
Eurographics Symposium on Rendering 2017
P. Sander and M. Zwicker
(Guest Editors)

Volume 36 (2017), Number 4

Minimal Warping: Planning Incremental Novel-view Synthesis

Thomas Leimkühler1 Hans-Peter Seidel1 Tobias Ritschel2

1MPI Informatik 2University College London

= ∫
Time

Root

L
e
n
s

Sh
ad
o
w

Figure 1: We produce complex distribution effects such as motion blur and depth-of-field at high quality by warping RGB-D images (left).
In this example the time, lens, and shadow domain are sampled by warping a reference image (thick boundary) into many novel views and

averaging them (left). Different from previous work which warps the reference into each new sample individually, we organize samples into a

tree such that warps (edges) become minimal, i. e., they can be produced at high speed by deforming another sample using minimal effort.

Abstract

Observing that many visual effects (depth-of-field, motion blur, soft shadows, spectral effects) and several sampling modalities

(time, stereo or light fields) can be expressed as a sum of many pinhole camera images, we suggest a novel efficient image

synthesis framework that exploits coherency among those images. We introduce the notion of “distribution flow” that represents

the 2D image deformation in response to changes in the high-dimensional time-, lens-, area light-, spectral-, etc. coordinates.

Our approach plans the optimal traversal of the distribution space of all required pinhole images, such that starting from one

representative root image, which is incrementally changed (warped) in a minimal fashion, pixels move at most by one pixel,

if at all. The incremental warping allows extremely simple warping code, typically requiring half a millisecond on an Nvidia

Geforce GTX 980Ti GPU per pinhole image. We show, how the bounded sampling does introduce very little errors in comparison

to re-rendering or a common warping-based solution. Our approach allows efficient previews for arbitrary combinations of

distribution effects and imaging modalities with little noise and high visual fidelity.

1. Introduction

Rendering images is time-consuming, in particular when complex
visual effects such as motion blur or depth of field are needed, for
spectral rendering, soft shadow or caustics, chromatic aberrations
or when many images need to be produced, such as for light fields
or high refresh rates. We observe, that images which such effects
or those modalities are the sum of many pinhole images covering a
“distribution domain” and that the information across this domain
at the same time is highly redundant, presenting an opportunity for
our method to exploit it.

One method to exploit this coherence is image warping: after
an initial image is shaded, it is warped into several novel ones
across the distribution domain and finally averaged. Warping is
faster than re-rendering, mostly because geometric transformations
and shading costs become decoupled from sampling the distribution
effect visibility and is even shared over time or the angular domain.
Still, warping itself has two main limitations: First, it can have
limited speed in practice, especially when many and very different
novel views are required. Second, it can only represent object or
camera motion, and ignores other effects such as moving shadows

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John

Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

This is the author's version of the work. It is posted here by permission of EUROGRAPHICS/Blackwell Publishing for personal use. Not for redistribution.
The definitive version is available at http://diglib.eg.org/ and http://onlinelibrary.wiley.com/ .

Leimkühler et al. / Minimal Warping: Planning Incremental Novel-view Synthesis

or caustics or changes of wavelength. Our approach addresses these
two shortcomings.

Addressing the first issue, our main observation is that small
warps are easier than large warps. In particular, warps by a single
pixel can be achieved by an effort not bigger than a conditional
move from a tiny pixel neighborhood. Warps that do not change
any pixels in a spatial or sampling-domain region are even better:
they do not cost any time at all. To this end, instead of performing
a large warp from the input image into each new view, we propose
a system to plan the traversal of the warping space such that the
warps become small. The resulting warping only needs to be done
incrementally, i. e., by moving pixels by an amount that is spatially
bounded or not at all.

Addressing the second issue, we generalize camera and object
motion into a general notion of distribution flow that captures arbi-
trary reactions of the pixel position inside an image in response to
changing any distribution coordinate, including area light sampling
position or motion or animated caustics. To this end, we make two
contributions: First we introduce shadow and spectral flow, that
describe motions of pixels in response to motions of lights, occlud-
ers or receivers as well as changes in the spectral band. Second, to
represent any arbitrary combination of flows, including shadow and
spectral flow, we sample the flow at a low number of representative
locations and extrapolate it to all other sample locations using radial
basis functions.

The simplicity of our approach allows producing content that
fuses arbitrary combinations of distribution effects (lens, time, area
lights, spectrum, including shadow or caustic motion) into arbitrary
combinations of outputs (plain images, stereo pairs, light fields,
higher temporal resolution). In particular, scenes with complex ge-
ometry and high shading cost benefit from this decoupling, pro-
ducing images virtually free of sampling noise. Yet, we show how
our approach, when using the sampling bounds we devise, does not
introduce more error in comparison to a common warping-based
solution while being much faster. At negligible planning cost, our
approach is roughly three to four times as fast as drawing points or
a forward-warping grid. For a one-megapixel resolution, minimal
warping typically requires less than a millisecond, which is only
four times slower than the theoretical optimum for any warping
algorithm: Reading the forward flow from a texture and directly
using it as the inverse flow for a lookup in another texture.

2. Previous Work

Our approach computes distribution effects (Sec. 2.1) by means of a
novel multi-image warping procedure (Sec. 2.2). Works related to
those two sub-problems are presented next. Furthermore, we review
related concepts dealing with incremental or differential changes in
images (Sec. 2.3).

2.1. Rendering distribution effects

Our fast warping allows for efficient production of many visual
effects, such as depth-of-field, motion blur, temporal up-sampling
(generally, known as “distribution effects”) and many others that are
otherwise hard to come by. Here we will briefly survey how those
distribution effects are commonly produced.

Ray-tracing The canonical way of simulating these is distribution
ray-tracing [CPC84]. Here, for every lens, time, etc. sample, a ray
is sent. The final image is obtained by averaging the contribution
of all rays. This is a general and easily implemented solution, but
inherits the difficulties of ray-tracing that does not deliver the same
performance as rasterization. Despite its theoretical properties, ray-
tracing does not scale favorably with increasing geometry. Also
shading complexity directly affects the cost of distribution effects
as it is usually not able to exploit the coherence in shading, which is
very similar in many cases. However, efficient reuse of samples is
possible by considering anisotropic footprints [LAC∗11], allowing
to reduce the sampling rate significantly.

Micro-polygons An alternative to ray-tracing for high-quality im-
ages is REYES [CCC87]. Here, the scene is decomposed into micro-
polygons, shaded and rasterized from many views. The shading
of vertices decouples it from visibility determination, allowing to
exploit coherence. A limitation we share with REYES is to assume
shading does not change across distribution effects. While GPU
implementations of REYES are available [ZHR∗09], the complexity
of the process does not map as well to GPUs as plain rasterization
does. Rasterizing micro-polygons still requires more computational
effort than what is necessary to achieve a very similar result using
minimal warping.

Accumulation Buffering Accumulation buffering [HA90] is a sim-
ple alternative to this: A GPU is used to render many slightly differ-
ent pinhole images, which is a highly optimized process taking full
advantage of common graphics hardware. The resulting images are
accumulated to produce an image with distribution effects. While
this is a fairly simple and general method, like every super-sampling
it can be slow and the (shading) coherence between similar images
is not exploited.

Stochastic rasterization Instead of averaging many pinhole im-
ages, an alternative solution is to blend the random nature of dis-
tribution ray-tracing and rasterization in what is called stochastic
rasterization [AMMH07]. Here, an output image is still rasterized,
but contains pixels from many views which are then aggregated to
support many distribution effects. Using layered rendering improves
the quality here [MVH∗14]. Other specialized rasterizations have
directly produced multiple views [HAM06]. Finally, direct samples
of a light field rendering, i. e., multiple views, can be produced and
aggregated using optimization for natural image (or light field) spar-
sity [HWRH13]. The optimization and the required ray-tracing have
not been demonstrated with interactive performance and are limited
to the lens domain.

Warping-based Finally, our approach belongs to the category of
warping-based solutions. They are similar to accumulation buffer-
ing, just that the pinhole images are not actually rasterized, but
produced using warping, i. e., by deforming a single RGB-D im-
age. This deformation should account for effects such as parallax
and respect occlusions. While the information in a single image
is limited, the approach is arguably faster than plain accumulation
buffering, as it performs rasterization only once. Warping-based
distribution effects have been explicitly demonstrated for depth-
of-field [YWY10], but most warping-based work considers dis-

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Leimkühler et al. / Minimal Warping: Planning Incremental Novel-view Synthesis

tribution effects as a common test case for the performance they
achieve [MMB97, YTS∗11, BMS∗12, DRE∗10].

Many more applications of warping are possible, such as light
field pre-filtering [ZMD∗06], multi-view expansion [DSAF∗13],
temporal up-sampling, specular rendering or even spectral rendering
[EBR∗14].

Specialized solutions While warping is a general solution to all dis-
tribution effects and beyond, specialized solutions, such as [LES09]
for depth-of-field do perform better. However, it is not clear how
those approaches should be combined, and what their resulting per-
formance would be. Also they often make assumptions on motion,
scene configurations, sensor shapes etc. that might not apply in
general. Our approach does not make any assumptions other than
that pixels move in a bounded way in response to sampling the
distribution domain.

In particular, solutions based on light transport Fourier analy-
sis [DHS∗05] are often limited to special geometric relations, dis-
tance assumptions, diffuse surfaces, etc. [BSS∗13, YMRD15]. Such
limitations are typically not a problem for warping-based approaches
that can simulate even the most esoteric effects to be imagined (e. g.,
temporal up-sampling of a light-field showing a dispersive caustic).
In special cases they might be slower, but they share the flexibil-
ity with the original distribution ray-tracing of sampling arbitrary
domains.

Summary Out of several options to compute distribution effects,
warping-based solutions seem to show the best quality and per-
formance trade-off. They are conceptually simple and support all
effects that result in image warping using a single code base.

The applicability of warping-based multi-view effects stands and
falls with, first, the number of views that can be produced, and
second, the speed at which the warping can be performed. Our
approach improves speed by designing a warping approach that, for
the first time, is tailored towards producing multiple images, instead
of previous approaches, that have considered warping of a single
source to another one.

2.2. Warping

Deforming images to produce novel views has its origin in interac-
tive exploration frameworks [Lip80], where images undergo simple
transformations for more appealing transitions. These basic ideas
were further developed in the vision community, where extrapola-
tion from given real images is often required as no mechanism exists
to “render” arbitrary novel views [CW93]. Later, the opposite was
exploited: what is possible for real images is possible for synthetic
ones, too. Mark et al. [MMB97] were the first to present efficient
image deformation to speed up rendering, where it is often referred
to as “warping”.

When used in interactive applications such as games, computa-
tional efficiency of warping has become important. Early graphics
systems [TK96] have warped entire tiles instead of re-rendering
using a linear mapping. If tiles cover non-planar geometry, arti-
facts arise. Plain drawing of points is neither fast nor does it give
high quality. Drawing connected quads is an option, but due to the

high number of primitives, does not deliver a high-enough perfor-
mance required for many warps. To reduce the number of primitives,
quad trees were used [DRE∗10]. In all cases, using layered depth
images [SGHS98] can improve quality [WPS∗15].

The best performance can be achieved when warping is expressed
as a gathering instead of a scattering operation [McM97, YTS∗11,
BMS∗12]. Here, instead of mapping pixels to a new location along a
forward map, the inverse of the map is found and used to decide from
which position a pixel in the output image is read. In practice, such
approaches can require many iterations and diverge if not initialized
properly, such as by using a forward warp.

2.3. Incremental and differential image changes

Capture Epsilon photography [Ras09] refers to techniques in com-
putational photography that rely on multiple images acquired by
incrementally varying camera parameters like aperture, exposure, or
viewpoint. Observing that there is much redundancy in the acquired
images, compressive epsilon photography [ITM∗14] only acquires a
subset of the images and uses techniques from compressive sensing
to infer the missing information. Our approach follows similar ideas
as it also utilizes the redundancy of a densely sampled space of
images.

Synthesis Ray and path differentials [Ige99, SW01] describe the
spatial change of a ray under a differential change of the associated
sensor coordinate. This quantity essentially corresponds to the ray’s
footprint and is therefore an effective means for anti-aliasing. This
concept was extended to also include the spectral domain [EBR∗14].
The differentials are analytic models for computing the change of ray
properties with respect to a limited set of parameters. Our approach
is different as it is a non-analytic way of considering screen space
flow in respect to a multitude of parameters.

In gradient-domain path tracing [KMA∗15] pairs of paths are
traced for explicitly estimating image gradients. In conjunction with
a Poisson reconstruction step this method yields superior results
compared to standard path tracing. While gradient-domain path
tracing considers the change of color in respect to pixel position,
our approach looks at the change of pixel position in respect to
distribution parameters.

3. Overview

We will here give an overview of our approach, starting from the
input and output (Sec. 3.1), motivating the need for minimal warping
(Sec. 3.2) and giving the big picture of our pipeline (Sec. 3.3).

3.1. Input and output

Input to our approach is a root image and a continuous distribution
sample domain, e. g., lens, time and area light. Output is a small
discrete set (e. g., a stereo pair) of images that are each convex
combinations of discrete images in the sample domain.

The root image can be any RGB-D image, be it synthetic or
acquired, taken from a representative sample, typically in the center
of the domain. Highest quality results are obtained by combining
our approach with layered depth image (LDI) rendering [SGHS98].

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Leimkühler et al. / Minimal Warping: Planning Incremental Novel-view Synthesis

f -1(0,1)

f -1(0,1) f -1(1,2) f -1(2,3)

f -1(0,2) f -1(0,3)

f (0,1) f (0,2) f (0,3)

b) Inverse

a) Forward

f
-1
(s

,
s+

1
)

f
-1
(s

,
s+

1
)

f
-1
(0

,
s)

f
(0

,
s)

c) Forward

Space Space Space Space

V
ie

w
s

d) Inverse e) Minimal f) Minimal (limit)

Figure 2: Forward and inverse warping. (a) Starting from the original image at sample s = 0 the warp f maps to new samples, here 1, 2 and 3
(pink arrow). (b) Commonly, inverse image warping seeks to create the inverse map f−1 (blue arrow) from the original image to all other

images by inverting the forward warp. We show how the minimal warp (green arrow) between a known and a new inverse map is easier and

faster to compute. The right part shows a comparison of different strategies for inverting many flows on a 1D image in a 1D sample space. The

original image is shown in the top row. The forward flow is show in (c). Different samples are on the vertical axis, space is on the horizontal

axis. Inverting the flow (d) using common approaches requires identifying the correct solution in a set of candidates (orange box). This can

be accelerated using an iterative search [YTS∗11, BMS∗12], but in practice compute time grows while quality is decreased when the warp

distance grows. Our approach (e) only needs to search a small neighborhood to find the candidate. In the limit (f) this reduces to a single pixel.

3.2. Minimal warping

A forward warp from a source image to another view defines where
every pixel is written to (Fig. 2, a). Such a forward warp is easily ap-
plied by drawing points [ZPVBG01, SSLK13], triangles [MMB97]
or a quad tree [DRE∗10]. Forward warping can produce holes or
requires sophisticated filtering and sampling and does not parallelize
well.

Our approach instead finds the inverse warp [YTS∗11, BMS∗12],
i. e., where every pixel is to be read from (Fig. 2, b). Why is finding
an inverse flow hard? It is easy, if the mapping is constant over
the image: When all pixels move five pixels to the right in the
forward flow, every pixel just needs to look five pixels to the left
in an inverse flow. If pixels move differently – and they do if the
distribution space coordinates change in an arbitrary scene – the
inversion is very hard. When found, however, it is used for sampling
the texture and averaging the result per pixel [HA90]. This avoids
holes and fits modern GPUs well.

The differences of forward and inverse mappings are best visu-
alized in 2D such as on the right of Fig. 2. The input image (top
row) is mapped forward (pink arrows in Fig. 2, c) or backward (blue
arrows in Fig. 2, d) to novel views (other rows). Instead of previous
work that uses iterative search to find the inverse map between the
input image and a new view, we proceed incrementally, allowing to
work with minimal warps (Fig. 2, e). In the limit, the search radius
becomes a single pixel (Fig. 2, f). For this to work, the approach
requires planning.

3.3. Pipeline

Our approach has several steps (blocks in Fig. 3) and two main parts
(colors in Fig. 3). The first part (yellow in Fig. 3) estimates distri-
bution flow (Sec. 4) and plans the warping (Sec. 5.1 and Sec. 5.2),
the second one executes this plan (Sec. 5.3, blue in Fig. 3). The
first part is “intelligent”, involving function fitting, graph opera-
tions, optimizations, etc. and mostly CPU-based. The second part
is very simple and executed on the GPU by no more than massive
conditional memcopies.

Aggregate
Sample &

Plan

Tile &

Batch

Dist. �ow

bound

Dist. �ow

sample & �t

Input

Image

Sample

Pattern
Traverse

b

b

Plan Plan
f -1

Update

s
f

f
i

s
f

f(s)

f(s)

Figure 3: Overview of our pipeline (see Sec. 3.3).

Distribution flow model Our approach proceeds in respect to a
certain distribution flow model, which defines how a 3D scene
position changes as a function of quantities such as, time, lens
position, area light coordinate, wavelength, or index in the stereo
image pair of light field image array. Before planning the minimal
warps, we therefore first need to know how 3D distribution flow
responds to changes in the distribution domain.

Area

light

Time

Spectrum

Lens

A simplified version of distribu-
tion flow is shown on the right: the
arrows show motion of the central
pixel in response to changes in the
distribution sample domain. The
image is a simplification, as we are
interested in the combined effect of
all dimensions, while the image only shows flow with respect to
changes in a single variable. We opt to sample the domain using
a low-discrepancy pattern of pilot samples and fit a radial basis
function (RBF) model to the pixel motion.

Output of this step is a model of how each pixel moves in 3D
when any of its distribution parameter changes.

Planning The planning phase uses the distribution flow model to
sample the distribution domain into images where pixels move at
most by a single-pixel distance when moving from one image to its

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Leimkühler et al. / Minimal Warping: Planning Incremental Novel-view Synthesis

neighbor. The images are arranged into a sample tree, in which an
edge is an inverse warp we want to find between two images. The
tree is organized such that its traversal will always produce minimal

warps. We define a warp from image A to image B to be minimal, if
for every pixel in the output image B, it has not moved more than
one pixel from its position in A.

A
p

e
rt

u
re

S
a

m
p

le
s

Patch A Patch B

Scene Linear sequence Tree

Figure 4: “Wiping” effects in a linear sequence and a tree.

An example is Fig. 4, rendering depth-of-field of two patches
at different depth, sampled at 9 views for depth-of-field. Consider
comparing two alternative sample graphs in the second and third
column. The most simple sample graph could be to find the shortest
path to connect all samples (Fig. 4, second column). Here, the long
overall path can result in disocclusion (transparent in patch B that
is behind patch A) propagating over the entire solution (referred to
as “Wiping”). Instead, we arrange samples in a tree (Fig. 4, third
column). Now, the disocclusions can only affect a single branch, or
as in this case, no pixels at all. Intuitively, combining a tree-shaped
flow that always expands and never shrinks with small warp lengths
creates an efficient solution without occlusion problems. “Wiping”
is the only reason, why our solution is not identical to the ground-
truth inverse warp, i. e., an exhaustive search for the best matching
pixel in the source image.

The ideal traversal would minimize disocclusions directly instead
of only minimizing the path length. However, no obvious method
exists to predict disocclusions in a complex forward flow in an LDI
without executing it.

4. Distribution Flow

We call flow which arises from general distributions and their mutual
combinations distribution flow, as it is a key component for our
solution of the distribution rendering problem [CCC87]. In this
section we give details on this notion. First, we formally define the
domain and the mapping (Sec. 4.1). Then, we explain how individual
flow components are computed (Sec. 4.2). Finally, we show how
complex distribution flow is efficiently and compactly represented
by using radial basis functions (Sec. 4.3).

4.1. Domain and Mapping

The sample domain S is a subset of the nd-dimensional hypercube.
Typically nd is 2 or 3, but can also be higher. A sample is a position
in the sample space and corresponds to an image (Fig. 5). The
3D motion in camera space is defined as a composed mapping
y = f (s1,s2)(x) ∈ S×S→ (R2 → R

3) from the source and target
sample s1 and s2 to a mapping of positions x, visible in the original

image, to a new 3D camera space position y. The original image
sample is denoted as s = 0.

While the above notation describes the flow between two arbitrary
samples s1 and s2 in distribution space, for the remainder of this
section it is best thought of as the warping from one source image
at 0 to another image with coordinate s.

f (s1,s2)

s1

s2
f (s1,s2)(x)

x

Source view

Ta
rg

e
t

v
ie

w

Figure 5: Common forward flow (red) is a mapping from each

image location x to a new location f (x). We operate on a family

of flows f (s1,s2)(x) that depend on the source sample s1 and the

target sample s2 (green). In this illustration, the sample space, which

is high-dimensional, is depicted two-dimensionally for simplicity.

4.2. Flow Components

Taking a novel-view sample s induces a forward flow f (0,s). In the
following sections, we describe how to compute specific flow com-
ponents individually. While object motion flow (Sec. 4.2.1), camera
flow (Sec. 4.2.4), and aberration flow (Sec. 4.2.5) correspond to
traditional published effects and are therefore only listed to make
the paper more self-contained, we give more details on two novel,
very specific types of flow: The first one is shadow flow (Sec. 4.2.2)
that predicts, how an image of a shadow changes when light, oc-
cluder or receiver move. The second is caustic flow (Sec. 4.2.3) that
is applicable to photon-mapped caustics.

The process of flow estimation is best imagined as capturing
gl_Position of a vertex shader that takes the distribution co-
ordinate s as parameter. Therefore, no re-rendering is necessary at
any point during flow estimation. Furthermore, occlusions are not
considered at this stage, since the warping step will take care of
visibility configurations. The flow field is stored in a texture at full
input image resolution.

In order to combine different flow components, the individual
mappings are simply concatenated in light transport order, i. e., in
the order they are listed below.

4.2.1. Object motion flow

Moving and deforming geometry causes a scene flow field
[VBR∗99] that can be used to produce motion blur. In order to
obtain the 3D position x(t) of the surface under a pixel, the rigid or
non-rigid mesh deformation is sampled across time.

4.2.2. Shadow flow

Shadow flow predicts the motion of a 3D shadow point x for a point
light source at position l, blocked by an occluder at position o cast
into a receiver position r. To this end, we make the assumption, that

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Leimkühler et al. / Minimal Warping: Planning Incremental Novel-view Synthesis

the occluder does not change (the visibility graph does not change,
just deforms) and that the receiver is locally planar with normal
n. Under this condition, the new position x′ can be computed by
ray-casting an “updated” ray from the new light position l′ through
the new occluder position o′ to the receiver plane with the new
position r′ and new normal n′ (Fig. 6, a). This procedure is simply
an analytical ray-plane intersection:

x
′ = l

′+d
〈l′− r′,n′〉

〈d,n′〉
with d =

o′− l′

‖o′− l′‖2
.

Since non-silhouette pixels do not have a unique occluder, the
mapping from old to new shadow position is well defined only at
shadow boundaries (Fig. 6, b). Therefore, we first compute shadow
flow at the shadow silhouettes and then densify the resulting sparse
flow field using pull-push.

ll´

o´

r´

x´

n´

o

x r

n

a) b)

Figure 6: The geometry of shadow flow. (a) A moving light source l,

occluder o, and receiver r lead to a moving shadow position x. (b)
Only shadow silhouettes have a unique occluder.

Note, that rendering twice is no solution to the shadow flow
problem, as it would explain how both shadows look like, but not
which point has moved where. Shadow flow is applicable to temporal
upsampling of moving lights, occluders or receivers as well as to
sampling of area lights or the combination of both.

4.2.3. Caustic flow

Caustic flow predicts where a single caustic x moves, if the wave-
length or the position of the light l, the dispersive interface i, or the
receiver r is changed (Fig. 7). Different from shadows at a single
point that are caused by a single occluder, a caustic at a world po-
sition is caused by multiple reflectors. We will therefore have to
resort to discrete derivatives and assume we use photon mapping to
compute caustics: we simply send the same photon for a different
light, time and spectral component and reproject it. Note, that in our
approach this has to be done for a very low number of distribution
pilot samples only, as described in Sec. 4.3. To reconstruct per-pixel
flow, we use density estimation of distribution flows i. e., every pho-
ton does not splat its color, but the change of position, relative to the
distribution coordinate, e. g., time.

Since this produces noisy estimates, we robustify it by, first, set-
ting flow with a magnitude larger than a threshold to zero, and
second, by performing median filtering. The flow is finally densified
using pull-push.

a) b)
l

i i

i´

r´

l

l´
x´

x´

x x

r r

Figure 7: The geometry of caustic flow. (a) A change of wavelength

leads to caustic motion. (b) This can be combined with a moving

light source l, dispersive interface i, and receiver r. As in the case

of shadow flow, dashed symbols denote the new configuration.

4.2.4. Camera flow

Camera flow produces motion blur induced by camera motion as
well as depth of field from a thin lens. The 3D object position, which
may be altered by the previously described flows, is projected using
a lens-time-sampled camera matrix A(u,v, t) [HA90].

4.2.5. Aberration flow

For transverse chromatic aberrations (Fig. 13) a typical forward flow
is given by the second-order radial lens distortion model

f (0,s)(x) =

xx

(
1+λs

(
αr+βr2

))

xy

(
1+λs

(
αr+βr2

))

depth(x)

 ,

where λs denotes the wavelength of sample s, r =
√

x2
x +x2

y

denotes the distance from the image space position x to the image
center, and α, β are free parameters to control the amount and shape
of the radial distortion.

4.3. Representing Distribution Flow

The distribution flow is potentially high-dimensional and partly ex-
pensive to evaluate, making it impractical to sample for any cubature-
type approach. In contrast, we will perform a cubature-like sampling
to produce individual view samples in Sec. 5.1. This is feasible, since
the amount of work needed for creating a view sample via minimal
warping is in the order of magnitude of a texture copy operation.

To find the distribution flow for every pixel, we assume it to be
smooth across the sample domain S. Note, that this does not assume
spatial smoothness of either the image itself or the flow field or the
inverse flow field, which need to tackle occlusions.

Inspired by quasi-Monte Carlo rendering we create a low number
K of pilot samples s f with low discrepancy (Halton pattern with
leaping [RA99]) and sample the flow at these pilot locations, avoid-
ing the curse of dimensionality and still covering the domain well.
We include an additional deterministic sample at s = 0 to ensure
that the original image will be interpolated exactly. We did not see
evidence that more than K = 12 samples provide a change in the
scenes we explored. Next, we fit a radial basis function (RBF) model

f (0,s)(x) =
K

∑
i

wi(x)φ(‖s− s f ,i‖2) (1)

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Leimkühler et al. / Minimal Warping: Planning Incremental Novel-view Synthesis

with s f ,i being the i’th pilot sample. We use the inverse multiquadric

radial basis function φ(r) =
(

r2 +a2
)− 1

2
with scale factor a = 2nd .

The weights wi(x)∈R
3 are determined by solving the linear system

K

∑
i

wi(x)φ(‖s f ,i − s f , j‖2) = f (0,s f , j)(x), for1 ≤ j ≤ K.

This is done by first performing a QR decomposition of the K ×K

system matrix (which is the same for all pixels) and with this then
cheaply and robustly solving the system for each pixel in parallel.

After this step, the flow from the root to any sample can be
approximated by K RBF evaluations and a dot product.

5. Minimal Warping

The central idea of this work, is to efficiently find the inverse flow
f−1(0,s3) from the original image to many s3 by recursively re-
using solutions f−1(s1,s2) computed previously. The inverse flow
is not the inversion of the entire mapping. Instead, it can only explain
where a 2D position in the novel images was in the original image.

We will now explain the four main steps of our algorithm in
detail. Planning (Sec. 5.1) produces a set of samples and a traversal
order that allows for minimal warps. Tiling and Batching (Sec. 5.2)
determines which image regions for which samples can be skipped
without introducing errors. Warping (Sec. 5.3) performs the flow
inversion, and Aggregation (Sec. 5.4) produces the final output.

5.1. Sample planning

Input to the planning is the sample domain S and an RBF distribu-
tion flow. Output is a discrete set of samples S and a view traversal
order. Planning proceeds in seven steps (Fig. 8): Bounding distri-
bution flow (i) and sampling (ii) produce a set of samples with
a carefully determined density that allows for minimal warps. A
bounded distance graph (iii) in conjunction with a shortest-path tree
algorithm (iv) and connection sampling (v) augment the samples
with a connectivity structure. Tree linearization (vi) produces the
final traversal order. Optionally, a traversal stack (vii) can be created
to significantly reduce the memory requirements of the Warping
step.

Bounding distribution flow In order for minimal warping to work
we need to know how a change of a sample domain coordinate
translates into pixel motion in image space. More specifically, we
want to know how many samples are needed per sampling dimension
so that f moves at most p pixels in the image when moving from
one sample to the next. We denote this quantity b ∈ R

nd . The total
number of samples is then ns = ∏bi. A usual value for p is 1 or 2
pixels.

For determining a conservative estimate of b we are interested
in the maximum rate of change of f with respect to each sampling
dimension. Therefore,

bi =
1

p
max

x
max
s∈S

∥∥∥∥∥∥

∂ f (1)(0,s)
∂s(i)

(x)
∂ f (2)(0,s)

∂s(i)
(x)

∥∥∥∥∥∥
2

(2)

where s(i) denotes the i’th component of s and f (1) and f (2) are
the horizontal and vertical component of the flow, respectively. The
depth component of f is not necessary at this point, because it does
not give any information about image space motion. The maximum
over s is found using gradient ascent, starting at every pilot sample
s f , in parallel for all pixels. The maximum over all pixels x is found
using a max MIP map.

Sampling Sampling (Fig. 8, a) considers the entire continuous
domain S and produces a discrete sample set S = {si}. To this end,
the sample domain is discretized into a grid of size 1/b (where /
denotes element-wise division) and one sample is produced per grid
cell. Following the above, samples are placed exactly such that pixels
move only p pixel distances when going from one sample to the
next for the entire sampling domain. Additionally, every sample is
subject to correlated multi-jittering [Ken13]. Our approach naturally
lends to such a sampling pattern as it exhaustively covers the domain
in all dimensions by design to not miss any feature.

Bounded distance graph Key to our planning is to arrange the
samples into a graph (Fig. 8, b). In this graph, the samples si are
vertices. Edges are created between two vertices if their sample
space distance corresponds to less than p pixels in image space.
The distance between samples i and j is measured according to a
b-weighted norm that converts the Euclidean sample distance into
units of pixel motion, so di j = ||B(si − s j)||2, where B is a diagonal
matrix scaling dimension k by bk. The graph is computed in parallel
for all ns ×ns candidate edges und is very sparse with an average
out-degree of 1.8.

Shortest path tree Next, the graph is converted into a shortest-
path tree, with the input sample s = 0 as a root, using a breadth-first
search in linear time (Fig. 8, c). For each node during search we
select the child being explored next at random, which leads to a
smaller traversal stack (explained below).

Connection Sampling Occasionally, due to the jittered sampling
pattern, tree edges correspond to a pixel motion slightly larger than
p. Therefore, we simply add a sample in the middle of each such
edge (Fig. 8, d).

Tree linearization Tree linearization turns the tree into a sequence
of edges (indices of parent and child) as encountered in a depth-first,
pre-order traversal (Fig. 8, e). Depth-first warping is preferred over
breadth-first warping that would also allow for minimal warping, but
requires to store a much larger number of intermediate inverse warps
when using a traversal stack as explained below. No particular order
is necessary among children. However, to optimize progressiveness,
optionally, when more than two children are present, we employ a
farthest-first traversal of the children. As the representative position
of a child we choose the mean position of all nodes in the child’s sub-
tree. The farthest-first traversal avoids exploring similar sub-trees
sequentially and encourages the exploration of diverse solutions
first. The end-outcome is not affected by this operation, only when
executing parts of S, e. g., for progressive preview.

Traversal stack While the procedure described above is sufficient
to execute a minimal warping plan, it still requires to have all pre-
viously visited nodes in memory as they can appear as the parent

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Leimkühler et al. / Minimal Warping: Planning Incremental Novel-view Synthesis

S
a

m
p

li
n

g

a)

B
o

u
n

d
e

d

d
is

ta
n

ce
 g

ra
p

h

b)

S
h

o
rt

e
st

 p
a

th
 t

re
e

c)

C
o

n
n

e
cc

ti
o

n

sa
m

p
li

n
g

d)

Tr
e

e
 li

n
e

a
ri

za
ti

o
n

O
rd

e
r

e)

W
a

rp
 li

fe
sp

a
n

f) Edges

O
rd

e
r

Figure 8: Overview of six steps for sample planning, here for a two-dimensional lens sample space example.

of any child. If we are interested in creating distribution effects,
there is no need to store all warped images. Instead, we can perform
a moving average. In this step, which is optional, the traversal is
augmented with additional information, such that only a small stack
of active inverse warps needs to be remembered when executing
the minimal warping plan. Therefore, the space complexity of our
approach depends on the depth of the traversal tree and not on the
total number of its vertices.

A warped sample needs to be remembered only, if it will be
needed as a source sample for a minimal warp at a later point in
the traversal (Fig. 8, f). Whenever a new sample si has been created
from a source (i. e., parent) sample si−1, two configurations may
occur: a) If si is the last child of si−1 in the traversal order, si−1 can
be forgotten. b) If si is not a leaf, si needs to be stored as a source
sample for one or more later warps. Since the sample ordering
originates from a pre-ordered, depth-first traversal of a tree, a simple
stack data structure is sufficient to encode this behavior. After the
last occurrence of a sample si−1 as the source for a minimal warp,
the sample can be popped from the stack. When a newly created
sample si will be needed as a source for a later warp, it is pushed
to the stack. Following this procedure, the source sample for the
current minimal warp will always be the top of the stack while
executing the traversal plan.

5.2. Tiling & Batching

Depending on the distribution domain and its associated flow, dif-
ferent image regions move at different speeds. We exploit this fact
by subdividing the image into tiles (for execution coherence) and
determining a distinct update pattern for each tile.

When using the max MIP map for solving Equation 2, we can

simply read the MIP map at a lower level to get a vector b(i) per tile.

A typical tile size is 16× 16 pixels. The values of b(i) cannot be
used as a representative sampling density measure for the tiles, since
they are only estimating forward flow. A tile in an inverse warping
framework can only be skipped, if nothing maps to it. In order to

get an estimate of the inverse flow bounds b̃(i), we first compute a
per-pixel axis-aligned bounding box (AABB) of the flow (Fig. 9, a).
The four sides of the AABB are determined as

left/right :min
s∈S

/max
s∈S

f
(1)(0,s)(x),

bottom/top :min
s∈S

/max
s∈S

f
(2)(0,s)(x),

using gradient descent and ascent, respectively, in parallel for all

pixels. Then, we intersect each tile with the AABBs of all other tiles

and compute, in parallel for all tiles, b̃(i) = max j∈Ωi
b(j), where

Ωi is the set of all indices corresponding to tiles whose AABB in-
tersect tile i. The maximum is performed component-wise. Tiles

with b̃(i) = 0 are not affected by the distribution sampling. Conse-
quently, they do not need to be processed at all. As a side effect, this
achieves scalability in regard to scenes with high depth complexity
by avoiding spending to much work on almost-empty LDI layers.

100%

0%b)a) c)

Figure 9: Tiling and batching is done by computing axis-aligned

bounding boxes of the flow (a) to perform clustering of tiles (b). In

(c) the update frequency for individual tiles during sample space

traversal is shown. In this motion blur example most tiles need an

update only at every third sample or less often.

Since we cannot afford to compute and store an update pattern for
each tile, all remaining active tiles are clustered by their b̃ vectors
(Fig. 9, b). We use k-means clustering using scattering and blending
[DGR∗09] (k = 20 in all our experiments). To produce the final
update pattern per cluster (Fig. 9, c), we iterate over all samples s

for all tiles in parallel: If in any sampling dimension the distance
between the current sample and the sample at which the cluster had
its last update is larger than the cluster’s value 1/b̃, the cluster needs
an update at the current sample’s parent in the traversal tree. Once
the update pattern is created, all that needs to be done for each tile
during the sample space traversal is to look up if it needs an update
based on its cluster ID. During aggregation, this update pattern will
be taken into account.

5.3. Warping

The warp itself is executed for every sample in two steps: Requesting
(Sec. 5.3.1) evaluates the forward flow and computes necessary
auxiliary information. Searching (Sec. 5.3.2) inverts this forward
flow based on a previously warped sample.

5.3.1. Requesting

Requesting computes f (0,si), the camera-space 3D forward flow
from the original image to sample si of every pixel seen in the
original image. This is done by evaluating Equation 1.

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Leimkühler et al. / Minimal Warping: Planning Incremental Novel-view Synthesis

From the forward flow field we additionally compute a magnifi-
cation field m(0,si)(x) at sample si. This field contains the larger
absolute eigenvalue of the Jacobian

J(0,si)(x) =

∂ f (1)

∂x(1)
∂ f (1)

∂x(2)

∂ f (2)

∂x(1)
∂ f (2)

∂x(2)

(0,si)(x),

where, again, ·(1) and ·(2) denote horizontal and vertical com-
ponents, respectively. The entries of the Jacobian are computed
numerically from neighboring pixels using central differences. A
magnification field value of 1 indicates that in image space, locally,
the forward flow merely induces translation or rotation. In a minifi-
cation or magnification condition, this value is smaller or larger than
1, respectively. The magnification field is later used to appropriately
deal with those two conditions. Note that neither condition will in-
crease the number of elements required to search for flow inversion,
but will only adapt the thresholds for deciding which candidate is
better than a different one.

5.3.2. Searching

Next, we explain how the plan can be executed by performing
minimal warps. A minimal warp is essentially a small search. As we
will explain, the search can be performed directly or in an occlusion-

aware fashion. Finally we will show, how, while we work on an
integer nearest neighbor field (NNF), an optional sub-pixel accurate
search allows to read the input image at fractional coordinates.

Direct search The direct search is illustrated in Fig. 10, b. Search-
ing will produce the inverse warp of the current sample f−1(0,si)
from the inverse warp of the previous sample f−1(0,si−1). The
planning step has assured that for every x, the solution f−1(0,si)(x)
is in the set { f−1(0,si−1)(x ⊕ [−p, . . . , p]2)}, where ⊕ denotes
Minkowski summation i. e., the set of all points in a two-dimensional
integer lattice of side length 2p+ 1 around that point. Intuitively,
this says that the correct solution for the current sample is known
to be a very nearby other pixel in a previous sample. Therefore, for
every pixel in the output, all that is required is a two-dimensional
loop over its (2p+1)2 neighboring pixels.

Input :Inverse flow f−1(0,si−1) at previous sample,
Forward flow f (0,si) for new sample.

Output :Inverse flow f−1(0,si) and depth at new sample.
forall pixels x in f−1(0,si) do

result(x) := vec3(0, 0, ∞);
vec2 u := f−1(0,si−1)(x)
forall y ∈ [−p, . . . , p]2 do

vec3 t := f (0,si)(u+y);
if ‖xxy − txy‖∞ < m(0,si)(x) and tz ≤ resultz(x) then

result(x) := vec3(u+y, tz);
end

end

end

return result;
Algorithm 1: Direct search.

This can be implemented in a very simple and shader-friendly

way as seen in Alg. 1. The outer loop is parallel over all pixels.
The small inner loop is performed by a fragment shader. It merely
requires visiting the neighboring pixels and performing two tests: If
the forward flow maps to the current pixel, and if yes, if it is closer
to the camera than any other pixel that previously also mapped there.
The winner is the new inverse flow. The acceptance criterion for the
decision whether a pixel maps to the current one depends on the
minification or magnification m. In a magnification condition (m >
1), the forward flow is allowed to map to a location further away
from the pixel center to be accepted, avoiding holes in the warped
image. In a minification condition (m < 1), the tighter threshold
leads to a more accurate selection of the best match.

Input :Inverse flow f−1(0,si−1) at previous sample,
Forward flow f (0,si) for new sample.

Output :Inverse flow f−1(0,si) and depth at new sample.
forall pixels x in f−1(0,si) do

result(x) := vec3(0, 0, ∞);
vec3 u := vec3(0, 0, ∞);
forall y ∈ [−p, . . . , p]2 do

vec2 r := f−1(0,si−1)(x+y);
vec3 q := f (0,si)(r);
if ‖xxy −qxy‖∞ < m(0,si)(x) and qz ≤ pz then

u := vec3(r, qz);
end

end

forall y ∈ [−1,0,1]2 do
vec3 t := f (0,si)(uxy +y);
if ‖xxy − txy‖∞ < m(0,si)(x) and tz ≤ resultz(x) then

result(x) := vec3(uxy +y, tz);
end

end

end

return result;
Algorithm 2: Occlusion-aware search. The gray part is identical
to the non-occlusion-aware variant.

Occlusion-aware search The above direct search procedure fails,
if the target pixel was occluded in the source sample. In this situation,
the inverse flow from the previous sample is an inaccurate initial
guess of the current inverse flow. But since also occlusion boundaries
can only have moved within [−p, . . . , p]2, the problem can be solved
by an additional small search in f−1(0,si−1)(x) for the best initial
estimate, as seen in Fig. 10, c and defined in Alg. 2. After this search,
the algorithm proceeds as in the non-occlusion-aware variant. All
results in this paper were produced using occlusion-aware search.

Sub-pixels accuracy The above procedure searches a low number
of discrete choices. The continuous forward flow, however, maps
every discrete pixel in the initial sample to a continuous sub-pixel lo-
cation. Sub-pixel accurate inverse flow is found by fetching the four
pixels around the discrete optimum and computing the continuous
location y that minimizes the cost of pyramid matching [Bai03]. In
practice, we never remember the continuous sub-pixel coordinate in
floating point precision, but a discrete NNF with integer coordinates
to avoid the accumulation of floating point errors.

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Leimkühler et al. / Minimal Warping: Planning Incremental Novel-view Synthesis

a) Result b) Direct search c) Occlusion-aware search

Sample 0 Sample i Sample i–1 Sample i Sample i–1Sample 0

Figure 10: Details of our searching procedure. Consider a yellow ball with a pink dot casting a shadow moving from left to right and rotating

to produce motion blur (a). Our method inverts the flow from sample i−1 to sample i. For the direct search (Alg. 1), in sample i, for one pixel

(thick box), the inverse flow in sample i− 1 is looked up. Using this result, a neighborhood [−p, . . . , p]2 is searched in sample 0, i. e., the

original image, to find the pixel that best maps to the current sample (again, thick box). This procedure works well, except at occlusions, which

require an occlusion-aware search (Alg. 2) instead (c). Here the pixel of interest in sample i (thick box) is an occlusion, i. e., the same pixel in

sample i− 1 belongs to the background. The solution is to perform two searches: The first one finds the best position in sample i− 1, the

second one proceeds as in direct search. Note, that in the case of simple 2D motion like in this example, the second search is not necessary,

because the first search finds the best position immediately. In case of perspective 3D motion, the second search prevents error accumulation.

5.3.3. Sorting

When using LDIs, the sparsity naturally occurring in the back layers
can be used to prevent wiping even more. On a per-pixel basis, values
are simply pushed back as far as possible in the layer ordering, as
illustrated in Fig. 11. This is done once per input LDI. All LDI
results in this paper were produced using sorting.

Wiping No Wiping

Framebuffer Framebuffer

Layer 1
Layer 2
Layer 3

a) b)

Figure 11: Per-pixel sorting of layers prevents wiping, here illus-

trated for a box moving in front of a planar background.

5.3.4. Implementation

Requesting and searching are implemented in parallel for all pixels
in all tiles. Our prototype is implemented in the OpenGL shading
language. The plan is stored in a vertex buffer object and executed
by layered rendering, where the samples correspond to layers. A
geometry shader emits quads for all tiles that require updating.
Synchronization has to be performed, such that all tiles in one layer
are finished before a new layer can start.

5.4. Aggregation

Once the inverse flow for a view sample has been found, it can be
used to perform a simple texture lookup of the input image to create
the associated novel view. After a sample has been produced, it
can contribute to a single, or multiple output images. Let no denote
the number of output images. In the simplest case, the output is a
single image, and all samples are averaged. The other extreme is
temporal up-sampling: here multiple samples are produced and each
one is a result image. In general, multiple samples can contribute to

multiple output images. In general, the aggregation of ns samples
into no images can be described as an aggregation matrix denoted
as A ∈ R

ns×no . Fig. 12 shows a visualization of A. The aggregation
is performed point-wise for all output modalities. When not using
LDIs as input to the system, disocclusions occur naturally. During
aggregation, these undefined regions are simply ignored.

6. Results and Discussion

Here we present qualitative (Sec. 6.1) as well as quantitative
(Sec. 6.2) results of our approach, and discuss design choices
(Sec. 6.3) and limitations (Sec. 6.4).

6.1. Qualitative Results

Here we show several applications of planning minimal warping.

Temporal up-sampling Besides distribution effects, a typical ap-
plication of warping is temporal up-sampling (frame rate conver-
sion) [DER∗10, BMS∗12]. This is challenging in the presence of
complex geometry and motion. In Fig. 12 we show a sequence of
several moving characters, undergoing complex accelerating local
motion between two key-frames (left and rightmost image).

Stereo-to-light field A typical application requiring many warps
is conversion of stereo content to light fields, in particular, when
correct inter-view filtering is required to avoid aliasing [ZMD∗06].
In Fig. 14, depth is created by finding correspondences from the
stereo pair, which is then used to create many virtual views that
are carefully combined using a custom aggregation matrix to avoid
inter-view aliasing.

Depth-enabled photo effects Finally, we demonstrate the qual-
ity and time of adding several effects to acquired RGB-D data
[SHKF12] in Fig. 15 using our approach.

6.2. Quantitative Results

Our approach is compared to different competitors in terms of com-
puting different effects. As competitors, we consider i) point splat-
ting, ii) grid warping with a cell size of one pixel [MMB97], iii)

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Leimkühler et al. / Minimal Warping: Planning Incremental Novel-view Synthesis

Images

Sa
m
p
le
s

Keyframe Interpolated Interpolated Interpolated Keyframe

Figure 12: Temporal up-sampling from two key-frames to in-between images with a 360◦ degree tent shutter. Insets show pairs of our

interpolation (top) and the rendered reference (bottom). The aggregation matrix A ∈ R
256×3 is shown right (large weights are darker).

Mono Input Spectral Output

Figure 13: Chromatic aberrations produced by our method.

Virtual pinhole viewsStereo input Filtered Light�eld

Figure 14: Conversion of a stereo image (left) into a light field

(right) – here showing a single new view. Our approach creates

many virtual views (center) that are carefully combined to provide

inter-view anti-aliasing [ZMD∗06].

quad tree-warping [DRE∗10], and iv) a ray-traced reference. We did
not consider iterative gathering methods in this comparison, because
the complex flow fields with wide baselines lead to non-convex
energies to minimize, requiring these methods to be initialized, i. e.,
with a quad tree [BMS∗12]. This shows, that any converging search
method can in principle not be faster than our approach which is
already 2 to 3 times faster than quad tree-warping. All competitors
had the same LDIs as input.

The effects tested are i) depth-of-field, ii) motion blur, iii) soft
shadows, iv) spectral caustics, and v) combinations of the above.
Fig. 16 shows images produced from our approach as well as in-
sets made from our approach and the ray-tracing reference. The
results were produced on a Nvidia Geforce GTX 980Ti with an
Intel Xeon E5-1607 CPU at a resolution of 1024×1024 pixels and

are summarized in Table 1. The given timings include all steps de-
scribed in the paper, except for the “Prism” scene, where the spectral
photon tracing (Sec. 4.2.3) was done using an external application.
We performed same-quality comparisons, as can be seen from the
almost identical SSIM values. We observe that our approach can
produce same-quality images in significantly less time than com-
mon approaches using warping. Additionally, our novel shadow and
spectral flow formulations allow our approach to produce a more
versatile range of distribution effects.

In Table 2 we give timings for the individual processing stages of
our method. It can be seen that the planning stage usually constitutes
only a small fraction of the total amount of work. It is furthermore
noticeable that the timing for the warping is almost in the same order
of magnitude as the aggregation step i. e., summing the novel views.

Table 3 shows equal-time and equal-quality comparisons of our
approach to a path tracing solution created with Renderman 20.10.
It can be seen that path tracing, which has to perform shading
evaluation for each ray, produces results of significantly less quality
in the same time and needs considerably longer to compute equal-
quality results. This is true even if the time to shade a pinhole image
i. e., one sample per pixel, which is the input to our system (timings
are given in the Shading column of Table 2), is taken into account.

6.3. Discussion

Our cubature employs a regular sampling of the distribution do-
main. In theory, the approach therefore needs time exponential in
the number of distribution dimensions nd . In practice, the volume
of all distribution flows (i. e., ns = ∏bi) effectively constitutes the
amount of work to be done. Consequently, it makes no difference if
a combined lens-time sample space requires 10×10×10 samples,
or if motion blur alone smears a single pixel across 1000 pixels. We
share this inherently strong dependency on the magnitude of the
distribution effects to be produced with other rendering methods,
including Monte Carlo approaches. Producing a novel view via min-
imal warping requires nothing more than two texture lookups in a
3×3 neighborhood per pixel. This is in contrast to producing a sam-
ple via ray-tracing, which exhibits larger constants and scales with
geometric scene complexity, making cubature integration infeasible.

6.4. Limitations

Our main limitation, shared with typical assumptions in production,
is to assume shading can be decoupled from resolving visibility. In
several occasions such as small but strong highlights or shadows in

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Leimkühler et al. / Minimal Warping: Planning Incremental Novel-view Synthesis

a) b) c) d) e)

Figure 15: Results of our method applied to acquired RGB-D data from the NYU dataset [SHKF12]. a) and b): Depth of field, 256 samples.

c): Motion blur from camera motion, 64 samples. d): Motion blur from camera motion, 128 samples. e): Original images.

Table 1: Efficiency and visual quality of different methods (columns) on different scenes (rows). Factor is time relative to our solution (smaller

is better). Similarity is measured in SSIM [WBSS04] relative to a ray-tracing reference (larger is better). Distribution effects marked with an

asterix cannot or can only partially be reproduced by the competitors.

Scene Effect Point [ZPVBG01] Grid [MMB97] Quad-tree [DRE∗10] Ours
Time Fac. Sim. Time Fac. Sim. Time Fac. Sim. Time Sim.

Dancing Dummies MB 4.1 s ×4.2 .93 2.5 s ×2.6 .93 2.1 s ×2.1 .92 1.0 s .92
Garden DOF 84.8 s ×2.1 .91 99.5 s ×2.4 .90 104.9 s ×2.6 .88 41.2 s .90
Bouncing Cubes MB + Shadow MB∗ 35.9 s ×4.8 .88 24.3 s ×3.2 .86 15.2 s ×2.0 .85 7.5 s .86
Vehicle Soft Shadows∗ - - - - - - - - - 40.0 s .96
Space Station MB + DOF 1350.1 s ×3.5 .93 1132.5 s ×2.9 .92 1035.0 s ×2.7 .91 387.7 s .93
Prism Spectral Caustics∗ - - - - - - - - - 4.2 s -

the presence of motion blur, this is violated and can become notice-
able. The consequences of this decoupling have been analyzed and
discussed elsewhere [CCC87]. Another limitation is anti-aliasing: in
our approach, every image pixel is associated with a single visibility
sample and a unique depth value (modulo the layers of the LDI).
Anti-aliasing can be applied by later super-sampling, but this re-
mains costly as it increases both memory requirements and compute
time.

While the limitations given above apply to all warping-based
approaches, wiping is an error source unique to our approach. For
flow configurations with complex visibility relations this results in
image regions disappearing after occlusions for single branches of
the sample tree. Wiping is rare in practice, not only because of the
sample tree structure, but also because different geometry is placed
on different LDI layers, which in turn are purposefully sorted to
reduce the problem.

Our approach has the highest throughput if many very similar
views are required. If the distribution space is not sampled densely
(i. e., p ≫ 1), searching becomes inefficient. Therefore, warping an
image into another single image is better done using other methods.

7. Conclusion

We have presented the first approach to frame the problem of produc-
ing novel views by looking at the entire family of flows instead of
all warps individually. Inspired by recent success in solving inverse
problems that find the flow given the image [ZTS∗16], we have
shown that given the forward flow organized in a tree of flows, the
inverse warping can become as simple as looking up a small pixel
neighborhood for each pixel.

Our approach relies on LDIs to resolve disocclusions. An avenue
for future work is to consider alternative input formats like per-pixel
lists or a point cloud. Furthermore, our approach could be extended
for rendering global illumination effects beyond caustics.

We have shown, how planning minimal warping provides a fast
and flexible alternative to ray-tracing or multi-sampling using accu-
mulation buffering, yet with enough flexibility to support all com-
binations of distribution effects such as motion blur, depth-of-field,
soft shadows, and spectral shading. In particular, upcoming output
devices such as high-refresh rate displays found in head-mounted
displays or light field displays, require a massive amount of pixels in
space and time. Yet, those images are redundant and almost identical.
Minimal warping is the first approach to exploit this redundancy,
resulting in flexible, efficient and high-quality imagery.

Acknowledgements

This work was partly supported by the Fraunhofer and the Max
Planck cooperation program within the framework of the German
pact for research and innovation (PFI).

References

[AMMH07] AKENINE-MÖLLER T., MUNKBERG J., HASSELGREN J.:
Stochastic rasterization using time-continuous triangles. In Graphics

Hardware (2007), pp. 7–16. 2

[Bai03] BAILEY D. G.: Sub-pixel estimation of local extrema. In Proc.

Image and Vision Computing (2003), pp. 414–19. 9

[BMS∗12] BOWLES H., MITCHELL K., SUMNER R. W., MOORE J.,
GROSS M.: Iterative image warping. Computer Graphics Forum 31, 2pt1
(2012), 237–246. 3, 4, 10, 11

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Leimkühler et al. / Minimal Warping: Planning Incremental Novel-view Synthesis

Table 2: Timings for the individual stages. Two numbers in the Layers column denote the number of non-shadow and shadow layers. The

timing of flow estimation for Prism does not include the spectral photon tracing, for which an external application was used. Timings given in

italics are shown for completeness and are independent of our approach.

Scene Layers nd ns Shading Flow est. Planning Tiling Warping Aggreg.

Dancing Dummies 3 1 191 115 s 0.01 s 0.06 s 0.08 s 0.58 s 0.27 s
Garden 4 2 5385 168 s 0.05 s 0.91 s 0.09 s 30.96 s 9.15 s
Bouncing Cubes 5+5 1 848 150 s 0.05 s 1.15 s 0.09 s 4.89 s 1.36 s
Vehicle 2 2 11230 95 s 0.01 s 0.38 s 0.09 s 27.40 s 12.13 s
Space Station 5 3 53864 426 s 0.04 s 6.67 s 0.13 s 275.78 s 105.03 s
Prism 1 1 1059 103 s 0.01 s 0.12 s 0.08 s 3.26 s 0.74 s

Table 3: Equal-time and equal-quality comparison to a path tracer.

Scene
Equal Time

(SSIM)
Equal Quality

(Time)

Dancing Dummies .70 3300 s
Garden .38 4800 s
Bouncing Cubes .80 480 s
Space Station .89 1400 s

[BSS∗13] BELCOUR L., SOLER C., SUBR K., HOLZSCHUCH N., DU-
RAND F.: 5D covariance tracing for efficient defocus and motion blur.
ACM Trans. Graph (Proc. SIGGRAPH) 32, 3 (2013), 31. 3

[CCC87] COOK R. L., CARPENTER L., CATMULL E.: The Reyes image
rendering architecture. SIGGRAPH Comp. Graph. 21, 4 (1987), 95–102.
2, 5, 12

[CPC84] COOK R. L., PORTER T., CARPENTER L.: Distributed ray
tracing. SIGGRAPH Comput. Graph. 18, 3 (Jan. 1984), 137–45. 2

[CW93] CHEN S. E., WILLIAMS L.: View interpolation for image syn-
thesis. In SIGGRAPH (1993), pp. 279–88. 3

[DER∗10] DIDYK P., EISEMANN E., RITSCHEL T., MYSZKOWSKI K.,
SEIDEL H.-P.: Perceptually-motivated real-time temporal upsampling of
3D content for high-refresh-rate displays. Comp. Graph. Forum (Proc.

Eurographics) 29, 2 (2010), 713–22. 10

[DGR∗09] DONG Z., GROSCH T., RITSCHEL T., KAUTZ J., SEIDEL

H.-P.: Real-time indirect illumination with clustered visibility. In VMV

(2009), pp. 187–196. 8

[DHS∗05] DURAND F., HOLZSCHUCH N., SOLER C., CHAN E., SIL-
LION F. X.: A frequency analysis of light transport. ACM Trans. Graph.

(Proc. SIGGRAPH) 24, 3 (2005), 1115–26. 3

[DRE∗10] DIDYK P., RITSCHEL T., EISEMANN E., MYSZKOWSKI K.,
SEIDEL H.-P.: Adaptive image-space stereo view synthesis. In Proc.

VMV (2010), pp. 299–306. 3, 4, 11, 12

[DSAF∗13] DIDYK P., SITTHI-AMORN P., FREEMAN W. T., DURAND

F., MATUSIK W.: Joint view expansion and filtering for automultiscopic
3d displays. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 32, 6 (2013). 3

[EBR∗14] ELEK O., BAUSZAT P., RITSCHEL T., MAGNOR M., SEIDEL

H.-P.: Spectral ray differentials. Proc. EGSR 33, 4 (2014). 3

[HA90] HAEBERLI P., AKELEY K.: The accumulation buffer: hardware
support for high-quality rendering. SIGGRAPH Comp. Graph. 24, 4
(1990), 309–18. 2, 4, 6

[HAM06] HASSELGREN J., AKENINE-MÖLLER T.: An efficient multi-
view rasterization architecture. In Proc. EGSR (2006), pp. 61–72. 2

[HWRH13] HEIDE F., WETZSTEIN G., RASKAR R., HEIDRICH W.:
Adaptive Image Synthesis for Compressive Displays. ACM Trans. Graph.

(Proc. SIGGRAPH) 32, 4 (2013), 1–11. 2

[Ige99] IGEHY H.: Tracing ray differentials. In Proc. SIGGRAPH (1999),
ACM, pp. 179–186. 3

[ITM∗14] ITO A., TAMBE S., MITRA K., SANKARANARAYANAN A. C.,
VEERARAGHAVAN A.: Compressive epsilon photography for post-
capture control in digital imaging. ACM Trans. Graph. 33, 4 (2014),
88. 3

[Ken13] KENSLER A.: Correlated multi-jittered sampling. Tech. rep.,
Pixar Technical Memo, 2013. 7

[KMA∗15] KETTUNEN M., MANZI M., AITTALA M., LEHTINEN J.,
DURAND F., ZWICKER M.: Gradient-domain path tracing. ACM Trans.

Graph. 34, 4 (2015), 123. 3

[LAC∗11] LEHTINEN J., AILA T., CHEN J., LAINE S., DURAND F.:
Temporal light field reconstruction for rendering distribution effects. ACM

Trans. Graph. 30, 4 (2011). 2

[LES09] LEE S., EISEMANN E., SEIDEL H.-P.: Depth-of-field rendering
with multiview synthesis. In ACM Trans. Graph. (Proc. SIGGRAPH Asia)

(2009), vol. 28, ACM, p. 134. 3

[Lip80] LIPPMAN A.: Movie-maps: An application of the optical
videodisc to computer graphics. In ACM SIGGRAPH (1980), vol. 14,
pp. 32–42. 3

[McM97] MCMILLAN L.: An Image-Based Approach to Three-

Dimensional Computer Graphics. PhD thesis, University of North Car-
olina at Chapel Hill, 1997. 3

[MMB97] MARK W. R., MCMILLAN L., BISHOP G.: Post-rendering
3D warping. In Proc. i3D (1997). 3, 4, 10, 12

[MVH∗14] MUNKBERG J., VAIDYANATHAN K., HASSELGREN J.,
CLARBERG P., AKENINE-MÖLLER T.: Layered reconstruction for defo-
cus and motion blur. Comp. Graph. Forum 33, 4 (2014), 81–92. 2

[RA99] ROBINSON D., ATCITTY C.: Comparison of quasi-and pseudo-
Monte Carlo sampling for reliability and uncertainty analysis. In Proc.

AIAA Probabilistic Methods (1999). 6

[Ras09] RASKAR R.: Computational photography: Epsilon to coded
photography. Emerging Trends in Visual Computing (2009), 238–253. 3

[SGHS98] SHADE J., GORTLER S., HE L.-W., SZELISKI R.: Layered
depth images. In Proc. SIGGRAPH (1998), pp. 231–42. 3

[SHKF12] SILBERMAN N., HOIEM D., KOHLI P., FERGUS R.: Indoor
segmentation and support inference from RGBD images. In ECCV (2012).
10, 12

[SSLK13] SIBBING D., SATTLER T., LEIBE B., KOBBELT L.: SIFT-
realistic rendering. In Proc. 3DV (2013). 4

[SW01] SUYKENS F., WILLEMS Y. D.: Path differentials and applications.
In Proc. EGSR (2001), Springer, pp. 257–268. 3

[TK96] TORBORG J., KAJIYA J. T.: Talisman: Commodity realtime 3D
graphics for the PC. In Proc. SIGGRAPH (1996), pp. 353–63. 3

[VBR∗99] VEDULA S., BAKER S., RANDER P., COLLINS R., KANADE

T.: Three-dimensional scene flow. In ICCV (1999), vol. 2, pp. 722–729.
5

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

Leimkühler et al. / Minimal Warping: Planning Incremental Novel-view Synthesis

O
u
rs

In
p
u
t

R
e
fe
re
n
ce

O
u
rs

In
p
u
t

R
e
fe
re
n
ce

O
u
rs

In
p
u
t

R
e
fe
re
n
ce

At
er

In
p
u
t

O
u
rs

In
p
u
t

R
e
fe
re
n
ce

O
u
rs

In
p
u
t

R
e
fe
re
n
ce

B
e
fo
re

Figure 16: Results of our method. The large figures show the end-result. Insets show comparisons between a multi-pass reference and ours.

[WBSS04] WANG Z., BOVIK A. C., SHEIKH H. R., SIMONCELLI E. P.:
Image quality assessment: from error visibility to structural similarity.
IEE Trans. Image Proc. 13, 4 (2004), 600–612. 12

[WPS∗15] WIDMER S., PAJAK D., SCHULZ A., PULLI K., KAUTZ J.,
GOESELE M., LUEBKE D.: An adaptive acceleration structure for screen-
space ray tracing. In Proc. HPG (2015), pp. 67–76. 3

[YMRD15] YAN L.-Q., MEHTA S. U., RAMAMOORTHI R., DURAND F.:
Fast 4D sheared filtering for interactive rendering of distribution effects.
ACM Trans. Graph. 35, 1 (2015), 7. 3

[YTS∗11] YANG L., TSE Y.-C., SANDER P. V., LAWRENCE J., NE-
HAB D., HOPPE H., WILKINS C. L.: Image-based bidirectional scene
reprojection. ACM Trans. Graph. 30, 6 (2011), 150:1–150:10. 3, 4

[YWY10] YU X., WANG R., YU J.: Real-time depth of field rendering

via dynamic light field generation and filtering. In Comp. Graph. Forum

(2010), vol. 29, pp. 2099–107. 2

[ZHR∗09] ZHOU K., HOU Q., REN Z., GONG M., SUN X., GUO B.:
Renderants: interactive REYES rendering on GPUs. In ACM Trans.

Graph. (Proc. SIGGRAPH) (2009), vol. 28, p. 155. 2

[ZMD∗06] ZWICKER M., MATUSIK W., DURAND F., PFISTER H., FOR-
LINES C.: Antialiasing for automultiscopic 3d displays. In SIGGRAPH

Sketches (2006). 3, 10, 11

[ZPVBG01] ZWICKER M., PFISTER H., VAN BAAR J., GROSS M.: Sur-
face splatting. In Proc. SIGGRAPH (2001), pp. 371–8. 4, 12

[ZTS∗16] ZHOU T., TULSIANI S., SUN W., MALIK J., EFROS A. A.:
View synthesis by appearance flow. In Proc. ECCV (2016). 12

c© 2017 The Author(s)

Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.

