EUROGRAPHICS 2012 / P. Cignoni, T. Ertl
(Guest Editors)

Volume 31 (2012), Number 2

Automatically Rigging Multi-component Characters

Gaurav Bharaj, Thorsten Thorméhlen, Hans-Peter Seidel, Christian Theobalt

MPI Informatik, Germany

¢ ‘

/t.
-

Figure 1: Our approach creates rigs for multi-component meshes that can be mapped to an input animation skeleton (far left).

Abstract

Rigging an arbitrary 3D character by creating an animation skeleton is a time-consuming process even for ex-
perienced animators. In this paper, we present an algorithm that automatically creates animation rigs for multi-
component 3D models, as they are typically found in online shape databases. Our algorithm takes as input a
multi-component model and an input animation skeleton with associated motion data. It then creates a target
skeleton for the input model, calculates the rigid skinning weights, and a mapping between the joints of the target
skeleton and the input animation skeleton. The automatic approach does not need additional semantic informa-
tion, such as component labels or user-provided correspondences, and succeeds on a wide range of models where
the number of components is significantly different. It implicitly handles large scale and proportional differences
between input and target skeletons and can deal with certain morphological differences, e.g., if input and target
have different numbers of limbs. The output of our algorithm can be directly used in a retargeting system to create

a plausible animated character.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism—Animation

1. Introduction

Computer animation draws a lot of its appeal from being able
to animate the impossible. Often it is the case that man-made
objects are to be animated. Famous examples are the two
lamps in Pixar’s Luxo Jr. (1986), or multi-component char-
acters in feature films, such as in Toy Story (1995), Robots
(2005), Transformers (2007), etc. Creating such animations
is a technically challenging process that even takes experi-
enced artists days if not weeks of work. In a common sce-
nario, the artist is provided with input motion in the form of

(© 2012 The Author(s)

Computer Graphics Forum (© 2012 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

a motion skeleton that was captured through motion capture
or key-framed by an artist. That motion has to be transferred
to a target character which is only given as a static shape rep-
resentation, but without an animation skeleton.

In a process called rigging, the artist manually defines a
skeleton for the target model and attaches geometric seg-
ments to it through surface skinning. The target skeleton
does not only need to conform with the structure of the in-
put motion skeleton, it also needs to comprise joints that are
placed in physically appropriate locations. Finally, the an-
imator needs to define correspondences between input and

Bharaj et al. / Automatically Rigging Multi-component Characters

target skeleton joints, before the target rig and input motion
can be passed to a retargeting system to synthesize the final
animation. Very common challenges arise if input and out-
put skeletons are of very different proportions, or if they are
morphologically different, e.g., if the target model has more
limbs than the input animation skeleton.

In this paper, we propose a new algorithm that automati-
cally creates skeleton rigs for animation of multi-component
character models, as they are typically found in online shape
repositories. Multi-component models are composed of tens
to hundreds of individual closed triangle meshes, however
without component labels. Our algorithm expects as input a
multi-component model and a moving animation skeleton.
The output is a target skeleton for the model, including rigid
skinning weights, as well as joint correspondences between
the input animation skeleton and the target skeleton.

The algorithm resides on the following core contributions:

e a new approach for skeleton generation that starts from
a contact graph between components and simplifies this
initial representation by graph clustering to derive a mean-
ingful target skeleton with rigid skinning weights.

e a multi-component many-to-one joint mapping scheme
between input and target skeleton, based on dynamic pro-
gramming.

Our method also succeeds if the number of components in
the model is orders of magnitude different from the number
of joints in the input animation, and it is robust to differences
in skeletal dimensions. It inherently handles certain morpho-
logical differences between input skeleton and target, such
as different numbers of limbs. The approach proposes plau-
sible skeleton locations, despite the fact that joints are typi-
cally not modeled explicitly in most multi-component mod-
els. Joint correspondences between input and target skele-
ton are computed in such a way that the structure of the
input skeleton is reflected, and thus, the output animation
preserves the characteristics of the input. Furthermore, our
algorithm is robust to varying input mesh resolution, and re-
liably finds rigs even for input shapes made of thousands
of components. The method is generic and succeeds with-
out user intervention and does not requires any semantic la-
belling, like in [HRE™*08], or point-by-point correspondence,
as in [ZXTD10].

2. Related Work

In this section, we review important related work for sub-
problems that we address in our approach.

Automatic Rigging. Many related papers attempt to ani-
mate collections of mechanical components, assuming that
interactions between components have been modeled in a
physically plausible way, i.e., through explicitly modeled
joint geometry or plausibly defined interactions at contact
surfaces. Hahn’s approach [Hah88] animates rigid body as-
semblies by studying their physical characteristics such as

friction, mass and moment of inertia. The system does not
attempt to animate as complex multi-component models as
we aim for. Sims [Sim94] presents techniques to evolve lo-
comotion of morphologically varying simple creatures us-
ing an artificial neural networks-based learning approach.
Xu et al. [XWY*09] animate 3D (CAD) models, but expect
correctly modeled geometry of real joints including, e.g.,
revolute, prismatic, or ball-and-socket joints. Other meth-
ods, such as proposed by Baran et al. [BP07], automati-
cally rig single-component deformable models. Hecker et
al. [HRE*08] describe an approach to rig user-created virtual
characters. However, their approach expects explicit user-
input, e.g., user-given semantic labels for rigged limbs, such
as arms or legs. Another animation paradigm is mesh-based
deformation transfer between two models with known sur-
face correspondences [ZXTD10, SP04]. In contrast, our sys-
tem rigs and animates 3D models composed of hundreds of
small components using a fully-automatic pipeline.

Shape analysis. Shape analysis for multi-component CAD
models has recently made great strides ahead. Some works
explore how components mechanically interact with each
other in a physically correct sense. There are approaches
based on slippage analysis [GG04, XWY*09] that try to ex-
tract correct mathematical joint types from modeled joint ge-
ometry. Recently, Mitra et al. [MYY * 10] explored how stati-
cally modeled mechanical assemblies would move; however
CAD models with detailed modeled geometry are required.

In the models from online databases, which we explored,
most models are created for artistic purposes and not in-
dustrial CAD. Intuitively, we know how the components of
the artistic models are supposed to interact with each other.
However, a closer inspection shows that artists generally re-
frain from the effort to model contact surfaces or actual ge-
ometry of joints explicitly. As a consequence, slippage anal-
ysis is not applicable for most of these models.

Skeleton creation, fitting and skinning. Katz and
Tal [KTO3] and Au et al. [ATC*08] propose methods to
extract skeletons for single-component deformable models.
Baran et al. [BPO7] propose a methods to embed a given
skeleton into a single-surface biped character and compute
skinning weights. Hecker et al. [HRE*08] model a char-
acter by combining components with known skeletons us-
ing user-provided semantic component labels. Other ap-
proaches, such as [XWY™*09], use multi-component CAD
models and convert the meshes into a single voxel grid to
animate it. Such a method does not directly comply with the
established animation pipeline in the industry and thus, re-
quires a completely different approach than skeleton retar-
geting for animation.

Our method generates an animation rig for arbitrary com-
partmentalized rigid body assemblies. Hence approaches
where skinning is calculated for single shell surfaces, such
as in [BPO7] and [KSO10], cannot be applied directly.

Finding correspondences for retargeting. In skeleton-

(© 2012 The Author(s)
(© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Bharaj et al. / Automatically Rigging Multi-component Characters

1 ”/ A\

Figure 2: Overview of our approach (top left to bottom right): segmented input mesh; point based representation; extracted
contact graph; high-resolution clustering of the contact graph (defining the output skeleton); low-resolution clustering; input
animation skeleton and joint mapping to the output skeleton; different poses of rigged input mesh that are generated with the

joint mapping.

based animation, the term retargeting refers to the process
of mapping joint angle data from an input skeleton to a tar-
get skeleton such that certain constraints for plausible mo-
tion are fulfilled [Gle01,CK99]. Alternatively, in a skeleton-
less domain, retargeting can implicitly be obtained by resort-
ing to mesh-based animation transfer [ZXTD10,SP04]. Also
similar in spirit is the work [YAH10] in which the authors
transfer stylized motion between characters. All approaches
require semantic correspondences between input and output
skeletons or surfaces, that are typically provided by the user.
In contrast, our approach computes such correspondences
automatically.

3. Automatic Rigging and Joint Mapping

An overview of the proposed approach for automatic rigging
and joint mapping of a multi-component character is shown
in Fig. 2. The input to our pipeline is a 3D mesh that is com-
posed of many individual components. Each component’s
surface is sampled to a point cloud. Based on the point cloud
data, a contact analysis of components is performed. This re-
sults in a graph in which each component is represented by a
node, and in which there is an edge between two nodes if the
corresponding components are in contact. This contact graph
is typically quite complex and is not directly suited for rig-
ging of the input model. The contact graph is then simplified
and transformed into a tree by clustering nodes. Thereby, a
high- and a low-resolution clustering of the graph are gen-
erated. A second input to our pipeline is an input animation
skeleton. Correspondences are estimated between the clus-

(© 2012 The Author(s)
(© 2012 The Eurographics Association and Blackwell Publishing Ltd.

tered (high- and low-resolution) contact graphs and the joints
of the input animation skeleton. This results in a rigged input
mesh, i.e., an output skeleton for the multi-component model
comprising a bone hierarchy and interconnecting joints, as
well as rigid skinning weights associating each component
with the appropriate bone. The model can be animated by
retargeting the animation data of the input skeleton to the
generated rig.

In the following sections each step of our automatic rigging
and animation pipeline is explained in detail.

3.1. Inputs

Our approach typically requires two inputs: firstly, a user
provided 3D mesh and, secondly, an input animation skele-
ton.

We expect that the 3D mesh is composed of many individ-
ual components, but component labels for triangles are not
available, i.e., the model is a priori just a set of unclustered
triangle patches. This is typically the case for man-made ob-
jects, such as robots, ships, cars, household appliance, etc.
In particular, our approach does not work for meshes that
are made out of a single shell, as it is often the case for 3D
models of humans or animals.

Input 3D meshes can be modeled manually in any 3D mod-
elling package or can be found, for example, in Internet
model databases, such as Dosch Design, Turbosquid, or
GoogleWarehouse. The majority of 3D meshes in such in-
ternet databases are not rigged with a skeleton for anima-
tion. The second input is an animation skeleton. This skele-

Bharaj et al. / Automatically Rigging Multi-component Characters

Figure 3: Generation of a contact graph: (left to right) multi-component mesh, point cloud, calculated contact graph, high
frequency components, i.e., overly densely connected components of the contact graph: magnification of the chest region,

magnification of the foot region

ton is given by a tree hierarchy of joints that are connected
by bones. Motion data defining joint transformations are also
provided. Such animated skeletons can be either modeled
manually or can be found in motion-capture databases, such
as the CMU Mocap Database or the Documentation Mocap
Database (HDMO5).

3.2. Contact Graph

In order to transfer the motion of the animation skeleton to
the input 3D mesh, we need to establish correspondences be-
tween all components of the 3D mesh and the joints of the
animation skeleton. This is a quite challenging task. Firstly,
there is no one-to-one mapping between components and
joints. Instead many components can be associated with the
same joint. Secondly, the structure of the input mesh may
be significantly different from that of the animation data,
e.g., there may be different numbers of arms or legs. Con-
sequently, in order to solve this challenging correspondence
problem, we need to extract an output skeletal structure from
the input mesh that is compatible with the animation skele-
ton.

The task of extracting an initial skeletal structure for a multi-
component input mesh is very different from generating a
skeleton for a mesh that is made out of a single shell. Unfor-
tunately, despite the comparmentalized geometry, it is still
not trivial to precisely determine appropriate joint locations
that will make the model articulate in a plausible manner.
The reason is that in most multi-component models, joints or
contact surfaces were not modeled as real geometric entities,
which greatly reduces modeling time, but removes valuable
information that could be exploited in skeleton extraction.
Thus we have to develop a strategy to determine potential
joint positions, despite this missing geometry information.
For multi-component meshes the connectivity between com-
ponents is already an important cue and it is a valid assump-
tion that points of articulation lie near contact points between
components. Thus, the first step in our processing pipeline is
to build a contact graph.

In a contact graph a(N, E) every node N; is a mesh compo-
nent and there exists an edge E; ; if the component N; and N,
are in contact.

The input mesh is segmented into components by searching
for connected polygons in the polygonal mesh. A compo-
nent is a set of polygons of the input model. The process
of assigning polygons to components is a simple repetitive
algorithm. First a new component is created. We then start
at any polygon and perform region-growing over the edges
of the polygonal mesh. Each polygon that is reachable by
region-growing belongs to the same component and we add
it to this component’s polygon set. Once region growing has
stopped, we repeat the process by creating the next compo-
nent and perform region-growing over all polygons that are
not yet assigned to that component. This process stops once
all polygons are assigned to a component.

We now want to determine which components are in con-
tact. To avoid problems with non-uniform mesh resolution,
we first resample all component surfaces into point clouds
using Hammersley point sampling as proposed in [WLH97].
We also compute the oriented bounding-box of each com-
ponent. Then, for any two given components, we check if
their oriented bounding-boxes collide. If this is the case, we
check if any two points from the components are less than
a distance threshold € apart. We empirically chose € to be
0.01 percent of the complete mesh size. For any two com-
ponents N; and N; where two points are close enough, we
generate a contact, i.e., an edge E; j. An example for a seg-
mented input mesh and the generated contact graph is shown
in Figure 3.

3.3. Graph Clustering

The contact graph is already a quite good representation
of the skeletal structure of the input mesh. In theory, one
could think about using graph matching between the con-
tact graph and the input animation skeleton to derive the
correspondence. However, the resolution and structure of
the contact graph and the animation skeleton are very dif-

(© 2012 The Author(s)
(© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Bharaj et al. / Automatically Rigging Multi-component Characters

M\v@ W T

Figure 4: Result of graph clustering: a) Contact graph and input mesh, b) high-resolution clustering (those components of the
mesh that belong to the same cluster center are indicated by the same color), ¢) low resolution graph

ferent and, therefore, graph matching techniques, such as
[KA09,LHO5, GR96], do not result in reasonable mappings.
Furthermore, general graph matching approaches do not
handle the problem of many-to-one mapping if the anima-
tion skeleton and the input mesh are morphologically differ-
ent, e.g., have different numbers of limbs. Hence, we need to
generate a simpler skeletal structure for the input mesh that
is more suited for comparison with the animation data.

In particular, as the animation skeleton is essentially a tree
hierarchy, we also need to extract a suitable tree from our
contact graph. Additionally, the contact graph features sub-
sets of overly densely connected segments, in other words,
high-frequency components that are far too detailed to
make up plausible collections of articulated components,
cp. Fig. 3. We want to simplify and cluster these high-
frequency components to establish information about the
coarser semantically more plausible structure of the input
mesh. We thereby algorithmically imitate the work of a hu-
man animator who would look at the input from a more high-
level perspective, seeking functionally plausible structures.
Such a coarse version of the contact graph o(N,E) can be
generated by clustering some of its nodes »;. For this pur-
pose we adopt a Quadratic Error Metric(QEM)-like method
introduced in [GH97], where the application is mesh simpli-
fication. It was shown before by Au et al. [ATC*08] that this
approach can be applied for graph clustering as well. Con-
ceptually, an edge E;; of the graph is treated as an edge of a
triangle and a node N; is equivalent to a vertex of a geomet-
ric mesh.

Clustering algorithm. The clustering algorithm iteratively
collapses edges of the graph until there are no more edges to
collapse. Let the 3-vector n; = (ny,ny,n;) | be the center of
mass of the point cloud of the components that is associated
to node N;. If an edge E;; collapses, the resulting collapsed
node center i is always calculated as the geometric average
of the two involved node centers n; and n;. We define an
edge E;; to be collapsible if it fulfils criterion A, which re-
quires that

A.1 the degree of node N; or N is larger than 2, or

(© 2012 The Author(s)
(© 2012 The Eurographics Association and Blackwell Publishing Ltd.

A.2 there is more than one path that connects the nodes N;
and N, or

A.3 the surface area of components assigned to either N; or
Nj is smaller than a given threshold, or

A.4 the length of edge Ej; is smaller than a given threshold.

The collapsibility criteria formalize the strategy for graph
clustering that was intuitively outlined above. The output
skeleton should not contain too densely connected sections
of too small components, such sections are likely to belong
to the same entity, i.e., the same bone. Also, if many links ex-
ist between smaller components, a main path is to be iden-
tified, that corresponds to the principal chain of bones. To
determine which edge to collapse in each iteration, each col-
lapsible edge is assigned an edge cost C(E;;). In each iter-
ation the edge with the smallest edge cost is collapsed. The
edge cost is defined as

C(Eij) = w1 Cshape (Eij) + w2 Csamp (Eij))]

where Cspape i a shape cost and Csamp a sampling cost and
their weights are chosen to be w; = 1.0 and w = 0.1, respec-
tively. The shape cost helps in preserving the overall shape
of the graph, while the sampling cost helps to prevent the
generation of long edges. The shape cost is given by

CShape(Eij) = S(ﬁ)i + S(ﬁ)] (2)

where the error metric €(ii); and g(fi) ; is the sum of distances
of the collapsed node center ii to all of the adjacent edges of
n; and n;, respectively, which can be calculated by

ep);=p' {) K;KU] P=p Up , (3)
(i,/)€E;

where p = (px, py, pz, 1) is the homogeneous representation
of the 3-vector p, &; is the set of edges connected to node N;,
and the 3 x 4 matrix K;; is given by

0 —a; ay —by
K,‘j = | a; 0 —ay —by
—ay Ay 0 —b,

Bharaj et al. / Automatically Rigging Multi-component Characters

witha = (n; —n;)/||n; —n;|| and b =a x n;.
The sampling cost penalizes edge collapses that would gen-
erate long edges and is given by

Csamp(Eij) = [mi—myll Y, [mi—m . 4
(i,k) €&

Once the edge with the lowest edge score is found, this edge
is collapsed. The collapsed node center i is given by the
arithmetic average fi = 0.5(n; +n;). All adjacent edges of
N; and N; become adjacent edges of the collapsed node N
(except for duplicates). Furthermore, the merged matrix Q of
the collapsed node is given by Q = Q; +Q;. In the next it-
eration N; and N; are removed and the collapsed node Nis
treated exactly as any other node N of the graph. The only
difference is that its merged matrix § is used in Eq. 3 instead
of calculating an updated Q via the sum over the current K;;.
This iterative process is repeated until there are no more col-
lapsible edges according to criterion A. During graph clus-
tering we maintain a history of collapsed nodes by recording
which nodes were merged in each iteration. This information
will become relevant later on in the pipeline.

Low and high-resolution graph. We generate two differ-
ent versions of the clustered graph, namely a high-resolution
graph and a low-resolution graph. The low-resolution graph
is generated as described above with all four sub-criteria of
criterion A enforced.

The high-resolution graph is generated by enforcing only
sub-criteria A.1 and A.2. By dropping sub-criteria A.3
and A.4, we keep all nodes which are leafs or nodes that are
reachable only via a single path, no matter how small their
surface area or what the edge length is.

Although both representations preserve the overall shape of
the multi-component mesh, each has its own advantages.
While the high-resolution graph gives more details, the low-
resolution graph better represents the coarse structure of the
mesh. Fig. 4 shows the generated low and high-resolution
graph for an example model.

Tree extraction. Because of sub-criterion A.2 each node in
the clustered graph is reachable only via a single path. Such
an undirected, acyclic graph can be directly transformed
into a tree if one of its nodes is selected as root node. We
choose the root node to be the node N; of the original contact
graph ou(N, E) with the highest betweenness-centrality. If the
node N; is no longer available in the clustered graph, we
use the recorded clustering history to find out its represen-
tative node (i.e., the node evolving from it) in the clustered
graph and use this as the root of the tree. The betweenness-
centrality takes into consideration both the local and global
structure and connectivity of a graph [Fre77] and deter-
mines the most important node in the contact graph. We also
experimented with eigen-, degree-, and closeness-centrality
and found that betweenness-centrality works best. After this
stage, we have two versions of an output animation skeleton
for the shape model, one in high resolution, and one in low
resolution.

Rigid Skinning. As we have maintained a history of col-
lapsed nodes during graph clustering, we can determine
which node from the contact graph is assigned to a node
in the final clustered tree. We also know which vertices of
the multi-component mesh belong to which node of the con-
tact graph. This information can be used to assign a vector of
rigid skinning weights to each vertex of the multi-component
mesh. Each element in this vector represents a node in the
final clustered tree. In rigid skinning, a vector element is ei-
ther 1 for the node of the final clustered tree to which the
vertex belongs, or 0 for all other nodes of the clustered tree.
In Fig. 4 the rigid skinning is visualized. Each set of ver-
tices that belongs to a particular node of the clustered tree
is shown in a different color. The advantage of rigid skin-
ning is that our results are directly compatible with the lin-
ear blend skinning (LBS) [MTLT88] format that is supported
by almost all professional 3D animation packages; however,
since each vertex is uniquely assigned to one node, there is
no deformation blending around joints. Instead, each vertex
is moves rigidly with the transformation of to its assigned
node. This has the desired effect that all components of our
multi-component mesh that belong to a particular node of
the clustered tree move as a rigid cluster during animation.

3.4. Joint Mapping

Retargeting algorithms, such as [GleOl, CK99] or Au-
todesk’s HumanlIK typically produce good results. Hecker et
al. [HRE*08] propose an automatic retargeting system; how-
ever, it is assumed that the semantic labelling of each limb is
already known. For 3D models from internet databases typi-
cally no such semantic information is provided. Hence, most
retargeting pipelines require a manual step, i.e., a user man-
ually defines the mapping between the joints of the target
skeleton and the input animation skeleton. In this section we
propose an algorithm, which calculates this mapping auto-
matically. The method capitalizes on the extracted high- and
low-resolution graphs from the previous section.

Essentially joint-mapping is a graph (or tree) matching prob-
lem. Again, it would be possible, in theory, to apply gen-
eral graph matching approaches [LH05,GR96,KA09] to find
a mapping between our clustered graph and the animation
skeleton. This will work better than trying to find a map-
ping between the contact graph and the animation skeleton
directly. However, it is still unreliable and does not scale
to models with several hundreds of components if the input
animation skeleton is comparably coarse. Also an approach
similar to Electoral-voting [ATCO™* 10] cannot be used with
our setup because we also want a mapping for characters
where input skeleton and output skeleton morphologies dif-
fer (i.e., allow for many-to-one limb matching). We also
want to find mappings for characters that are not modeled
exactly in a reference pose, such as a T-pose.

Further on, our output skeleton’s structure may still not ex-
actly match the structure of the input animation skeleton, for
instance since the number of joints in certain sub-chains may

(© 2012 The Author(s)
(© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Bharaj et al. / Automatically Rigging Multi-component Characters

a) b)
B¢

0.1] -

006 06

0.4 0.2 -

0.6 0.3

ol w|»

0.1

e
i i i

i
Bj

c) d)
(AL {A2) \\é?) § A B ¢ D
{ BNB) {B3) I :; ¢ 4

o/

(p1) /DZ\)\ D3) .@

I
% % N

<’c’i>\xc‘iw\fcsv \ '\1
g h
Ny

NY) o (NE

h
B;

Figure 5: Matching nodes of two limbs: a) the nodes N/ of the branch B¢ of the animation skeleton tree (top) are matched to the
nodes Nsh of the branch Bf’ of the high-resolution tree (bottom), R denotes the root node; b) cost K (Nsh, Nf') of assigning two
node c) because nodes can only be matched in consecutive order, only certain assignments are possible as shown here in this
Trelis diagram. The assignment with the lowest branch cost Q(green path) can be found by dynamic programming; d) generated

mapping with the lowest branch cost.

differ. There is thus no unique way of mapping each input
skeleton joint to an output skeleton joint, and there is no
unique way of leaving joints unmapped, i.e., making them
rigidly move with the nearest mapped joint in the hierarchy.
We therefore want to develop a mapping approach that au-
tomatically creates the most plausible set of joint correspon-
dences, such that the structure of the input skeleton is best
mapped to the output rig, and the essence of the input ani-
mation can be transferred to the target model.

In the following, we propose a formulation for skeletal joint
mapping that meets these requirements. The joint mapping
uses the character’s high- and low-resolution skeleton-trees,
which are generated with the graph clustering approach
of the previous section and denoted here as t'(N" E")
and !/ (N!, E"), respectively. The structural basis for the fi-
nal mapped output skeleton is t(N", E"), while ' (N, E')
merely supports the algorithm in finding the best mapping.
The input animation skeleton is also given as a tree struc-
ture and is denoted by t*(N“ E“). The idea is to identify
the number of limbs in the input mesh by the number of
branches in the low-resolution tree. A branch 5 is defined
as the set of all nodes N; that lie on the path from the root
node R to a leaf node. For example, in Fig. 4c the low-
resolution tree has six branches.

Joint-mapping algorithm. The actual joint-mapping be-
tween the j-th branch B? of the animation skeleton-tree and
the output skeleton is performed by matching nodes on the
branches Blh of the high-resolution tree (as only the branches
of the high-resolution tree contain a sufficient number of
nodes). Typically several branches of the high-resolution
tree are overlapping with a branch from the low-resolution
tree, and consequently, we know that we only need to assign
a mapping to one of these branches in the end. To find out
which of these branches to choose, we calculate a mapping
for all these branches of the high-resolution tree and keep
only the one with the lowest mapping cost.

More formally, for each branch Bf’ of the high-resolution
tree there must exist a corresponding branch B¢ of the ani-

J
mation skeleton and for all nodes of this branch there must

(© 2012 The Author(s)
(© 2012 The Eurographics Association and Blackwell Publishing Ltd.

also exist a corresponding node in the animation tree branch:
VBl 3BY and (YN'eB): 3NfeBY) . (5

Furthermore, the mapping of nodes must be in consecutive
order, which means that if N/ maps to Nf, then Nf_H can
only map to N, with u > 0. This ordering constraint also
ensures that there are no double assignments of nodes. Here
and in the following description of the algorithm, we assume
that there are fewer nodes in branch Bf’ than in branch B . If
this is not the case, the same algorithm is used to find a map-
ping but the role of the branches ! and BB are swapped.

Let I be the number of branches B,I»’ in the high-resolution
tree and J the number of branches B? in the animation skele-
ton tree. To find a solution to our mapping problem, we form
a complete / X J branch matrix of mapping costs Q

0(Bg, B) 0(Bg, BY) 0(Bg, BY)
L |emiE) BB (B}, 55) ©

o(B].55) Q(BY.B) (87, 55)
For all elements b; ; of the branch matrix B this mapping
cost Q is calculated by solving an optimization problem.
The optimization procedure finds the mapping of nodes NI
of branch B,h to nodes Nf* of branch B? using a node map-
ping cost K such that the overall mapping cost Q of the
whole branch is minimized

S
o(B!BY) = arg(rr)lin Y KV N))
1(s s=1

subject to the above mentioned constraint that the mapping
of nodes s — ¢ must be in consecutive order. The node map-
ping cost K is given by:

KV, N = (o Koo (VY M)+ 02 Ko (N, VF)
+ 03 Koes (NG, NY) ®

— 04 KBel(nZ) — 05 KArea(nZ))

Bharaj et al. / Automatically Rigging Multi-component Characters

Here, the term Kpos is the positional difference (Euclidean
distance) between the two nodes in world space, Kperc is
the difference of the nodes’ position along their individual
branches given in percentage of the complete branch length,
Kpes (NI, Nf*) is the difference of the nodes’ degree cen-
trality, and Kper and Karea are the normalized betweenness-
centrality and the normalized area of the node in the high-
resolution tree. The weighting factors for each of the terms
are experimentally chosen to be o,y = 10.0, 0, = 2.0, 03 =
0.2, oy = 1.0, and 05 = 0.5.

Solving this optimization problem by brute force search has
a combinatoric O(nz) complexity. However, the problem is
similar to the sequence matching problem along the scanline
of stereo cameras [VMVPVGO02]. Using the same algorithm,
the optimal solution for the optimization problem of Eq. 7
can be efficiently found by dynamic programming (as illus-
trated in Figure 5).

Once all elements b; ; of the branch matrix B are gener-
ated, we can find the best mapping for a branch Bf‘ by
choosing the corresponding B;? that produces the minimal

cost Q(Bf’7 B;f) for each row of matrix B. As a result we have
found one branch mapping for each of the branches in the
high-resolution tree to one branch in the animation skeleton
tree, as well as the corresponding node mappings.

Reducing the number of mappings. We reduce this set
of branch mappings by analysing which branches of the
high-resolution tree are overlapping with a branch from the
low-resolution tree and keep only the best mapping with the
lowest mapping cost Q. As an example, in Fig. 4 the high-
resolution tree has I = 17 branches and the low-resolution
tree has L = 6 branches, so we keep only 6 of the 17 available
branch mappings. In order to find out which branches over-
lap, we look at the nodes of the original contact graph from
which both the high- and the low-resolution tree originated.
As we have maintained a history of collapsed nodes, we
know which nodes from the contact graph are clustered to-
gether to form a resulting node of the high- or low-resolution
tree. Each branch of the high-resolution tree is assigned to
the branch of the low resolution tree with which it shares the
most contact graph nodes. As a result, we obtain a partition-
ing of the branches of the high-resolution tree into L sets.
For each of these sets we keep only the assignment with the
lowest branch matching cost within this set.

Handling conflicting mappings. Separate branches can
overlap and share nodes at the overlapping branch segments.
As we treat each branch separately, it may happen that the
same node from the high-resolution skeleton is mapped to
multiple nodes of the animation skeleton. In this situation
we apply a winner-takes-all approach that removes all con-
flicting mappings from the node and only keeps the mapping
for the branch for which the resulting cost Q (according to
Eq. 7) is lowest.

Updated rigid skinning. It may happen that a node Nih does
not get a mapping from an animation skeleton node Nj'. In

Figure 6: Comparison: a) our automatically created rig (left)
is very similar to a rig made by an artist (right); b) Asimo
with modeled joint geometry: the joints found by our method
are correctly placed near the modeled joints; c) our approach
also succeeds on a highly-fractured multi-component object.

this case, we have to update its rigid skinning weight. All
vertices that were attributed to node Nl»h are now assigned
to the node’s parent in the branch. This process is repeated
until a parent node is reached that has a mapping from the
animation skeleton.

4. Results

In this section, we show some of the results for skeleton
creation, rigid skinning/clustering, and joint mapping that
were generated with our approach. Additional results can be
found in the supplemental video where we also show ani-
mated characters. To generate these animations, Autodesk’s
HumanIK was used for the motion retargeting step. All of
our input models are taken directly from internet reposito-
ries, without modification.

As shown in Figs. 1 and 7, the proposed approach is ca-
pable of handling quite different morphologies (e.g., biped,
quadruped, and uniped). Also the number of components
of the shown models varies significantly (#components an-
gel bot=165, t-rex=183, toilet=9, big robot=220, horse=152,
armadillo=567). We tested different input animation skele-
tons (biped, quadruped), that sometimes differ starkly from
the multi-component model in scale and morphology. In all
cases, very plausible rigs are generated, and retargeting of a
wide range of input motions (ranging from walking to com-
plex martial arts moves) to these rigs consistently leads to
believable animations. For all shown models the system re-
quires less than half-a-minute to perform all steps of the
pipeline (C++ code on a single CPU). On average, Contact
Graph calculation takes 1.9 seconds, while Graph Clustering
requires 2.0 second, and Joint Mapping takes 0.784 seconds.
Fig. 6 shows that the skeleton created with our approach
is comparable to a skeleton made by an artist. Our method
also succeeds on meshes with explicitly modeled joint ge-
ometry. For example, the generated skeleton for the Asimo
model, shown in 6b, is comparable to the result generated
by an approach that requires explicit joint geometry for its
analysis [XWY*09]. Also, multi-component objects, as used
in [ZXTD10], fit well into our pipeline (as shown in 6c¢),
which further illustrates the versatility of our method.

(© 2012 The Author(s)
(© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Bharaj et al. / Automatically Rigging Multi-component Characters

X

Figure 7: Results for five models with different morphology: (left to right) input multi-component model; segmentation and
contact graph; generated high-resolution skeleton; joint mapping of the generated skeleton to the input animation skeleton.

(© 2012 The Author(s)
(© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Bharaj et al. / Automatically Rigging Multi-component Characters

5. Discussion and Future Work

Since the outputs of our pipeline uses the (industry standard)
linear blend skinning format, the calculated target skeleton
and rigid skinning weights can be easily used by a profes-
sional artist; however, an automated system like ours, also
enables novice users to animate 3D models because they
only have to choose an input mesh and the desired motion
from an Internet repository. Most models, such as the results
shown here and in the video, do not require any manual in-
tervention. Nevertheless, the results of our automatic method
are sometimes subject to estimation errors. Especially, as we
do not use any a priori or user-given semantic information,
the resulting joint mapping and clustering may result in unre-
alistic functioning of the model under animation. Moditying
automatic joint mappings that enable a more plausible me-
chanical operation could easily be done in such cases using
standard 3D animation software. Also, it would be relatively
straightforward to modify the approach such that it proposes
arange of possible mappings from which the user selects the
preferred one.

Another limitation of our approach is that it requires an ap-
proximate initial alignment of the multi-component mesh
and the animation skeleton, i.e., they should be roughly in
the same pose (at least in one frame). This is necessary be-
cause a positional term is used in Eq. 9. This does not mean
that both inputs have to be in perfect T-pose; but both have
to be upright and facing in the same direction. Furthermore,
the input model and the animation skeleton are scaled to a
default height before they are processed by our pipeline.

In future work, we would also like to extend our approach
to also take the particular motion of the animation skeleton
into account to estimate the best joint mapping for a given
motion. Finally, we plan to improve the method by using ex-
plicit symmetry criteria. Most of the generated rigs are in
fact symmetric in practise, but this is currently not enforced
within the algorithm.

6. Conclusion

We have presented a system for automatic rigging and joint
mapping calculation for multi-component models that have
no a priori component labels. By identifying coherent com-
ponents, and analysing contacts between them, an initial
graph is generated that can be simplified to a coarse tree
by graph clustering. Having generated a skeleton representa-
tion for the model, a joint-mapping to an animation skeleton
is performed. The approach is fast and successfully handles
models with hundreds of components, as well as with mor-
phology differences between input animation skeleton and
extracted model skeleton.

References

[ATC*08] Au O. K.-C., Ta1 C.-L., CHU H.-K., COHEN-OR
D., LEE T.-Y.: Skeleton extraction by mesh contraction. ACM
Trans. Graph. 27 (2008). 2, 5

[ATCO*10] Au O. K.-C., Ta1 C.-L., COHEN-OR D., ZHENG
Y., Fu H.: Electors voting for fast automatic shape correspon-
dence. Computer Graphics Forum 29 (2010). 6

[BP07] BARAN L., POPOVIC J.: Automatic rigging and animation
of 3d characters. ACM TOG 26 (2007). 2

[CK99] CHoIK.-J., KO H.-S.: On-line motion retargetting. Jour-
nal of Visualization and Computer Animation 11 (1999). 3, 6

[Fre77] FREEMAN L. C.: A set of measures of centrality based
on betweenness. Sociometry 40 (1977). 6

[GG04] GELFAND N., GUIBAS L. J.: Shape segmentation using
local slippage analysis. In Proc. SGP (2004). 2

[GH97] GARLAND M., HECKBERT P. S.: Surface simplification
using quadric error metrics. In Proc. SIGGRAPH (1997). 5

[GleO1] GLEICHER M.: Comparing constraint-based motion edit-
ing methods. Graph. Models 63 (2001). 3, 6

[GR96] GOLD S., RANGARAJAN A.: A graduated assignment
algorithm for graph matching. /EEE TPAMI 18 (1996). 5, 6

[Hah88] HAHN J. K.: Realistic animation of rigid bodies. SIG-
GRAPH Comput. Graph. 22 (1988). 2

[HRE*08] HECKER C., RAABE B., ENSLOW R. W., DEWEESE
J., MAYNARD J., VAN PROOIJEN K.: Real-time motion retar-
geting to highly varied user-created morphologies. ACM TOG 27
(2008). 2,6

[KAO09] KELLER Y., AGOZI A.: A probabilistic approach to spec-
tral graph matching. Most (2009), 1-7. 5, 6

[KSO10] KAVAN L., SLOAN P.-P., O’SULLIVAN C.: Fast and
efficient skinning of animated meshes. Comput. Graph. Forum
29(2010). 2

[KT0O3] KATZ S., TAL A.: Hierarchical mesh decomposition us-
ing fuzzy clustering and cuts. ACM TOG 22 (2003). 2

[LHO5] LEORDEANU M., HEBERT M.: A spectral technique for
correspondence problems using pairwise constraints. In Proceed-
ings ICCV (2005). 5, 6

[MTLT88] MAGNENAT-THALMANN N., LAPERRIALRE R.,
THALMANN D.: Joint-dependent local deformations for hand
animation and object grasping. In Graphics Interface (1988). 6

[MYY*10] MITRA N. J., YANG Y.-L., YAN D.-M., L1 W,,
AGRAWALA M.: Illustrating how mechanical assemblies work.
ACM TOG 29 (2010). 2

[Sim94] Sims K.: Evolving virtual creatures. In Proc. SIG-
GRAPH (1994). 2

[SP04] SUMNER R. W., POPOVIC J.: Deformation transfer for
triangle meshes. ACM Trans. Graph. 23 (2004). 2, 3

[VMVPVGO02] VAN MEERBERGEN G., VERGAUWEN M.,
POLLEFEYS M., VAN GooL L.: A hierarchical symmetric
stereo algorithm using dynamic programming. IJCV 47 (2002).
8

[WLH97] WOoONG T.-T., LUK W.-S., HENG P.-A.: Sampling
with hammersley and halton points. J. Graph. Tools 2 (1997).
4

[XWY*09] Xu W., WANG J., YIN K., ZHOU K., VAN DE
PANNE M., CHEN F., GUO B.: Joint-aware manipulation of de-
formable models. ACM TOG 28 (2009). 2, 8

[YAH10] YAMANE K., ARIKI Y., HODGINS J.: Animating non-
humanoid characters with human motion data. In Proc. SCA
(2010). 3

[ZXTD10] ZHou K., XU W., TONG Y., DESBRUN M.: Defor-
mation transfer to multi-component objects. Comput. Graph. Fo-
rum 29 (2010). 2, 3, 8

(© 2012 The Author(s)
(© 2012 The Eurographics Association and Blackwell Publishing Ltd.

