of interesting facts
about them. In order to generate our queries, we extracted
from the Wikipedia lists, a list of famous physicists, a list
of famous philosophers, and a list of famous actors. From
each of these lists we randomly generated 20 queries, each of
them consisting of 2 or 3 query entities, resulting in a set of
60 queries in total. For each of the 60 queries, we presented
the results produced by CEPS and MING (on the same sub-
graph C) to human judges (not familiar with the project)
on a graph-visualization Web interface, without telling them
which method produced which graph. For visualization pur-
poses, the result graphs of CEPS and MING were pruned,
whenever they had more than 15 nodes. By restricting the
result graphs to such a small number of nodes, both methods
were challenged to maintain only the most important nodes
in the result graphs. CEPS comes with its own pruning pa-
rameter (i.e., visualization parameter). For each query, the
users were given the possibility to decide which of the pre-
sented subgraphs they perceived as more informative. That
is, one of the results could be marked informative. We also
allowed users to mark both result graphs as informative, if
they perceived them both as equally informative. Addition-
ally, the results of both methods could be left unmarked,
meaning that they both did not suit the user’s intuition.
The results are presented in Table 1.

MING CEPS

# times preferred over competitor 182 4
# times marked informative 185 7
# times both marked informative 3
# times both left unmarked 21

Table 1: Results of the user evaluation

Results There were 210 assessments in total, correspond-
ing to more than 3 assessments per query. The result graphs
produced by MING were marked 185 times as informative,
and out of these, 182 times, they were perceived more in-
formative than the results produced by CEPS. On the other
hand, the MING results were left 25 times unmarked, and
out of these, only 4 times they were perceived to be less
informative than the results produced by CEPS.

The fundamental factor for the superiority of MING is
its subgraph learning method. It learns informative and
structurally robust paths between the nodes of an initial
tree T that closely interconnects the query nodes.

4. CONCLUSION
The motivation for this work has been to provide new

techniques for exploring and discovering knowledge in ER
graphs. Our method, MING, is a significant step forward in
this realm. It contributes to new semantic measures for the
relatedness between entities. MING exploits such measures
for extracting informative subgraphs that connect two or
more given entities. The results of the user study fortify our
assumption that MING indeed captures the intuitive notion
of informative subgraphs in most of the cases.
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