
YAGO2s: Modular High-Quality Information Extraction
with an Application to Flight Planning

Fabian M. Suchanek, Johannes Hoffart, Erdal Kuzey, Edwin Lewis-Kelham
Max Planck Institute for Informatics, Germany

Abstract: In this paper, we present YAGO2s, the new edition of the YAGO ontol-
ogy [SKW07, HSBW12]. The software architecture has been refactored from scratch,
yielding a design that modularizes both code and data. This modularization enables
us to add in new data sources more easily, while still maintaining the high accuracy
and coherence of the ontology. Thus, we believe that YAGO2s occupies a sweetspot
between a centralized design and a completely distributed design.

In this demo, we present an application of this design to the task of planning a
flight. Our proposed system finds flights between all airports close to the departure
city to all airports close to the destination city.

1 Knowledge Base Construction
In recent years, many projects have successfully created large-scale knowledge bases
(KBs) in an automated fashion. The KBs contain millions of entities (such as rivers,
universities, people, and movies), and millions of facts about them (such as who acted
in which movie, which river is located in which country, etc.). There are several strategies
to build such KBs. One strategy is to accumulate and reconcile as much data as possi-
ble. Projects such as TextRunner [BCS+07], and NELL [CBK+10] follow this strategy,
as did YAGO [SKW07, HSBW12]. The advantage of this method is that the knowledge
is largely coherent, because it is curated by a single provider. The drawback is that the
project becomes more and more difficult to maintain as more resources are integrated, and
as more people work on it. An alternative approach is to furnish only small pieces of data,
and to interlink these. This is the approach favored by the Semantic Web community as
Linked Open Data. The advantage of this strategy is that individual datasets are curated by
their respective owners, thus modularizing the data and distributing the work. The draw-
back is that it is challenging to establish links between the data sets. Thus, the quality
of the cross-ontology data is often not perfect [HHM+10, DSSM10]. The DBpedia on-
tology [ABK+07] is pursuing another approach: It relies on information extraction, but
outsources some of the manual tasks to a community. This has the advantage of distribut-
ing the work. At the same time, it can lead to slight incoherences [HSBW12], and nothing
is known about the accuracy of the data in DBpedia.

The YAGO project started in 2007 by combining WordNet [Fel98] and Wikipedia to a
coherent general-purpose KB. Thus, YAGO was in the camp of the centralized KBs. This
allowed it to enforce accuracy and coherence on its data. Every entity in YAGO and every
relationship is unique. Manual evaluations proved [SKW07, HSBW12] that the probability
that a given statement in YAGO is correct stands at 95%. This focus on precision is the
main characteristics of YAGO in the realm of automatically constructed KBs.



In recent years, more and more people have joined the YAGO team, and more and more re-
sources have been integrated into the KB. This yielded YAGO2 [HSBW12]. Today, YAGO
is driven by a core team of 5 people, with around a dozen more people working on directly
related projects. With more people joining, and now a small research group dedicated to
ontology development, the centralized mode was no longer sustainable. However, a dis-
tributed mode in the spirit of the Semantic Web or a community-based approach makes it
harder to achieve the data quality or the coherence of YAGO2. Therefore, we have opted
for a middle course, coined YAGO2s (“YAGO 2 star”). This new framework is based on
the data sources and the extraction mechanisms of YAGO2 [HSBW12]. However, the en-
tire software architecture for the new YAGO2s has been reengineered from scratch.

2 The YAGO2s Architecture

WordNet-
Extractor

WordNet-
Theme

Type-
Extractor

Type-
Theme

...WordNet Wikipedia Schema

Fact-
Extractor

Fact-
Theme

Type-
Checker Clean Fact-

Theme

Figure 1: The YAGO2s Architecture

We have completely refactored the ontology extraction framework into a modular struc-
ture (Figure 1). There are 39 extractor modules. Each module receives a data source
as input. Input sources are WordNet [Fel98], Wikipedia, WordNet Domains [BFMP04],
the Universal WordNet [dMW09], and Geonames. Others can be added. Each extractor
produces one or multiple themes as output. A theme is a set of RDF triples. For exam-
ple, the module “WordNet-Extractor” receives WordNet as an input source, and produces
an output theme called “WordNet-Theme”. This output theme contains RDF triples ex-
tracted from WordNet. The data sources can also be files that contain handwritten data.
The schema of YAGO, e.g., which defines the relations with their domains and ranges, is
defined manually in YAGO. Such data can be supplied to the modules as input sources.
This ensures that all modules operate on the same predefined schema. Modules can also
take other themes as input. In the figure, the module “Type-Extractor” requires the theme
“WordNet-Theme” as input theme. The module uses data from WordNet and Wikipedia
to build the YAGO type system (“Type-Theme”). This theme can become again the input
of other modules. This yields a dependency graph of extraction modules.

Modules can be added or removed ad libitum, as long as the dependencies are respected. In
order to guarantee the data quality, we provide some modules that check the output themes



of other modules. The “Type-Checker”, e.g., filters out statements that do not conform to
the domain and range constraints. The output theme of the type checker is a cleaned
theme, which following modules can use as input. A Deduplicator Module takes a similar
role, deduplicating statements and entities. A Rule Module applies the deduction rules of
YAGO2 to deduce implied facts (such as facts induced by symmetric relations). These
modules ensure that every statement that makes it into the final YAGO themes has been
deduplicated, and checked for type coherence. A revision checker signals if statements
were extracted in a previous run of the system on a previous version of the data sources,
but went missing in the current run. A sample of these statements can then be checked
manually to see, e.g., if Wikipedia infobox attribute names have changed.

This architecture has a number of distinct advantages: First, it modularizes the information
extraction process. Every team member can be responsible for one or multiple modules.
Second, it modularizes the data. YAGO2s will be made available in theme slices, so that
users can download just the themes they desire. Third, this architecture allows for efficient
parallelization. Our scheduling system runs modules that do not depend on each other in
parallel. Fourth, different from a truly distributed approach, our architecture helps keeping
the data coherent by allowing the easy re-use of data-cleaning components across various
sources. This is achieved by a predefined schema as input, and the checker modules that
verify the output. This way, our architecture implements a controlled trade-off between a
centralized approach and a distributed approach.

The native data format of YAGO2s is now Turtle. The fact identifiers of YAGO, which
are used to attach time and space information to facts, are stored in the files in a com-
mented line before the fact. This allows standard RDF engines to consume YAGO themes
without the fact identifiers. We have also made YAGO’s terminology fully RDF and
OWL compliant. In addition, the new data set contains a theme with WordNet Domains
[BFMP04], which give a topic structure to YAGO. Thus, it is now possible to ask for
all entities related to, e.g., “geography”. We have re-evaluated the ontology by manual
sampling, in the same way as described in [HSBW12]. Overall, we evaluated over 3700
facts. Our evaluation confirmed again a fact accuracy of 95%. YAGO2s is available at
http://yago-knowledge.org.

3 An Application: Flight Planning

The new architecture of YAGO2s makes it easier to integrate new data sources in a con-
trolled environment. To demonstrate this, we added a new module to the framework that
provides information about flights. This information can be extracted from Wikipedia
pages about airports. These pages contain tables with the names of the flight companies
that operate at the airport, together with their destination airports. We designed a simple
information extractor that reads out these tables from Wikipedia. This piece of code acts
as a module in our framework. Its output is checked by the type checker and the other
checker modules, thus ensuring smooth integration with the rest of YAGO2s.

In this demo, we show how useful the new YAGO2s is with this module. Many commercial
Web sites allow searching and booking flights. However, the user usually has to specify
the departure airport and the destination airport. If the user lives close to several airports,
this can lead to a combinatorial problem. As an example, take a user based in Saarbrücken,



a small city in the West of Germany. Assume that he wishes to go to the Ligurian cost, in
Italy. Assume also that he is willing to make a trip of up to 3 hours to the airport. Then
there are at least 11 airports that could serve as departure airports.1 There are also at least
6 airports that are close to the Ligurian cost.2 This yields a total of 66 possible connections
from departure airports to destination airports. With current services, the user has to try
out all of them until there is a suitable match. This process can easily take several days (as
one author of this paper experienced).

With YAGO2s, this task can be simplified. YAGO2 contained already many airports and
cities, together with their coordinates. With the new flight information module, YAGO2s
knows also which companies offer flights between which airports. This allowed us to build
a system that can suggest flight connections to the user. The user simply enters the city of
departure and the city of arrival. Our system seeks all airports within a predefined distance
of the departure city, and finds all direct flights to airports in the vicinity of the target city.
Then the system displays all connections, along with their trajectory on a map. A search
for “Saarbrücken to Genova”, e.g., yields 4 possible flight connections, with 3 different
airlines. We link these to the Web page of a travel company, so that the user can check
flight availability and book the flight. This way, YAGO2s acts as an entrance portal to
the commercial service, giving a true added value to the user. Our demo is available at
http://www.mpi-inf.mpg.de/yago-naga/yago/flights.html.

References

[ABK+07] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. DBpedia: A
Nucleus for a Web of Open Data. In ISWC, 2007.

[BCS+07] M. Banko, M. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni. Open Informa-
tion Extraction from the Web. In IJCAI, 2007.

[BFMP04] L. Bentivogli, P. Forner, B. Magnini, and E. Pianta. Revising WordNet Domains Hier-
archy. In COLING Workshop on Multilingual Linguistic Resources, 2004.

[CBK+10] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. Hruschka Jr., and T. Mitchell. Toward
an Architecture for Never-Ending Language Learning. In AAAI, 2010.

[dMW09] Gerard de Melo and Gerhard Weikum. Towards a Universal Wordnet by Learning from
Combined Evidence. In Proceedings of the 18th ACM Conference on Information and
Knowledge Management (CIKM 2009), pages 513–522, New York, NY, USA, 2009.
ACM.

[DSSM10] L. Ding, J. Shinavier, Z. Shangguan, and D. McGuinness. SameAs Networks and
beyond: Analyzing deployment status and implications of owl:sameAs in Linked Data.
In ISWC, 2010.

[Fel98] C. Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press, 1998.
[HHM+10] H. Halpin, P. Hayes, J. McCusker, D. McGuinness, and H. Thompson. When

owl:sameAs isn’t the Same: An Analysis of Identity in Linked Data. In ISWC, 2010.
[HSBW12] J. Hoffart, F. Suchanek, K. Berberich, and G. Weikum. YAGO2: a spatially and tempo-

rally enhanced knowledge base from Wikipedia. Artificial Intelligence Journal, 2012.
[SKW07] F. Suchanek, G. Kasneci, and G. Weikum. YAGO: A Core of Semantic Knowledge. In

WWW, 2007.

1Ensheim, Zweibrücken, Hahn, Karlsruhe, Frankfurt, Stuttgart, Luxembourg, Strasbourg, 3 airports in Paris.
2Nice, Genova, Turin, Milan, Bergamo, Pisa.


