
Eikonal Rendering: Efficient Light Transport in Refractive Objects

Ivo Ihrke1, Gernot Ziegler1, Art Tevs1, Christian Theobalt1, Marcus Magnor2, Hans-Peter Seidel1

1) Max-Planck-Institut für Informatik 2) Technical University Braunschweig

Figure 1: Real-time renderings of complex refractive objects – (left) glass with red wine casting a colorful caustic, 24.8 fps. (middle) Amber-
like bunny with black embeddings showing anisotropic scattering and volume caustics in the surrounding smoke and its interior, 13.0 fps.
(right) Rounded cube composed of three differently colored and differently refracting kinds of glass showing scattering effects and caustics
in its interior, 6.4 fps.

Abstract

We present a new method for real-time rendering of sophisticated
lighting effects in and around refractive objects. It enables us to
realistically display refractive objects with complex material prop-
erties, such as arbitrarily varying refractive index, inhomogeneous
attenuation, as well as spatially-varying anisotropic scattering and
reflectance properties. User-controlled changes of lighting posi-
tions only require a few seconds of update time. Our method is
based on a set of ordinary differential equations derived from the
eikonal equation, the main postulate of geometric optics. This set
of equations allows for fast casting of bent light rays with the com-
plexity of a particle tracer. Based on this concept, we also propose
an efficient light propagation technique using adaptive wavefront
tracing. Efficient GPU implementations for our algorithmic con-
cepts enable us to render a combination of visual effects that were
previously not reproducible in real-time.

CR Categories: I.3.7 [Three-dimensional Graphics and Realism];

Keywords: refractive objects, real-time rendering, light transport,
geometric optics

1 Introduction

Objects with complex optical properties, such as a crystal glass
filled with wine, are fascinating to look at. This fascination em-

anates from the beauty of the lighting and color effects that are vis-
ible in, on and around these objects. The visual beauty has its phys-
ical origin in the interplay of the involved light/matter interaction
processes that take place while light passes material boundaries,
while it travels through the interior of an object, and even while
it interacts with the object’s surroundings. At material boundaries,
light may be reflected and transmitted in a complex way. A spatially
varying refractive index, possibly in conjunction with complex sur-
face reflectance, can cause inhomogeneous focusing of light that
becomes visible as beautiful surface and volume caustics. Some
materials exhibit spatially varying or wavelength-dependent attenu-
ation which leads to nice color-shifts. Finally, anisotropic scattering
effects also greatly contribute to the overall look.

The contribution of this paper is a general framework that allows
us to jointly reproduce the majority of the above effects in real-time
on commodity graphics hardware. Our image formation model sup-
ports the rendering of complex light paths in scenes containing ob-
jects with arbitrarily varying refractive index, surface effects with
arbitrary BRDFs, as well as view-dependent single-scattering ef-
fects with arbitrary scattering phase functions. Advanced effects,
such as total reflection, are implicitly obtained at no additional cost.
Furthermore, our renderer can reproduce refractive surface and vol-
ume caustics, and realistically render the appearance of translucent
objects in scattering participating media, such as smoke.

In the following, we first introduce a general, physically motivated
image formation model based on a volumetric scene representation
that accounts for all these effects, Sect. 3. Subsequently, we de-
scribe simplifications to this model that efficiently map to the GPU.
For rapid simulation of the light transport, we employ a simple set
of ordinary differential equations that is derived from the eikonal
equation, the main postulate of geometric optics [Born and Wolf
1999]. Our method enables evaluating complex light paths, both
towards the viewer and from the light source, using the same el-
egant mathematical framework. The distribution of irradiance in
the scene due to each light source is quickly pre-computed using
a wavefront-based light propagation scheme, Sect. 4. Finally, we
propose new concepts and dynamic data structures to efficiently
evaluate our image formation model on off-the-shelf graphics hard-

ware, Sect. 5. In Sect. 6, we show results with our prototype GPU
renderer displaying a variety of the above effects around refractive
objects in real-time.

2 Related Work

Several approaches were published in the literature that can approx-
imate refraction effects in real-time on the GPU [Wyman 2005],
on a special signal processor [Ohbuchi 2003], or in a CPU-based
real-time ray-tracer [Wald et al. 2002]. Hakura and Snyder [2001]
propose a hybrid ray-tracing based approach that produces appeal-
ing results but does not run in real-time. Most of these algorithms
achieve good results by evaluating Snell’s law at material bound-
aries. Rendering inhomogenous refractive index distributions has
been mainly considered in the literature on modeling atmospheric
effects. Berger et al. [1990] ray-trace mirages by repeated appli-
cation of Snell’s law in an off-line renderer. Musgrave [1990] in-
cludes total reflection which was ignored in the previous paper to
render the same phenomenon. Stam and Languénou [1996] pro-
pose the use of the ray equation of geometric optics to render heat
shimmering. Lately, Gutierrez et al. [2006] have also applied the
ray equation to render mirages and other atmospheric effects. Zhao
et al. [2007] simulate and render heat shimmering and mirages on
the GPU at interactive frame rates. An interesting approach for dis-
playing gemstones that handles refraction and polarization effects
was presented by Guy and Soler [2004]. Although our method can-
not handle polarization, it can easily cater for many other effects
not treated by the above approaches, such as scattering, dispersion
or volume caustics in participating media.

Refraction rendering is related to the problem of rendering realis-
tic caustics. Popular off-line approaches for high-quality caustic
rendering are backward ray-tracing [Arvo 1986], and photon map-
ping [Jensen et al. 2001] which can also generate volume caus-
tics [Jensen and Christensen 1998]. Either of them stores photon
energies in spatial storage data structures and gathers their con-
tributions during image formation. Gutierrez et al. [2005] extend
volumetric photon mapping to non-linear light paths using the ray
equation of geometric optics. They simulate refractive effects in
the atmosphere and in underwater scenes. In addition to the ef-
fects treated in this work, they also render multiple inelastic scat-
tering events in an off-line renderer. Real-time ray-tracing sys-
tems [Parker et al. 1999; Carr et al. 2002; Wald et al. 2002] enable
the rendering of refraction and photon mapping at discrete inter-
faces at interactive frame rates [Wyman et al. 2004], but typically a
cluster of PCs is needed [Günther et al. 2004] to handle the compu-
tational load.

Recently, researchers ported these algorithms to graphics hardware
to achieve real-time performance. Wand and Strasser [2003] com-
pute reflective caustics by approximating surfaces with uniformly
sampled light sources. Wyman and Davis [2006] propose an inter-
active image space technique for approximate caustic rendering on
the GPU that is related to photon mapping. They also suggest a
light shaft structure similar to the illumination volumes of Nishita
and Nakamae [1994] that approximates the intensity distribution of
the flux of light in a beam in space. A similar concept is employed
by Ernst et al. [2005] to generate surface and volume caustics.

In contrast to the above techniques, we employ a more general
model of light transport that propagates wavefronts along arbitrary
trajectories with arbitrary complex refraction characteristics. Sur-
face and volume caustics can be generated by computing the irra-
diance distribution everywhere in a sampled 3D volume. We also
obtain local light directions for every point in space, enabling us to
render anisotropic lighting effects. Our image formation pipeline is
based on the theory of geometric optics which enables us, in combi-

nation with a powerful image formation model, to faithfully handle
a large variety of additional effects, such as dispersion, emission,
scattering, BRDFs and spatially varying attenuation within a com-
mon framework.

The scattering of light in a volumetric scene description was in-
troduced to computer graphics by Blinn [1982]. Kajiya and von
Herzen [1984] derive a general formulation of scattering in terms
of volume densities. They present general equations for single and
multiple scattering. We use their single scattering equation in our
image formation model. Lighting interaction between surfaces and
volumes is treated by Rushmeier and Torrance [1987] in a radiosity
style algorithm. Stam [1995] explores the limit of multiple scat-
tering and presents a diffusion approximation to this limit. Re-
cently, real-time single scattering implementations have been pre-
sented. Magnor et al. [2005] use a GPU ray-casting implemen-
tation to render reflection nebulae - this approach is most similar
to our scattering, emission and absorption implementation but uses
straight viewing and light rays. Mertens et al. [2003] render sin-
gle subsurface-scattering and a dipole approximation to multiple
scattering in real-time using the model by Jensen et al. [2001]. Al-
though we do not approximate multiple scattering, we render single
anisotropic scattering along complex non-linear light paths.

The fundamental concepts of our light propagation scheme are de-
rived from the eikonal and transport equations, the main postulate
of geometric optics [Born and Wolf 1999]. The curved eye rays
are computed as in [Stam and Languénou 1996; Gutierrez et al.
2005; Gutierrez et al. 2006] based on the ray equation of geomet-
ric optics. This is similar to non-linear ray tracing [Gröller 1995;
Weiskopf et al. 2004] that has been used to simulate gravitational
lenses. For the pre-computation of the irradiance distribution in a
volume we employ adaptive wavefront tracing. Wavefront-based
irradiance estimation techniques have been used infrequently in
computer graphics. Mitchell and Hanrahan [1992] compute Fer-
mat paths analytically and evaluate the irradiance at a surface based
on wavefront curvature which is tracked along the computed paths.
Collins [1994] traces rays from the light source and evaluates the
wavefront behavior by examining the distribution of ray hits across
diffuse surfaces. Brière and Poulin [2000] suggest to use beam trac-
ing to render surface and volume caustics in an offline approach.
Irradiance estimation is based on the intensity law of geometric op-
tics.

To summarize, we present a new fast and versatile framework de-
rived from the eikonal equation that can jointly reproduce many
lighting effects around complex refractive objects for which, up to
now, individual specialized algorithms were required to obtain real-
time frame rates.

3 Image Formation Model

3.1 General Image Formation

We are concerned with the realistic and efficient rendering of trans-
parent objects with varying materials. To this end, we assume that
the complex material distribution is stored in a 3D volume. Our
general model of image formation accounts for emission, absorp-
tion, reflection and scattering. A mathematical formulation for a
particular, potentially curved, ray that passes through the volume is
given by

L(c) =
∫

c
Lc(x,v)α(t,c)dt +Lbgα(t∞,c) , (1)

where Lc denotes radiance on the ray c that is scattered, emitted
or reflected into the direction of the eye. Lbg is the background
radiance and α(t,c) the absorption of light at position t along the

ray. Lc is composed of different components contributing to the
radiance on a given ray. Function Lc depends on the position in
space x = c(t) and the local ray direction v = dc

dt . In general it is
wavelength-dependent and can be computed using different param-
eters for each wavelength λ . We can express Lc in terms of these
variables:

Lc(x,v) = ω̂Ls(x,v)+δ (x)ρLr(x,v)+Le(x,v) . (2)

Here Ls denotes radiance due to inscatter, ω̂ = σs
σa+σs

is the albedo
of the participating medium, Lr the radiance reflected in the eye
direction, and Le the locally emitted radiance. The Dirac delta
function δ (x) serves as a boundary indicator, i.e. it integrates to
one over a boundary between two different objects and is zero else-
where. This accounts for the fact that reflections occur on bound-
aries between different materials. ρ is the Fresnel reflection factor
for unpolarized light [Born and Wolf 1999]. The Fresnel transmis-
sion factor τ enters the absorption equation (5) through factor T (t),
as we will describe later.

Ls, Lr and Le all depend on the position in space x and on the lo-
cal ray direction v and can be evaluated locally given volumetric
descriptions of their distributions. The last point is important. The
locality of Lc, given appropriate pre-computations, allows us to par-
allelize the computations in an efficient way.

We formulate inscatter in terms of the scattering phase function p.
It may vary in space and depends further on the local ray direction
v and the local differential irradiance dEω from direction ω .

Ls(x,v) =
∫

Ω
p(x,v,ω)dEω . (3)

The light contributions due to inscatter are integrated over the
sphere of incoming directions to yield Ls. Similarly we write

Lr(x,v) =
∫

Ω+

fr(x,v,ω)cosθdEω , (4)

where fr describes a BRDF and cosθ is the cosine of the angle be-
tween the surface normal and the incident light direction ω . The
normal of the surface can either be provided as an additional func-
tion or be derived from the refractive index field n. Lr thus gives us
the radiance contribution due to reflection on a boundary between
two different materials. Please keep in mind that this term is only
valid on the boundary of objects and its contribution is triggered by
δ (x).

Le is just a function Le(x,v) in its most general form. In conjunction
with the light source definitions, it can be used to model multiple
scattering effects or self-emission due to fluorescence or phospho-
rescence.

Finally, we have a closer look at the absorption function α in
Eq. (1). If arbitrary absorption distributions are considered, it de-
pends on the distance along the ray and the ray’s shape, and thus it
evaluates to

α(t,c) = T (t)e−
∫ t

0 σt (c(s))ds , (5)

i.e. the absorption function describes the exponential attenuation of
radiance at position x = c(t) due to a spatially varying attenuation
function σt = σa + σs, where σa is the absorption coefficient and
σs the scattering coefficient describing the amount of radiance lost
due to out-scatter. T (t) is the product of all Fresnel transmission
factors τ encountered along the ray up to position t.

3.2 Simplified Image Formation

In its general form, our image formation model is too complex to
be evaluated in real-time. Therefore, we make two simplifying as-
sumptions:

Figure 2: 2D illustration of our complex image formation scenario
– due to inhomogeneous material distribution, light rays and view-
ing rays are bent on their way through the scene volume. Light
rays always travel orthogonally to the light wavefronts, i.e. the iso-
surfaces of constant travel time.

1. The light in the scene originates from a discrete number of
light sources, and

2. for each point in the scene, there is only a discrete number of
incoming light rays from each of the light sources.

These restrictions allow us to develop an efficient rendering algo-
rithm for a fairly complex image formation model, since we can
convert the integrals of Eqs. (3) and (4) into discrete sums over all
incoming light directions:

Ls(x,v) = ∑
j

p(x,v, l j)∆Eω j (6)

Lr(x,v) = ∑
j

fr(x,v, l j)cosθ∆Eω j . (7)

Thus, if we can pre-compute the incoming light directions and dif-
ferential irradiance values, we can evaluate Eq. (1) with local op-
erations only. In the following section, we derive the mathematical
recipes for viewing ray traversal and irradiance computation.

4 Light Transport

In this section, we develop the equations for the transport of light in
the scene. The propagation of viewing rays is described in Sect. 4.1
and light transport is discussed in Sect. 4.2. Viewing rays and light
rays, Fig. 2, behave very similarly and the governing equations are
derived from the same basic equation, the ray equation of geometric
optics [Born and Wolf 1999]. However, we use different parameter-
izations to account for specifics in the two processes. Please note
that for light rays, we have to take the irradiance fall-off into ac-
count whereas viewing rays carry radiance.

4.1 Viewing Ray Propagation

The ray equation of geometric optics has been previously used in
computer graphics e.g. by Stam and Languénou [1996] and Gutier-
rez et al. [2005]. The equation describes the motion of a light ’par-
ticle’ in a field n of inhomogeneous refractive indices:

d
ds

(

n
dx
ds

)

= 5n . (8)

It is derived from the eikonal equation and the motion of a mass-
less particle along the gradient of the eikonal solution. ds denotes

PSfrag replacements

dS1

dS2

t0

t1 t2

t3

A0
A3

Figure 3: The intensity law of geometric optics (left) and its dis-
cretized version (right) in the form of a stream tube. The product of
area and differential irradiance is constant along a tube of rays.

an infinitesimal step in the direction tangential to the curved ray.
Eq. (8) can be re-written as a system of first order ordinary differ-
ential equations

dx
ds

=
v
n

(9)

dv
ds

= 5n (10)

which can be discretized using a simple Euler forward scheme

xi+1 = xi +
∆s
n

vi (11)

vi+1 = vi +∆s5n (12)

or some higher order integration method like the Runge-Kutta fam-
ily [Press et al. 1992]. The equations (9) and (10) have the property
that the spatial step size is equal for all ray trajectories, see the Ap-
pendix for a proof. This proves advantageous for rendering, Sect. 5,
where the number of iterations for each particle trace should be ap-
proximately equal to ensure optimal performance. Conveniently,
ray bending and total reflection are naturally supported by the ray
equation of geometric optics.

4.2 Modeling Light Sources

We model a light source with a three-dimensional vector field of
local light directions l(x) and a scalar field of differential irradiance
values ∆Eω (x) (c.f. Sect. 3.2). These fields can be computed in sev-
eral ways. A popular choice among computer graphics researchers
is photon mapping [Jensen 2001] of which GPU implementations
are available [Purcell et al. 2003]. In the computational physics and
numerical analysis literature a huge range of methods have been
proposed to solve this problem. Choices range from purely Eule-
rian formulations using the eikonal and transport equations [Buske
and Kästner 2004], phase space methods [Osher et al. 2002] and hy-
brid Lagrangian-Eulerian approaches [Benamou 1996] to adaptive
wavefront tracing [Enquist and Runborg 2003]. All methods ex-
cept for the purely Eulerian approach deal with the inherent multi-
valuedness of the solution of the underlying equations.

We use adaptive wavefront tracing [Enquist and Runborg 2003;
Collins 1997] for the computation of the local light directions and
differential irradiance values because it offers the best trade-off be-
tween computation time and accuracy of the solution. A wavefront
is an iso-surface of constant travel time of light originating from
a light source, see Fig. 2. In accordance with Fermat’s Principle
light rays travel always normal to these wavefronts. The wavefront
is discretized by a set of connected particles. These are propa-
gated through the inhomogeneous refractive index field. In case
the wavefront becomes under-resolved new particles are inserted to

preserve a minimum sampling rate, Fig. 4. The local light direc-
tions are represented by the traveling directions of the particles and
the differential irradiance values can be computed from the areas
of wavefront patches, see Sect. 4.2.2. The pre-computation of the
three-dimensional light distribution takes the following subsequent
steps:

I wavefront propagation,

II irradiance computation,

III wavefront refinement,

IV voxelization of the local light directions and differential irra-
diance values.

This process is repeated until the wavefront leaves the volume of
interest. The individual steps are detailed in the following.

4.2.1 Wavefront Propagation

We discretize the wavefront into a set of inter-connected particles
which are propagated independently. This way, the wavefront is
subdivided into so-called wavefront patches whose corners are de-
fined by light particles, Fig. 4 (right). The connectivity information
is needed for the differential irradiance computation. The propa-
gation of the particles is performed according to Eq. (8) similar to
eye ray propagation, Sect. 4.1. We reparameterize it to yield equi-
temporal discretization steps:

n
d
dt

(

n2 dx
dt

)

= 5n . (13)

A proof of this property is given in the Appendix. The reparameter-
ization is necessary to enable a simple formulation of the differen-
tial irradiance computation described in Sect. 4.2.2. It ensures that
all particles stay on a common wavefront over time which is nec-
essary to apply the simple intensity law of geometric optics instead
of wavefront curvature tracking schemes as in [Mitchell and Hanra-
han 1992; Collins 1994]. Similar to Eqs. (9) and (10) we can write
Eq. (13) as a system of first order ordinary differential equations

dx
dt

=
v
n2 (14)

dv
dt

=
5n
n

. (15)

This formulation enables a fast GPU implementation of the wave-
front propagation scheme as a particle tracer. Once the wavefront
can be tracked over time we can compute the differential irradiance
at every point in space from the area of the wavefront patches that
connect the particles.

4.2.2 Irradiance Computation

The irradiance computation is based on the intensity law of geomet-
ric optics [Born and Wolf 1999], see Fig. 3 (left). The law states
that in an infinitesimal tube of rays the energy stays constant:

dEω 1dS1 = dEω 2dS2 . (16)

We use a discretized version of the intensity law to update the en-
ergy contribution of wavefront patches during propagation. The
motion of each patch through the scene describes a so-called
stream-tube, Fig. 3 (right). Eq. (16) then reads

∆Eω (t) =
∆Eω (0)A(0)

A(t)
. (17)

Figure 4: Adaptive wavefront refinement – (left) 2D illustration:
the wavefront is represented by particles (red dots) that are con-
nected to form a wavefront (blue lines). While advancing through
the voxel volume (shown in gray) the wavefront is tessellated such
that its patches span less than a voxel. – (right) 3D illustration of
the tessellation for one wavefront patch.

Here A(t) denotes the area of a wavefront patch at time t and
∆Eω (t) the discretized differential irradiance associated with it.
Since we are modeling absorption in our image formation model
this effect has to be included in the irradiance computation as well.
Therefore, the final discretized differential irradiance for a wave-
front patch is given by

∆Eω (t) =
∆Eω (0)A(0)

A(t)
e−

∫ t
0

σt (c(t̂))
n dt̂ . (18)

4.2.3 Wavefront Refinement and Voxelization

In order to obtain a continuous volumetric representation of the
light distribution the wavefront patches have to be voxelized. How-
ever, due to divergent corners the patches can in general become
arbitrarily large while they are propagated. If a patch area slides
through a voxel without touching it with one of its corners, it ef-
fectively ignores the influence of this voxel’s refraction value. The
wavefront will thus be undersampled. To alleviate this, we adap-
tively split the wavefront patches once they grow larger than one
voxel, see Fig. 4. Since at the same time, graphics hardware is
not able to rasterize arbitrarily sized quads into 3D volumes, we
use the adaptive sampling and equate wavefront patches with their
midpoints, storing the differential irradiance and directional infor-
mation as a single voxel sample. Undersampling of the wavefront
is thus solved in conjunction with implementing GPU-based vox-
elization.

5 Implementation Issues

After the theoretical foundation has been set, we now have a closer
look at how to map the outlined concepts onto the GPU. Fig. 5 illus-
trates the work-flow of our renderer. In the following, we detail its
most important components, the employed data format, Sect. 5.1,
the light simulator, Sect. 5.2 and the view renderer, Sect. 5.3.

5.1 Input Data Format

Input scenes are stored as a set of 3D volume textures. In a first set
of volumes, the spatially varying refractive index field, as well as its
gradient field are stored. The objects in our test scenes were created
as solids of revolution, implicit surfaces, or triangle meshes that
we rasterized into the 3D volume. Refractive index distributions
can be derived directly from the implicit functions of the objects

or they can be defined interactively. Prior to gradient computation,
we smooth the volumes. We use a uniform Gaussian filter kernel
with a standard deviation of typically 0.5−1.0 voxels, resulting in
object boundaries that extend over 2− 3 voxels. The problem of
blurry boundaries can be alleviated by employing a suitable proxy
geometry to start the ray casting. While improving the sharpness
of the boundaries and resulting in higher frame rates, participating
media surrounding the object can no longer be rendered.

Other 3D textures contain the spatially varying RGB attenuation
function, the material boundary indicator, as well as BRDF param-
eters or emission descriptions. The boundary indicator is a discrete
version of the Dirac delta in Eq. (2). We compute it by voxelizing a
mesh or use the gradient strength of the refractive index gradients.
For some of our test objects, we simulated spatially varying atten-
uation in the interior by applying a noise function or by painting it
into the 2D input for the surface of revolution. For approximating
anisotropic scattering effects, we employ the scattering-phase func-
tion model by Henyey and Greenstein [1941]. Its parameters are
also stored in volumetric textures.

5.2 Light Simulator

Our implementation follows the adaptive wavefront propagation de-
scribed in Sect. 4. However, since we aim for an efficient simulation
also on pre-Shader Model 4.0 hardware, we introduce additional
concepts.

Basically, after initialization at the light source, the wavefront is
represented as a particle system. The difference to a standard par-
ticle system is that the particles are bound into packets of four and
thus span a wavefront patch, Fig. 4 (right). This allows us to simu-
late the stream tube concept on graphics hardware. All the patches
are stored in textures, which hold the four corners’ positions, their
propagation directions and a RGB energy value, see Sect. 4.2.2.

During initialization, we use the 2D-parameterization of the patch
list texture to either produce a planar wavefront (directional light
source) or a spherical wavefront (point light source). The initializa-
tion ensures that the wavefront is large enough to cover the simu-
lation volume. Other light source types (as multi-directional light)
can be implemented, as the wavefront patches are independent and
thus can be stacked on top of each other. The propagation of the
wavefronts through the scene and the logging into the output 3D
volume is performed in three subsequent steps described in the fol-
lowing.

5.2.1 Patch List Update

For every time step, we update the patches’ corner positions and
directions according to Eqs. (14) and (15). We further update the
patches’ held RGB energies according to Eq. (18).

5.2.2 Patch List Voxelization

After each update step, we need to protocol the wavefront patches
into the 3D output volumes for irradiance and direction. On graph-
ics hardware, this is accomplished using point primitives and the
concept of Flat 3D textures introduced by Harris et al. [2003]. We
limit ourselves to storing only one incoming light direction, cor-
responding to the highest energy ray passing a particular voxel.
This is justified by a statistical analysis. For the wine glass model,
Fig. 8 (right), only 5.6% of the voxels receive light from more than
one direction. For these 5.6% of voxels the highest energy ray con-
tributes a mean of 81.6% of the total energy arriving at these vox-
els. Similar numbers hold for the other models. Before we commit
a patch to the 3D volume, we check if it is allowed to overwrite

Figure 5: Work-flow of our rendering system.

the one already stored there (if any), based on the highest energy
criterion.

5.2.3 Patch List Tessellation Analysis

After each simulation step, the patch list has to be reorganized due
to various reasons:

Divergence tessellation: Since the wavefront diverges at places of
varying refraction, it must be tessellated to stay below a minimum
sampling bound, as outlined in Sect. 4.2. We also have to tessellate
the wavefront patches larger than one voxel due to GPU voxeliza-
tion restrictions. Our simple tessellation currently divides a patch
into four smaller ones if its corners span more than one voxel in any
direction, Fig. 4.

Patch termination: If a patch holds too little energy, we apply an
energy threshold to eliminate the patch, assuming it will not con-
tract again and thus nevermore yield a noteworthy energy contri-
bution. Termination typically happens after too much tessellation
or loss of energy due to repeated attenuation. We also eliminate
patches which leave the simulation volume, since we assume that
they will not re-enter it. The physical model of ray optics breaks
down at wavefront singularities [Born and Wolf 1999], resulting in
infinite energy at catastrophic points, giving rise to non-physical
caustics. We detect these areas by examining the patch orientation
with respect to its propagation direction. In case the orientation
changes, a singular point has been crossed by the wavefront patch
and we discard it from further simulation.

Effectively, this means that a patch can have three patch list states:
Eliminate (0), Retain (1) or Tessellate (4). The numbers in brackets
define the space that each input patch occupies in the output patch
list generated for the next simulation step. We conduct the tessella-
tion analysis after the patches’ corner directions have been updated.
We thus need to reorganize the patch list, which faces us with the
non-trivial problem of data compaction and expansion on graph-
ics hardware. Data compaction (i.e. patch elimination) has been
solved in the GPU algorithm presented by Ziegler et al. [2006]. The
algorithm uses a mipmap-like data structure, the HistoPyramid, to
construct a list of retained data entries (here: patches) without in-
volving the CPU. We extend the algorithm to handle patch tessella-
tion (data expansion). It utilizes the fact that the original algorithm
allocates multiple output positions to an input entry, if this entry is
marked with a value larger than one during the HistoPyramid build-
ing process. This results in a number of equal copies of the input
entry. Instead of receiving four equal patch copies, we then intro-
duce specific behavior in the output generator to tessellate the input
into four smaller patches. Doing this, we effectively implement a
simple, but very fast adaptive wavefront tessellation. Our algorithm
runs without geometry shaders, which are only available on Shader
Model 4.0 graphics hardware.

After the new patch list has been generated, it is forwarded to the

Figure 6: (top) The refractive index volume of the glass is ap-
proached by a spherical wavefront from the right. The adaptive
tessellation of the wavefront is also visible. – (bottom) When it
passes through the object, caustic patterns appear in its irradiance
distribution.

patch list update to advance the simulation. This repeats until no
patches remain in the simulation volume. In Fig. 6, we show a
wavefront propagating through a wine glass. The computed irra-
diance values are used as colors, a preview on the yielded caustic
patterns in and around the object.

5.3 View Renderer

Given the output from the light simulator, we can render arbitrary
user views of a complex refractive object. The view renderer im-
plements a fast ray-caster for arbitrarily bent viewing rays based on
the update equations (11) and (12). Please note that no explicit ray-
surface intersections are required. The radiance along viewing rays
is computed according to Eq. (1), using the simplified image for-
mation model and the scene parameters stored in the input textures.

In theory, we can handle arbitrary BRDF models, including para-
metric or tabulated representations. However, since our glass ob-
jects come close to perfect reflectors and a good approximation
of the first reflection is already visually pleasing, we use sim-
ple dynamic environment mapping. The Fresnel effect and the
anisotropic scattering phase function are computed on-the-fly in
the fragment shader. Through spatially varying as well as color-
channel-dependent attenuation, beautifully colored objects can be
reproduced. Optionally, emission can be added, and dispersion ef-
fects can be simulated if the input data contain a separate refractive
index field for each RGB channel. After the viewing ray has fin-
ished volume traversal, we use its exit direction to conduct a lookup
into a dynamic environment map to approximate the background ra-
diance. All lighting computations are performed in high dynamic
range and an adaptive tone-mapping based on [Krawczyk et al.
2005] is applied prior to display.

6 Results and Discussion

We rendered result sequences with five different objects in several
surroundings, thereby visualizing different combinations of effects.
The results are shown in Figs. 1 and 8 as well as in the accompa-
nying video. Our first object is a glass block with an embedded
colored SIGGRAPH logo. It demonstrates the reproduction of spa-

Figure 7: Comparison between a ray-traced image rendered with
the Persistence of Vision raytracer (left) and our algorithm (right).
The differences in the refraction and shadow size as well as the
slightly displaced caustic pattern are due to the smoothing of the
refractive index field.

tially varying refraction and attenuation behavior, in particular close
to the logo symbol and the text, Fig. 8 (left). On the boundary of
the object, total reflection can be observed. Another interesting ob-
ject is the solid rounded cube which is composed of glass layers
with different attenuation characteristics, as well as varying refrac-
tion indices, Fig. 1 (right). It also shows anisotropic scattering in
its interior visible as sparkles. Focusing of light in the glass leads
to volume caustics in its interior. Similar effects can be seen on
the glass sphere rendered into a captured real-world environment,
Fig. 8 (middle). In addition to all other lighting effects, it has a
slight emissive component. We also show a glass filled with red
wine, Fig. 1 (left). The glass is illuminated with a directional light
source that casts colored caustics onto the table. It also shows inter-
esting and complex refraction effects, as well as appealing surface
reflections, Fig. 8 (right). We can also render objects in scattering
participating media. Fig. 1 (middle) depicts the glass bunny in a
showing case filled with anisotropically scattering smoke. We tuned
the attenuation parameters to lend the impression that it is made of
amber with black embeddings. It also anisotropically scatters light
in its interior.

In the video we first show a light moving behind a SIGGRAPH
logo. This is implemented by rendering a particle system into the
dynamic environment map. No lighting simulation was performed
for this part. The wine glass scene shows the temporal behavior
of our wavefront-based irradiance computation scheme. The irra-
diance distributions are pre-computed. The pre-computation took
around 90 minutes for 600 frames. Note that no temporal smooth-
ing has been applied to the irradiance distributions. In the museum
scene we simultaneously render 5 refractive objects, and also dy-
namically update the environment maps. By this means, refractive
objects can be seen through other refractive objects, see Fig. 8 (left).

To compare our algorithm against ground truth we rendered a sim-
ple test scene, Fig. 7, consisting of a plane and a refractive sphere
illuminated by a directional light source. For the purpose of this
rendering we replaced the environment map lookup by a ray-plane
intersection in the fragment shader. More complex nearby ge-
ometry can be rendered accurately using the approach of Hu and
Qin [2007]. The difference between the reference solution and
our renderer is an artifact of the volumetric discretization and the
smoothing of the refractive index fields prior to gradient computa-
tion.

Our test data are stored in 1283 voxel volumes. On an AMD Dual
Core Athlon with 2.6 GHz equipped with an NVidia GeForce 8800
GTX and 768 MB of video RAM, we obtain a sustained rendering
frame rate of around 25 fps at a resolution of 800× 600 pixels if
one object is displayed and if the light source remains in a fixed

position, Fig. 1 (left) and Fig. 8 (middle)1. Mind that the frame rate
decreases when zooming in very closely, since more rays need to be
cast from the viewpoint into the volume. Also note that the screen-
shots in Fig. 1 (middle) and (right) and Fig. 8 (left) and (right) are
taken from a scene containing 5 refractive objects for which dy-
namic environment maps have to be rendered. These frame rates
are thus not representative for rendering a single refractive object.
After moving a light source to a new position, the lighting simu-
lation has to be re-run once. This typically takes around 5 to 10
seconds.

For our particular application, the ODE-based ray propagation and
adaptive wavefront tracing formulation have a couple of intriguing
advantages. The voxel representation allows for fast non-linear ray
casting. Expensive ray/geometry intersections, like in [Purcell et al.
2003], would lead to performance bottlenecks on complex curved
light paths. Adaptive wavefront tracing also enables us to simulate
non-linear light transport with a fast particle tracer while simulta-
neously avoiding undersampling problems. Our update times after
light position changes are comparable to other state-of-the art GPU
methods reproducing fewer effects, e.g. only caustics in isotropic
media [Ernst et al. 2005]. We see an advantage over alternative
methods like photon-mapping [Jensen 2001] because we only insert
particles when needed, i.e. when the wavefront is undersampled.
We obtain densely sampled irradiance and directional information
throughout 3D space, such that we can cater for anisotropic visual
effects at any point in the scene. Also, no special reconstruction ker-
nels are required. Furthermore, we obtain a physically plausible2

light distribution with significantly reduced sampling problems. An
advantage over PDE approaches is the fast simulation and the abil-
ity to pick a particular solution in case of multi-valuedness of the
light distribution. For a particular point in space, we choose the ray
carrying the highest energy. With additional memory consumption
and higher algorithmic complexity multi-valued solutions could be
computed as well, e.g. using multiple rendering targets.

Despite these advantages for refractive object rendering, on gen-
eral scenes our algorithm does not match the power of related ap-
proaches like photon mapping, which can efficiently produce full
global illumination solutions. The required level of discretization
makes our method only suitable for a simulation of spatially con-
fined refractive objects. These objects may appear as part of larger
scenes by computing standard irradiance fall-offs for mesh based
objects and lighting surfaces falling into our simulation volume
with the pre-computed volumetric irradiance values. Due to the
volumetric representation, the scene’s size is mainly limited by the
available video memory. Octree representations can help to fur-
ther reduce memory consumption. Besides, with future generations
of graphics boards, memory limits will become less of an issue.
Furthermore, we are dependent on decent gradient fields to yield
visually pleasing results. To this end, we pre-smooth the refrac-
tive index volumes prior to gradient evaluation. Here, one needs
to take care to not over-smooth which would lead to halo-effects
around material boundaries. A sufficiently high voxelization level
is needed for extreme close-up renderings. Otherwise, discretiza-
tion artifacts in the lighting effects may occur.

7 Conclusions

We presented a fast and versatile method to render a variety of so-
phisticated lighting effects in and around refractive objects in real-
time. It is based on a sophisticated model of light transport in vol-
umetric scene representations that accounts for a variety of effects,

1see captions for exact fps in individual scenes
2within the limits of geometrical optics, see [Born and Wolf 1999] for

details

Figure 8: (left) Glass block with embedded SIGGRAPH logo of different refraction and attenuation, 15.5 fps, (5 objects in scene). (middle)
Colored sphere rendered into an HDR environment map showing slight emission in addition to all other effects, 26.2 fps. (right) Complex
refraction patterns in the glass, 13.7 fps, (5 objects in scene). – Also note the surface reflections and the total reflections within, as well as the
rounded cube being visible through the glass block.

including refraction, reflection, anisotropic scattering, emission and
attenuation. It employs a fast particle tracing method derived from
the eikonal equation that enables us to efficiently simulate non-
linear viewing rays and complex propagating light wavefronts on
graphics hardware. To implement adaptive wavefront tracing on the
GPU, we have developed new data structures to perform geometry
tessellation that even runs on pre-Shader Model 4.0 architectures.

Acknowledgements

We would like to thank Anders Sundstedt and Michael Schantin for
help in scene modeling and GusGus for giving us permission to use
their music in the video. This project was supported by the Max-
Planck-Center for Visual Computing and Communication MPI In-
formatik/Stanford.

Appendix

We derive a constant spatial and a constant temporal step size pa-
rameterization of the ray equation of geometric optics. Eq. (8) is
derived by combining the eikonal equation

|5S| = n (19)

and the equation of a particle moving normal to the wavefronts S =
const.

dx
ds

=
5S
|5S|

. (20)

S is a solution of the eikonal equation and iso-surfaces of this func-
tion are called wavefronts. They are surfaces of constant travel
time from the light source. The derivation of Eq. (8) can be found
in [Born and Wolf 1999].

Parameterization with constant spatial step size

Using Eq. (20) we immediately have

|
dx
ds

|2 =
dx
ds

·
dx
ds

= 1. (21)

Inserting Eq. (19) into Eq. (20) yields

n
dx
ds

= 5S. (22)

Setting v = 5S we obtain a parameterization with constant spatial
step size ds, Eqs. (9) and (10).

Parameterization with constant temporal step size

We are looking for a parameterization where

dS
dt

= 5S ·
dx
dt

= 1, (23)

i.e. the infinitesimal change of the eikonal function S with respect
to the parameter t is constant. Inserting Eq. (22) into Eq. (23) yields

1
n

=
dx
ds

·
dx
dt

=
dx
ds

·
dx
ds

ds
dt

=
ds
dt

, (24)

where the last identity is due to Eq. (21). Using this result we
perform a change of parameters using the chain rule and obtain
Eqs. (14) and (15) from Eqs. (9) and (10).

References

ARVO, J. R. 1986. Backward Ray Tracing. In ACM SIGGRAPH
’86 Course Notes - Developments in Ray Tracing, vol. 12.

BENAMOU, J.-D. 1996. Big ray tracing: Multivalued travel time
field computation using viscosity solutions of the eikonal equa-
tion. Journal of Computational Physics 128, 2, 463–474.

BERGER, M., TROUT, T., AND LEVIT, N. 1990. Ray tracing
mirages. IEEE CGAA 10, 3, 36–41.

BLINN, J. 1982. Light reflection functions for simulation of clouds
and dusty surfaces. In Proc. of SIGGRAPH’82, 21–29.

BORN, M., AND WOLF, E. 1999. Principles of Optics, seventh
edition. Cambridge University Press.

BRIÈRE, N., AND POULIN, P. 2000. Adaptive Representation of
Specular Light Flux. In Proc. of Graphics Interface, 127–136.

BUSKE, S., AND KÄSTNER, U. 2004. Efficient and Accurate Com-
putation of Seismic Traveltimes and Amplitudes . Geophysical
Prospecting 52, 313–322.

CARR, N. A., HALL, J. D., AND HART, J. C. 2002. The ray
engine. In Proc. of Graphics Hardware, 37–46.

COLLINS, S. 1994. Adaptive Splatting for Specular to Diffuse
Light Transport. In Proc. of EGWR, 119–135.

COLLINS, S. 1997. Wavefront Tracking for Global Illumination
Solutions. PhD thesis, Department of Computer Science, Trinity
College Dublin.

ENQUIST, B., AND RUNBORG, O. 2003. Computational High
Frequency Wave Propagation. Acta Numerica 12, 181–266.

ERNST, M., MOELLER, T. A., AND JENSEN, H. W. 2005. Inter-
active rendering of caustics using interpolated warped volumes.
In Proc. of GI, 87–96.

GRÖLLER, E. 1995. Nonlinear ray tracing: visualizing strange
worlds. The Visual Computer 11, 5, 263–274.

GÜNTHER, J., WALD, I., AND SLUSALLEK, P. 2004. Realtime
caustics using distributed photon mapping. In Proc. of EGSR,
111–121.

GUTIERREZ, D., MUÑOZ, A., ANSON, O., AND SERON, F. J.
2005. Non-linear volume photon mapping. In Proc. of EGSR,
291–300.

GUTIERREZ, D., SERON, F. J., MUÑOZ, A., AND ANSON, O.
2006. Simulation of Atmospheric Phenomena. Computers &
Graphics 30, 6, 994–1010.

GUY, S., AND SOLER, C. 2004. Graphics gems revisited: fast
and physically-based rendering of gemstones. In Proc. of SIG-
GRAPH’04, 231–238.

HAKURA, Z. S., AND SNYDER, J. M. 2001. Realistic reflections
and refractions on graphics hardware with hybrid rendering and
layered environment maps. In Proc. of EGSR, 289–300.

HARRIS, M., BAXTER, W., SCHEUERMANN, T., AND LASTRA,
A. 2003. Simulation of cloud dynamics on graphics hardware.
In Proc. of Graphics Hardware, 92–101.

HENYEY, L. G., AND GREENSTEIN, J. L. 1941. Diffuse Radiation
in the Galaxy. Astrophysical Journal 93, 70–83.

HU, W., AND QIN, K. 2007. Interactive Approximate Rendering
of Reflections, Refractions, and Caustics. IEEE TVCG 13, 1,
46–57.

JENSEN, H. W., AND CHRISTENSEN, P. H. 1998. Efficient simu-
lation of light transport in scences with participating media using
photon maps. In Proc. of SIGGRAPH’98, ACM Press, 311–320.

JENSEN, H. W., MARSCHNER, S. R., LEVOY, M., AND HANRA-
HAN, P. 2001. A practical model for subsurface light transport.
In Proc. of SIGGRAPH’01, ACM Press, 511–518.

JENSEN, H. W. 2001. Realistic Image Synthesis Using Photon
Mapping. AK Peters.

KAJIYA, J., AND VON HERZEN, B. 1984. Ray tracing volume
densities. In Proc. of SIGGRAPH’84, 165–174.

KRAWCZYK, G., MYSZKOWSKI, K., AND SEIDEL, H.-P. 2005.
Perceptual effects in real-time tone mapping. In Proc. of Spring
Conference on Computer Graphics, ACM, 195–202.

MAGNOR, M., HILDEBRAND, K., LINŢU, A., AND HANSON,
A. 2005. Reflection Nebula Visualization. In Proc.of IEEE
Visualization, 255–262.

MERTENS, T., KAUTZ, J., BEKAERT, P., SEIDEL, H.-P., AND
REETH, F. V. 2003. Interactive rendering of translucent de-
formable objects. In Proc. of EGRW’03, 130–140.

MITCHELL, D., AND HANRAHAN, P. 1992. Illumination from
curved reflectors. In Proc. of SIGGRAPH ’92, 283–291.

MUSGRAVE, F. K. 1990. Ray tracing mirages. IEEE CGAA 10, 6,
10–12.

NISHITA, T., AND NAKAMAE, E. 1994. Method of displaying
optical effects within water using accumulation buffer. In Proc.
of SIGGRAPH’94, ACM Press, 373–379.

OHBUCHI, E. 2003. A real-time refraction renderer for volume
objects using a polygon-rendering scheme. In Proc. of CGI, 190–
195.

OSHER, S., CHENG, L.-T., KANG, M., SHIM, H., AND TSAI,
Y.-H. 2002. Geometric Optics in a Phase-Space-Based Level
Set and Eulerian Framework. Journal of Computational Physics
179, 2, 622–648.

PARKER, S., MARTIN, W., SLOAN, P., SHIRLEY, P., SMITS, B.,
AND HANSEN, C. 1999. Interactive ray tracing. In Proc. of I3D,
ACM Press, 119–126.

PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND
FLANNERY, B. P. 1992. Numerical Recipes in C. Cambridge
University Press.

PURCELL, T. J., DONNER, C., CAMMARANO, M., JENSEN,
H. W., AND HANRAHAN, P. 2003. Photon mapping on pro-
grammable graphics hardware. In Proc. of Graphics Hardware,
41–50.

RUSHMEIER, H., AND TORRANCE, K. 1987. The zonal method
for calculating light intensities in the presence of a participating
medium. In Proc. of SIGGRAPH’87, 293–302.

STAM, J., AND LANGUÉNOU, E. 1996. Ray-tracing in non-
constant media. In Proc. of EGSR, 225–234.

STAM, J. 1995. Multiple Scattering as a Diffusion Process. In
Proc. of EGSR, 41–50.

WALD, I., BENTHIN, C., SLUSALLEK, P., KOLLIG, T., AND
KELLER, A. 2002. Interactive global illumination using fast
ray tracing. In Proc. of EGSR, 15–24.

WAND, M., AND STRASSER, W. 2003. Real-time caustics. Com-
puter Graphics Forum (Eurographics 2003) 22, 3, 611–620.

WEISKOPF, D., SCHAFHITZEL, T., AND ERTL, T. 2004. GPU-
Based Nonlinear Ray Tracing. Computer Graphics Forum (Eu-
rographics 2004) 23, 3, 625–633.

WYMAN, C., AND DAVIS, S. 2006. Interactive image-space tech-
niques for approximating caustics. In Proceedings of ACM I3D,
153–160.

WYMAN, C., HANSEN, C., AND SHIRLEY, P. 2004. Interactive
caustics using local precomputed irradiance. In Proc. of Pacific
Graphics, 143–151.

WYMAN, C. 2005. An approximate image-space approach for
interactive refraction. In Proc. of SIGGRAPH’05, 1050–1053.

ZHAO, Y., HAN, Y., FAN, Z., QIU, F., KUO, Y.-C., KAUFMAN,
A. E., AND MUELLER, K. 2007. Visual Simulation of Heat
Shimmering and Mirage. IEEE TVCG 13, 1, 179–189.

ZIEGLER, G., THEOBALT, C., AND SEIDEL, H.-P. 2006. On-the-
fly point clouds through histogram pyramids. In Proc. of VMV,
137–144.

