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Supplemental Material for PaperID 0159 “A Reconfigurable Camera Add-On for
High Dynamic Range, Multispectral, Polarization, and Light-Field Imaging”

This document provides an additional discussion of design choices1

and information regarding the processing steps involved in the ap-2

plications.3

1 Details on the Choice of the Diffuser4

The diffuser structure is of major practical concern for image qual-5

ity. Since we are using high resolution sensors, and essentially per-6

form a1:N minification, the diffuser structure should ideally be be-7

low N × µ, whereµ is the physical pixel size, to avoid seeing the8

diffuser structure in the final image. A large diffusion angle, how-9

ever, requires sufficient structures for scattering. This can either be10

achieved by larger surface structures (typically50 − 100µm) in11

relatively thin materials, or by finer scattering structures in thicker12

slabs. The former option leads to graininess in the image whereas13

the latter induces glare by multiple scattering. We experimented14

with both types of diffuser, one thin material that has been extracted15

from an LCD screen (thickness≈ 0.1mm), and one diffuser type16

that is designed for polarization-based 3D rear projection screens17

(thickness≈ 1mm available from ScreenTech GmbH (material18

type “ST-Professional-DCF” ). The latter diffuser is designed to be19

polarization-preserving. The two diffusers are at opposite ends of20

the spectrum, where the LCD diffuser shows considerable graini-21

ness, whereas the diffuser intended for 3D rear projection screens22

shows considerable glare. Fig.1 shows the angular scattering pro-23

file of both diffusers and measurements of a target that is designed24

for the measuring of image resolution and contrast. The LCD dif-25

fuser shows graininess but much better contrast than the 3D rear-26

projection diffuser which suffers from glare. Unfortunately, the27

hotspot nature of the LCD diffuser prevents its use in our filter-28

based design since it passes light-field components into the dif-29

ferent copies. This means that parallax effects are observable in30

the differently-filtered views – clearly an undesirable attribute. We31

therefore chose to work with the 3D rear-projection diffuser.32

2 Details on Multispectral Calibration and33

Estimation34

2.1 Spectral Calibration35

We took images of a MacBeth ColorChecker classic through all36

116 broadband filters provided in the Roscolux swatchbook as pro-37

duced by Rosco Laboratories. The transmission spectra of these38

filters where measured by a spectrometer (CCS 200, Thorlabs39

Inc.; 200nm − 1000nm). As in the paper we denote them by40

fi, , i = 1 . . . 116. In addition, we measured the spectral output of41

a light source that has a higher efficiency in the blue than an incan-42

descent light bulb, a high pressure mercury vapor lampsmv. The43

116 input images are radiometrically compensated. We then ap-44

proximate the Bayer filter spectral transmission curves by a linear45

combination of basis functions.46

fr|g|b(λ) =

N−1
∑

j=0

a
r|g|b
j φj(λ). (1)

Here,N is the number of basis functionsφj used for the approx-47

imation andar|g|b
j are the coefficients for the red, green, and blue48

response functions. Inserting into Eq. (3) from the paper, we obtain49
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Figure 1: Top Row: Angular response of two different diffusers.
Left: A diffuser intended for 3D rear-projection. The scattering
profile is broad and does not feature spiky peaks - it is said to be
free of hot spots. This type of diffuser is usable in our system.Right:
A diffuser extracted from an LCD screen. The diffuser profile shows
a strong peak in the center - this peak is called a hot spot in dif-
fuser optical language. It passes light-field components into our
imaging system and is unsuitable for filter-based imaging.Bottom
Row: Comparison of image quality.Left: Diffuser for 3D rear
projection. The contrast is reduced due to glare within the thick
material of the diffuser. In this example, the resolution is about 1.2
line pairs permm. Right: LCD diffuser, the material shows sur-
face structure which has a highly non-uniform angular response.
The resolution and contrast, however, are much better than in the
3D rear-projection diffuser, 1.8 line pairs permm can be resolved.
Further, the LCD diffuser results in observable parallax between
sub-images.
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Figure 2: Spectral response of the Canon EOS 5D mark II as esti-
mated from116 broadband filtered images.

a linear system of equations:50

I
r|g|b
i (x, y) =

N−1
∑

j=0

a
r|g|b
j

∫

λ

lλ(x, y, λ), φj(λ)fi(λ)smv(λ)dλ,

(2)
with the integral now being completely determined. In theory, we51

could solve the resulting linear systems52

I
r|g|b = Φa

r|g|b (3)

in a least-squares sense by invertinga
r|g|b = (ΦT

Φ)Ir|g|b where53

the vectors collect the individual coefficients and image values and54

the matrixΦi,j contains the integral values for thei’th image and55

thej’th basis function. In practice, we need to add a standard Lapla-56

cian regularization term (with Neuman boundary conditions) and57

enforce positiveness of the solution. We solve58

min
ar|g|b(Φa

r|g|b − I
r|g|b)2 + α(Lar|g|b)2 subject toar|g|b ≥ 0

(4)
using the MATLABquadprog sub-routine. In practice, we use59

50 Gaussian basis functions to cover the range between400nm60

and700nm, which is the region of best sensitivity of our camera.61

The regularization parameterα was set to50. The resulting curves62

are shown in Fig.263

2.2 Spectral Image Estimation64

Our imaging device creates9 copies that are filtered with spectral65

broadband filters selected from the Rosco Labs Roscolux swatch-66

book. The filters were selected manually, based on spectral cov-67

erage coniderations. The filters that were used for all experiments68

are{ Cyan #4360, Yellow #4590, Red #26, Orange #23, Green #89,69

Blue-Green #93, Lavender #4960, Blue #80, Magenta #4760}. The70

resulting images are RGB images, i.e. each of the nine filters is71

modulated by an additional Bayer filter, resulting in 27 measure-72

ment channels. We use the same algorithm as for the calibration73

of the spectral sensitivities, Sec.2.1. There is one minor modifica-74

tion; following [Toyooka and Hayasaka 1997; Park et al. 2007], we75

use a PCA basis for the spectral dimension. It is well known, that76

natural spectral reflectances can be modelled by a low-dimensional77

linear model [Jaaskelainen et al. 1990]. This modification necessi-78

tates an adaptation of the Laplacian prior since regularization is to79

be performed on the reconstructed function, not on the coefficients80
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Figure 3: Spectral reflectance of a MacBeth ColorChecker
classic as imaged and reconstructed by our system (red) and
average ground truth measurements obtained from 30 Col-
orCheckers (blue), source:http://www.babelcolor.com/
main_level/ColorChecker.htm.

of its linear expansion. For this purpose, an additional matrixΨ81

containing the basis vectors in its columns is introduced into the82

regularization term.83

min
ar|g|b(Φa

r|g|b − I
r|g|b)2 + α(LΨa

r|g|b)2. (5)

Moreover, since a large number of pixels have to be reconstructed,84

we cannot afford to solve a quadratic program in this case. We85

therefore resort to solving the standard per-pixel least-squares prob-86

lem87

a
r|g|b = (ΦT

Φ+ α(LΨ)T (LΨ))−1
I
r|g|b. (6)

We construct the PCA basis by analyzing a database88

of 1269 spectra measured from the Munsell book of89

colors (source: http://www.uef.fi/spectral/90

munsell-colors-matt-spectrofotometer-measured)91

in agreement with [Jaaskelainen et al. 1990]. In practice, we use the92

mean of the data set and the first14 PCA vectors as basis functions.93

The regularization parameterα has been set to a low value of0.0194

since the basis itself has strong regularizing properties.95

Evaluation To evaluate our reconstruction scheme, we recorded96

a MacBeth Color checker classic under the illumination of a high-97

pressure mercury vapor lamp. The results are compared to av-98

erage measurements obtained from spectrometers that were col-99

lected on http://www.babelcolor.com/main_level/100

ColorChecker.htm, see Fig.3. The results are in good agree-101

ment with the collected data.102

2.3 Relighting and Simulation of Color-Deficiency103

Our applications are based on a modulation of the acquired color104

spectra. The processing chain involves the computation of neutral105

spectral images with29 wavebands. Since our examples have been106

recorded in a lab setting, the spectral composition of the illuminat-107

ing source was known (measured by spectrometer Thorlabs CCS108

200). We can then modulate the spectral image stack with illumi-109

nating spectra from different sources:110

• a simulation of different black body spectra using Planck’s111

law,112
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• an assortment of daylight spectra obtained fromhttp://113

www.uef.fi/spectral/daylight-spectra,114

• an assortment of artificial light spectra ob-115

tained from http://www.uef.fi/spectral/116

artificial-lights, and117

• a simulated sweeping band pass with Gaussian profile of118

20nm width.119

The resulting spectral images were converted to XYZ using the120

CIE64 standard observer. Finally, a conversion to sRGB (gamma121

2.2) with a simulated D65 daylight source was performed.122

Simulation of Color Deficiency For simulating the vision of123

color deficient subjects, we obtained the color-matching functions124

for protanomalous (response of the red cones shifts towards green125

by about10nm) and deutanomalous subjects (response of the126

green cones shifts towards red by about10nm) [DeMarco et al.127

1992]. These two are the most common color deficiencies en-128

countered in the population. In addition, there are three types129

(protanopia, deutanopia, tritanopia) that have zero response for130

the L, M, and S cones, respectively. The simulations were per-131

formed by substituting the CIE64 color matching functions with132

their adapted versions. Since these are not designed to convert to133

XYZ but to an LMS cone response, we first mapped the output to134

XYZ, which was then converted to sRGB for display.135

3 Detailed Derivation of the Horn-Schunck-136

based Depth Estimation137

To derive a depth map, we do not rely on stereo matching, but in-138

stead employ a modified optical flow algorithm. We adapted the139

Horn and Schunck functional by introducing a scalar depth func-140

tion d(x, y) for the center view. This depth value results in a paral-141

lax displacement in the neighboring images viad · [ui, vi]
T , where142

the vector[ui, vi]
T denotes the direction of the epipolar lines in a143

neighboring viewIi. Our goal is to estimate a depth that best ex-144

plains all views in a least-squares sense. The resulting error func-145

tional adapted from Horn & Schunck flow is given by146

mindE =

∫

∑

i

(d(▽Ii ·[ui, vi]
T )+Iti )

2+α2||▽d||2dxdy, (7)

wherei is an index denoting the neighboring views, excluding the147

center. [ui, vi] are constant vectors that indicate the direction of148

the epipolar lines in viewi, ▽Ii = [Ixi , I
y
i ] is the spatial gradient149

of view i, andIti denotes the “temporal” derivative between view150

i and the center view. The termα2||▽d||2 is a standard Laplacian151

smoothness term on the depth map with regularizing parameterα2.152

The scalar functiond(x, y) is the quantity being optimized for. The153

corresponding Euler-Lagrange equation is154

d ·
∑

i

(Ixi ui + Iyi vi)
2 +

∑

i

Iti (I
x
i ui + Iyi vi)− α2△d = 0. (8)

We solve it by standard techniques, discretizing the spatial deriva-155

tives by central differences with Neumann boundary conditions and156

the “temporal” derivative by Euler forward differencing. We use the157

Horn & Schunck approximation to the Laplacian△d = (d − d̄),158

where159

d̄ = 1/12 (dx−1,y−1 + dx+1,y−1 + dx−1,y+1 + dx+1,y+1)

+ 1/6 (dx,y−1 + dx,y+1 + dx−1,y + dx+1,y) .

The equation

dk+1 =
α2d̄k −

∑

i
Iti (I

x
i ui + Iyi vi)

(Ixi ui + Iyi vi)
2 + α2

Figure 4: Demonstration of how the optical system changes the
polarization state of the incoming light. The image shows the dis-
tribution of degree of polarization in the camera’s red color chan-
nel. The coding uses black to indicate totally polarized (100%) and
white to show unpolarized (0%) states.

then defines an update rule to solve ford by Jacobi iterations160

k. The scheme is implemented in a standard scale-space fash-161

ion [Meinhardt-Llopis and Prez 2012] to allow for large displace-162

ments.163

4 Details on the Requirements and Calibra-164

tion for Polarization Imaging165

To allow for polarization imaging with our optical system, it is es-166

sential that we employ a polarization-preserving diffuser instead of167

a regular diffuser, since a regular diffuser essentially acts as a de-168

polarizer. Light traversing through a depolarizer becomes unpolar-169

ized regardless of its initial polarization state. In other terms, the170

Mueller-matrix of a depolarizer is not a full row rank matrix and,171

therefore, retrieving the original Stokes vector of the light becomes172

impossible.173

The other prerequisite is that we need to determine an effective174

Mueller-matrixMsys(x, y) of the system for each pixel(x, y). It175

characterizes the optical system in the sense of how it changes the176

polarization state of the incoming light. In Fig.4, we demonstrate177

this effect in an example image, which shows the measured linear178

degree of polarizationpdeg across the nine sub-images in an optical179

system without any polarization filters. By definition, we can de-180

rive the degree of polarizationpdeg =

√

(s(1)
2
+ s(2)

2
)/s(0) from181

the Stokes vectors = [ s(0) s(1) s(2) ]. In this particular case, we let182

a diffused and completely polarized light beam through the setup.183

While at the center, the system retained the 100% degree of polar-184

ization, towards the edges the light became less polarized due to the185

reflections on the mirrors. We need to compensate for this change186

by carrying out a calibration procedure with the complete system187

using differently oriented polarizers in the filter array.188

Basically, the calibration is a Mueller matrix polarimetry whose189

principles and possible realization scenarios are thoroughly de-190

scribed in [Goldstein 2003]. It needs a system with a complete191

polarization state generator (PSG) and a complete polarization state192

analyzer (PSA) component. For PSG, we have used an incandes-193

cent light source, a paper diffuser, and a polarizer that were placed194

at the entrance of the optical system. With these simple tools both195

states (totally linearly polarized and unpolarized) can be generated.196

We place these elements in the following order; for totally polarized197

light illumination→ paper diffuser→ polarizer→ optical system198

and for unpolarized lightillumination→ polarizer→ optical sys-199

tem. Here, we exploit the feature of the paper diffuser, which acts200
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as an almost ideal depolarizer. Further, by still retaining the polar-201

izer in the optical path, we can ensure that the light beam entering202

the optical system is going to have the same spectrum regardless203

of the generated polarization state. With various orientations of the204

polarizer, five different totally polarized states and one unpolarized205

state were reproducibly created. These states were measured by a206

ground-truth imaging polarimeter consisting of a camera, lens (the207

same as in our optical system) and a manually rotated polarizer208

(similar to [Neumann et al. 2008]). Ground-truth Stokes vectors209

s
(i)
gt , i = 1...6, were determined by averaging the obtained Stokes-210

vectors within a window of1500 × 1500 pixels in the center of211

the images, which were completely filled by the unfocused image212

of the diffused light beam. Then the same measurements of these213

states were carried out through the optical system, employing the214

same camera, lens, and the additional manually-rotated polarizer,215

yielding a Stokes vectors(i)sys(x, y) for each pixel(x, y). These216

Stokes-vectors are then matched against to the ground truth ones217

using the linear relations(i)sys(x, y) = Msys(x, y)s
(i)
gt , i = 1...6.218

Msys(x, y) is solved via a least-squares regression. Finally, the219

obtained system Mueller matricesMsys(x, y) have to be registered220

with the same transformation that is applied to the sub-images and221

will yield five Mueller-matricesMi, i = 1...5 in each sub-image222

pixel. These matrices are used for retrieving pixel-by-pixel Stokes-223

vectors of the optical system itself and we can follow the description224

given in the main paper (see Eq.(4)).225
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