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Abstract
We propose projective blue-noise patterns that retain their blue-noise characteristics when undergoing one or multiple projections
onto lower dimensional subspaces. These patterns are produced by extending existing methods, such as dart throwing and Lloyd
relaxation, and have a range of applications. For numerical integration, our patterns often outperform state-of-the-art stochastic
and low-discrepancy patterns, which have been specifically designed only for this purpose. For image reconstruction, our method
outperforms traditional blue-noise sampling when the variation in the signal is concentrated along one dimension. Finally, we
use our patterns to distribute primitives uniformly in 3D space such that their 2D projections retain a blue-noise distribution.
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1. Introduction

Producing ‘good’ sampling patterns is an important task in many
computer graphics applications, including simulation, rendering,
image reconstruction and primitive placement. But what makes a
good pattern depends on the application. For Monte Carlo (MC) ren-
dering, low integration error is important [Coo86], [Shi91], which
is usually achieved by stratified Latin hypercube (LH) or low-
discrepancy point sets that have well-distributed low-dimensional
projections. For digital half-toning [Uli87], stippling [KCODL06]
and object placement [HHD03], blue-noise point sets with maxi-
mized minimum distance are preferred, as their structure closely
resembles the photoreceptor arrangement in the eye retina [Yel83].
Such patterns are also desirable for image reconstruction [DW85]
where low-discrepancy patterns can lead to spurious aliasing arte-
facts [Mit87]. At the same time, it has been shown that blue-noise
patterns are not as competitive for numerical integration [Shi91].
All these applications call for point sets that are uniformly dis-
tributed in the sampling domain, though research in each area has
focused on optimizing the distribution for its slightly different defi-
nition of uniformity. It has remained an open question whether there

exist distributions that meet the requirements of a wide range of
applications.

In this paper, we propose projective blue-noise point distribu-
tions, in an attempt to give a positive answer to the above question.
A key property of these distributions is that they retain their blue-
noise characteristics when undergoing one or multiple projections
to lower dimensional subspaces (Figure 1a). We show how the clas-
sic dart throwing and Lloyd relaxation algorithms can be extended
to produce such point sets, and demonstrate the usefulness of their
projective blue-noise properties in various applications. For MC
rendering (Figure 1b) and image reconstruction (Figure 1c), our
patterns often outperform existing distributions for functions with
variations concentrated along one dimension, where the resulting
sampling quality is dominated by a projection of the pattern. Fur-
thermore, while common blue-noise patterns are useful for placing
primitives in 3D space, our patterns preserve the good visual dis-
tribution when the arrangement is viewed from different angles
(Figure 1d).

The rest of this paper is organized as follows. After reviewing
relevant prior work in the next section, in Section 3 we describe
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Figure 1: Our projective blue-noise distributions (a, bottom) have blue-noise spectra in 2D as well as in their 1D projections, while classic
2D blue noise (a, top) has an almost white-noise spectrum in 1D. Applications include Monte Carlo rendering (b), reconstruction (c), as well
as placement of primitives (d) such that they are well distributed both in 3D and when projected to 2D.

the construction of projective blue-noise patterns and discuss some
practical considerations. In Section 4, we analyse the properties of
our point sets and the performance of our construction algorithms. In
Section 5, we demonstrate the versatility of our method in practical
applications, followed by final conclusions in Section 6.

2. Previous Work

Sampling is a key component in many computer graphics problems
that arise in rendering, imaging, geometry processing and object
distribution. Coined by Ulichney [Uli87], the term blue noise refers
to the spectral properties of uniform and isotropic, yet structureless
point distributions. Originally developed for the purposes of dig-
ital half-toning [Uli87], blue-noise distributions have been found
useful in many other applications due to their resemblance of the
photoreceptor arrangement in the eye retina [Yel83].

One way to generate a blue-noise point set is to insert the points
one by one, maintaining a minimum interpoint distance along the
way. The most common approach for doing this is dart throw-
ing [Coo86], which ensures that points are tightly packed but no
closer than a specified minimum distance, producing a so-called
Poisson-disk distribution. This algorithm can be made progressive
by adaptively shrinking the disk radius after a certain number of
failed insertion attempts [MF92]. Alternatively, a new point can
be inserted at the location farthest from the existing set [Mit91,
ELPZ97].

Another approach to produce high-quality blue-noise distribu-
tions is to take an initial, e. g. random, point set and maximize
the minimum interpoint distance using an iterative optimization
scheme. The popular Lloyd relaxation algorithm [Llo82] is based
on centroidal Voronoi tessellation (CVT). The quality of the result-
ing patterns has been recently improved by Balzer et al. [BSD09],
and some further developments have addressed anisotropic sam-
pling [LWSF10] and improving efficiency [dGBOD12, CYC*12].

Using uniform but irregular sample patterns can also reduce
aliasing [DW85] and noise [Coo86] in MC rendering. Such ap-
plications have traditionally relied on stratified pseudo-random
sampling, which places one sample in every stratum of the uni-
formly subdivided sampling domain [PH10]. One instance of this

idea is jittering, where each sample on a regular grid is displaced
randomly. Stratification can often increase the error convergence
rate of the MC estimator over pure random sampling [Mit92].
LH, or N -rooks, sampling enforces stratification along each axis
of a high-dimensional point set. Stratified and LH sampling have
been combined to produce high-quality numerical integration pat-
terns [CSW94, Ken13].

The quality of a pattern for numerical integration can be mea-
sured by its discrepancy [Shi91, Mit92]. Low-discrepancy point
sets have seen wide adoption in physically based rendering, as they
are relatively simple to implement and possess excellent stratifi-
cation and LH properties [KK02, PH10, KPR12]. However, most
low-discrepancy sampling methods achieve good stratification only
for a restricted number of points (e. g. powers of two), depending on
the construction method [KPR12]. Our approach does not have this
limitation and performs on par with or better than such methods.

Even though blue-noise point sets have very uniform distribution
and lack regularity, their application in image synthesis has so far
been mostly restricted to image anti-aliasing [Mit87, PH10]. Reports
on their performance for estimating illumination integrals have been
controversial [Shi91, SHD11, MBR*13]. We hypothesize that the
main reason for their suboptimal performance is the poor unifor-
mity in their low-dimensional projections, and aim to produce point
sets with both blue-noise and LH properties. Research in numerical
integration has shown that the quality of a pattern can be improved
by ‘latinizing’ either the initial values for Lloyd relaxation or the
final result [RBGP06, SGB07]. However, to our knowledge no at-
tempt has been made to achieve both LH and blue-noise properties
simultaneously.

Some of the aforementioned works have demonstrated the util-
ity of blue-noise sampling for procedural primitive placement. This
application also benefits from the real-time performance of tile-
based sampling [ODJ04, KCODL06]. Computational placement of
extended primitives in 2D [HHD03, RRS13] has applications in
automated generation of layouts in print, on screens and for fabri-
cation.

While producing images using projections, e. g. shadows [MP09],
has been addressed in computer graphics, no prior work has consid-
ered the spectral properties of projections of primitive layouts. This
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Figure 2: Classic dart throwing (left) accepts both the orange and
the blue candidate points, as no existing point in the set is within
the rejection radius r (pink circle). Projective dart throwing (right)
accepts the orange candidate, but not the blue one, as its projection
onto b3, with radius r3 (pink box), conflicts with an existing point.

becomes important when placing (fabricated) objects in 3D space,
i. e. in a physical exhibition or a collaborative virtual environment.
Typically used patterns do not produce layouts with blue-noise dis-
tribution when observed from different viewpoints. Our approach
can reduce clutter and occlusion by optimizing both the spatial and
the projected arrangement.

3. Our Approach

The basic idea of projective blue noise is to extend existing sam-
pling methods to not only operate in the full d-dimensional sample
space, but also in multiple lower dimensional projective subspaces
simultaneously. While classic dart throwing and Lloyd relaxation
test candidates or move points only in the full-dimensional space,
our extensions additionally check candidates, respectively, move
points, in the projection subspaces. We specify all spaces via a set
of m projection vectors

B = {
bj ∈ {0, 1}d

}m

j=1
. (1)

The vectors bj can be used with the Hadamard product (i. e.
the element-wise vector multiplication) to project points and vec-
tors onto the (sub)spaces specified by those vectors. Classic,
non-projective blue noise is the special case with B = {{1}d}.
In our projective extension, for 2D point sets we use B =
{(1, 1), (1, 0), (0, 1)}.

In the following subsections, we extend the dart throwing and
Lloyd relaxation algorithms to projective blue-noise sampling. For
each method, we first review its classic, non-projective variant, be-
fore presenting our projective extension.

3.1. Dart throwing

Classic. Dart throwing (Figure 2, left) starts with an empty point set
and iteratively generates random candidate points x that are added
to the set only if their distance to every other point xi is larger than
a certain threshold r , called Poisson-disk radius [Coo86]:

min
i=1,...,n′ ‖x − xi‖ > r, (2)

where n′ < n is the number of the already accepted points. For
tiled patterns, the distance is computed on a toroidally wrapped
domain. In its most basic form, the algorithm terminates if no new
points can be added after a certain number of successive failed
attempts. Alternatively, instead of terminating, the radius can be
shrunk by a constant factor, which makes the sampling method
progressive [MF92]. Our implementation operates on a toroidal
domain and also incorporates this shrinkage.

Projective. Our dart throwing extension (Figure 2, right) accepts a
candidate point x only if its distance to every other point xi in the
full d-dimensional space and in every projection space is larger than
a certain threshold:

min
i=1,...,n′

∥∥bj ◦ (x − xi)
∥∥ > rj ∀j ∈ 1, . . . , m, (3)

where rj is the desired radius (i. e. minimum distance) in the j th
space, and ◦ is the aforementioned Hadamard product.

Radii. Since the distances between points are smaller in lower
dimensional subspaces, the radii for these spaces should be smaller
than the ones for higher dimensional spaces. We derive the radius
for a space from the radius of the tightest known lattice sphere
packing in the corresponding dimension. For 1D through 4D, these
maximum radii are given, respectively, by [LD06, KZ77]

rmax
1 = 1

2n
, rmax

2 =
√

1

2
√

3n
, rmax

3 = 3

√
1

4
√

2n
, rmax

4 = 4

√
1

8n
.

For higher dimensions d , the maximum radius is found by solving
Vd = ηd/n for the radius rmax

d of a d-dimensional sphere, where Vd

is the sphere volume and ηd is the best lattice disk packing density.

Given the maximum packing radii, we compute the Poisson-disk
radii as

rj = r ·
rmax
dj

rmax
d

, (4)

where dj = ‖bj‖1 is the dimension of space j and d is the dimension
of the full space. The algorithm is now controlled via a single
parameter r ∈ [0, 1], which we set to r = 0.15.

3.2. Lloyd relaxation

Classic The Lloyd optimization algorithm (Figure 3, left) con-
structs a point arrangement that is a CVT. In a CVT, each point, or
site, xi is also the centre of its associated Voronoi cell—the subset
of the domain that is closer to xi than to any other site. To obtain
such a set X = {x1, . . . , xn}, Lloyd relaxation minimizes the cost

c(X) =
n∑

i=1

∫
�i

‖xi − x‖2dx, (5)
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Figure 3: Classic Lloyd relaxation (left) moves each point xi (or-
ange) to the centre (blue) of its Voronoi cell (pink). Our projective
extension (right) tries to move each point xi to the centre of its
Voronoi cell in the full space b1 as well as in the two subspaces
specified by b2 and b3.

where �i is the ith cell in the Voronoi tessellation of X. Conceptu-
ally, this cost measures how far the sites are from the centre of mass
of their Voronoi cells. As with dart throwing, for tiled patterns the
distances are computed on a toroidally wrapped domain.

The relaxation algorithm starts with a random set of sites X which
is refined iteratively in three steps. First, a Voronoi tessellation of
X is built, mapping every location in the domain to its closest
site. Secondly, the centroid of every Voronoi cell is computed by
averaging the locations in the cell. Finally, every site is moved to
the centroid of its associated cell. Practical implementations often
discretize the domain into a finite set of locations, turning the integral
in Eq. (5) into a sum.

Projective. In our case, we want to distribute the sites uniformly
not only in the full-dimensional space, but also in multiple lower
dimensional projection subspaces (Figure 3, right). Similarly to
our dart throwing extension, we specify all spaces via a set of
m projection vectors bj . We build m Voronoi tessellations, one for
each space, and aim to optimize the sites such that they coincide with
centroids of their corresponding Voronoi cells in all tessellations.
Note that for any site, its associated cells are different in the different
spaces. The cost of each site is computed by summing m weighted
norms, and the total cost reads

cp(X) =
m∑

j=1

wj

n∑
i=1

∫
�i,j

∥∥bj ◦ xi − x
∥∥2

dx, (6)

where ◦ is the Hadamard product, {wj }m
j=1 is a set of scalar projection

weights that sum up to one, and �i,j is the Voronoi cell of the ith
site after projection onto the j th space. Note that the dimension of
the points x above depends on j .

Our relaxation scheme seeks to minimize Eq. (6). We start with
the same initial point set as the classic Lloyd method, but we perform
the optimization steps in m spaces simultaneously as follows. For
each site xi , we compute m correction vectors �i,j , one from the
Voronoi tessellation in each space. Each vector �i,j would move
xi to the centre of Voronoi cell �i,j . These vectors are generally
different for the different projections j , and each individual site can
be moved to exactly fulfil only one constraint locally. We instead try

to partially fulfil all constraints by applying all correction vectors
�i,j to site xi , each scaled by a corresponding weight wj . After
moving all sites, the m Voronoi tessellations are recomputed and
the process is iterated.

Note that the projective correction vectors are heuristically chosen
and not proven to be optimal as the non-projective vectors are, but
work well in practice as shown by our analysis.

Weights. Ideally, we want all spaces to have equal importance in
the total cost in Eq. (6). However, since distances between points
in lower dimensional spaces are shorter, the relative contribution
of such spaces is smaller than that of higher dimensional spaces.
We equalize all contributions by making each weight wj inversely
proportional to the tightest sphere packing radius in dimension dj :

wj =
1/rmax

dj∑m

k=1 1/rmax
dk

. (7)

Additional optimizations. Due to the increased number of con-
straints, the straightforward implementation of the above scheme
may converge much slower than the classic Lloyd relaxation algo-
rithm. We propose two enhancements to improve both the speed and
the quality of the resulting patterns.

First, in early iterations, the different correction vectors contra-
dict heavily, making the process susceptible to local minima and
slow convergence. To remedy this, the weights wj for the lower
dimensional spaces are faded in linearly from 0 for 50 iterations.
This is done for each dimension successively, i. e. first the weights
of the d − 1-dimensional subspaces are faded in, then the d − 2-
dimensional ones, etc.

Secondly, the convergence speed can be further increased by ex-
ploiting the fact that in 1D the best point arrangement that maximizes
the mutual minimum distance is the regular distribution [RAMN12],
which is the global minimum of the Lloyd cost in 1D (Eq. 5). Thus, to
satisfy a single 1D projection, the pattern can simply be ‘snapped’
to a regular grid along the corresponding axis [SGB07]. So in-
stead of building 1D Voronoi tessellations, we directly compute
the correction vectors as the differences between the regular grid
{(0.5 + i)/n}n−1

i=0 and the sorted point coordinates along each axis.
Note that this closed-form solution works only for 1D projections,
and minimizing the cost in multiple dimensions simultaneously still
requires iterative optimization.

4. Analysis

In this section, we compare the quality of our patterns to exist-
ing methods in terms of their spectral and projective properties,
Poisson-disk radii and discrepancy. We also compare our method to
latinization [SGB07] and analyse the convergence and the compu-
tational performance of our projective Lloyd relaxation.

4.1. Projective analysis

We begin with an analysis of the spectral and spatial properties of our
projective patterns. We follow the recommendations of Schlömer

c© 2015 The Authors
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Figure 4: Spectral analysis of 14 different 2D point sets and their 1D axis projections (shown as red and blue bars and graphs, respectively),
discussed in Section 4. Note that the horizontal (frequency) scale is different for the 1D power spectrum plots and the radial average and
anisotropy plots. The last rows report the star discrepancy L∞

∗ and Poisson-disk radius ρ of each point set.
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sample patterns, averaged from 10 periodograms, produced by
our projective Lloyd relaxation with different projections enabled
(rows). The spectra of the different same-dimensional projections
are colour-coded.
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Figure 6: The power spectra of a 256-sample 4D projective blue-
noise point distribution, averaged from 10 periodograms. Each plot
shows the radial averages for all subspaces of the same dimension-
ality: 1 in 4D, 4 in 3D, 6 in 2D and 4 in 1D.

et al. [SHD11] on reporting spectral data for point sets, including
the critical frequency fc and anisotropy reference levels in Figures
1, 4, 5 and 6. For the 1D, 3D and 4D power spectrum plots, we
generalize the relevant frequency ranges using the respective rmax

d

(see Section 3.1).

2D analysis. In Figure 4, we compare various 2D patterns in
terms of their Fourier power spectra as well as their star dis-
crepancy and Poisson-disk radii. The patterns we consider are:
(1) regular, (2) Sobol, (3) scrambled Larcher-Pillichshammer (SLP)
[KK02], (4) uniform random, (5) jittered, (6) LH, (7) multi-
jittered (MJ) [CSW94], (8) correlated multi-jittered (CMJ) [Ken13],
(9) dart throwing, (10) Lloyd relaxation, (11) latinized dart throw-
ing [SGB07], (12) latinized Lloyd relaxation [SGB07], (13) our
projective dart throwing and (14) our projective Lloyd relaxation.
All plotted patterns consist of 25 samples. The spectral power plots
have been computed as the average of the periodograms of 100
random instances of each pattern with 3025 samples. The star dis-
crepancy L∞

∗ and Poisson-disk radii ρ (i. e. the normalized global
minimum intersample distance [LD08]) have been computed for
sample patterns of size 529.

A characteristic feature of 2D blue-noise distributions is their
isotropic Fourier power spectrum with a black disk in the centre
indicating the absence of low-frequency content, surrounded by
an energy-peak ring around the principal frequency [LD08]. Such
distributions are produced by maximizing the minimum distance
between the points in the set. As discussed in Section 3.2, in 1D the

regular distribution achieves the maximum point separation, and
its Fourier power spectrum is zero except at frequencies that are
multiples of n (the number of points). As a consequence, in Figure
4 patterns with good 1D axis projections, such as LH, MJ as well as
the latinized and our projective patterns, have black crosses in their
2D power spectra. This is because the interesting power spectrum
features of such distributions occur at different scales in 1D and 2D.
For the sake of visual clarity, we clamp the 2D spectrum plots to
the frequency range [0; 204], and show the 1D-projection slices of
these spectra as separate plots in the range [0; 3025]. Note also that
the black crosses in the 2D spectra cause a slight artificial increase
in 2D anisotropy.

The Sobol and SLP low-discrepancy patterns achieve regular 1D
axis projections for sample counts that are powers of two. For other
sample counts however, gaps remain along at least one axis. In
our 25-sample example in Figure 4, only the x-axis of the SLP
pattern has a uniform distribution. Furthermore, both methods fail
to produce blue-noise 2D spectra.

Uniform random, regular and jittered sampling all fail to pro-
duce high-quality 2D blue-noise distribution and 1D projections.
The regular 2D pattern has very poor projection distributions with
multiple points sharing the same coordinates on each axis, causing
spikes in the 1D power spectra. LH sampling has good projection
properties but poor 2D uniformity.

MJ sampling [CSW94], as a combination of jittered and LH sam-
pling, produces a 2D power spectrum that shares the features of
both methods. MJ patterns have acceptable projections, but like
other jittered patterns do not guarantee a minimal intersample dis-
tance, which is reflected in the smooth low-frequency ramps in both
the 2D and the projected 1D power spectra. CMJ [Ken13] results in
identical 1D spectra but a much less uniform 2D spectrum.

Classic Lloyd relaxation produces excellent blue-noise distribu-
tions but only in 2D. Latinizing the pattern improves the 1D projec-
tions but at the cost of increasing the 2D anisotropy and decreasing
the Poisson-disk radius. Our projective Lloyd distribution combines
a good 2D spectrum with well-distributed 1D projections, and has a
larger Poisson-disk radius than the latinized variant. Improving the
1D projections of a blue-noise pattern also decreases its discrep-
ancy [SGB07], where our projective method once again comes on
top of latinization.

Finally, dart throwing produces inferior blue-noise distributions
compared to Lloyd relaxation, as confirmed by both the 2D and the
projected 1D spectral plots. This is not unexpected, as this method
is highly sensitive to the order in which the samples are inserted.
The additional constraints introduced by our projective extension
further reduce the probability of successfully inserting a candidate
point. As a result, the 2D blue-noise spectrum of projective dart
throwing suffers more from the imposed constraints than that of
Lloyd relaxation, and some low-frequency components appear—
the dark circle in the centre of the spectrum is grey, not black. On
the other hand, latinized dart throwing produces good projective and
non-projective spectra but also higher anisotropy.

3D analysis. In Figure 5, we compare the power spectra of classic
3D blue-noise patterns to the projective distributions produced by

c© 2015 The Authors
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our extended Lloyd relaxation. We see that classic, non-projective
patterns (top row) have inferior 2D spectral properties and almost
white-noise 1D distributions. Our approach (middle and bottom
rows) retains good quality in all specified projection subspaces,
although this comes at the cost of slight quality degradation in the
3D spectrum.

4D analysis. Finally, in Figure 6 we plot the power spectra of
the 4D patterns produced by our extended Lloyd relaxation with
projective blue-noise properties imposed on all lower dimensional
subspaces. The characteristic blue-noise spectrum shape in all pro-
jections demonstrates that our method generalizes to higher dimen-
sions. Note the different frequency scale of each plot, indicating a
quality improvement in the corresponding dimension over classic
4D blue noise, as also seen in Figure 5. However, imposing this
many constraints leads to a more noticeable overall deterioration in
blue-noise quality compared to the 3D case. The noise in the plots
is due to the relatively low number of periodograms averaged (10).

4.2. Comparison to latinization

Having analysed the spectral properties of our projective Lloyd
relaxation and the latinization method of Saka et al. [SGB07] in
Section 4.1, we now conduct a closer comparison between these
two approaches. On a high level, our notion is a non-greedy, high-
dimensional generalization of latinization: Instead of first creating a
blue-noise pattern and latinizing it as a post-process, we interleave
these two steps. Note that while our method handles arbitrary di-
mensions, latinization only considers 2D patterns and their 1D axis
projections. We look the average projective Poisson-disk radius with
respext to vector b:

ρ̃b = 1

n

∑
x∈X

min
y∈X

‖b ◦ (x − y)‖/dmax
b , (8)

which is the projective generalization of the average Poisson-disk
radius measure [SHD11]. The minimal intersample distance is nor-
malized by the optimal packing distance dmax

b in subspace b, i. e.
dmax

b = 2rmax
‖b‖1

. In the following, we will use ρ̃, ρ̃x and ρ̃y to denote
the average radii in 2D and in the x- and y-axis projections, re-
spectively, corresponding to projection the vectors (1, 1), (1, 0) and
(0, 1).

For patterns with 512 samples, latinized dart throwing
and our projective variant achieve (ρ̃, ρ̃x, ρ̃y) = (0.801, 1, 1)
and (ρ̃, ρ̃x, ρ̃y) = (0.806, 0.917, 0.921), respectively. Latinized
Lloyd relaxation produces (ρ̃, ρ̃x, ρ̃y) = (0.873, 1, 1), whereas
our projective variant gives the best balance with (ρ̃, ρ̃x, ρ̃y) =
(0.909, 0.998, 0.999). In summary, latinization produces perfect 1D
stratification, but at the cost of decreasing the uniformity in 2D. Our
approach optimizes for both measures simultaneously.

The above measures indicate that in 2D latinized dart throwing
outperforms our projective variant. However, latinization has a neg-
ative effect on the progressiveness of the algorithm, which is one
of its strengths. We analyse this in Figure 7 by comparing the av-
erage Poisson-disk radii for classical, latinized and our projective
dart throwing and the Sobol low-discrepancy sequence [Sob94]. We

# of samples64 512

.85

# of samples64 # of samples 512 64 512

Classical

.55

1

.4

Latinized SobolOur projective

ρ̃ ρ̃x ρ̃y

Figure 7: Average Poisson-disk radii in 2D and along the x- and
y-axis projections (left to right) as functions of increasing sample
subset size for three dart throwing variants and the Sobol sequence.
Please see Section 4.2 for details.

(c)(a) (b)

Figure 8: Projection axis rotation. (a) Original pattern. (b) Tiled
and rotated pattern. (c) Resulting power spectrum.

plot the radii as functions of the first n points in 512-sample sets,
where the latinized pattern is computed from the classical one af-
ter generating all samples. The plots reveal that our projective dart
throwing has the most consistent progressive performance in 1D
and 2D, while the latinized variant has good properties only for
sample counts close to the maximum. The classical dart throwing
performs well in 2D, but its 1D projections are consistently poor. In
contrast, the Sobol pattern is perfectly latinized for power-of-two
sample counts, but its 2D radius is significantly worse than those of
the dart throwing patterns.

4.3. Rotation

Our approach supports rotating the canonical coordinate axes, as
long as they remain orthogonal. Since our methods operate on a
toroidal domain, this can be trivially achieved by optimizing the
pattern for the canonical axes (Figure 8a) and then rotating it by the
desired amount (Figure 8b). The black cross in the resulting power
spectrum is oriented according to the rotation angle (Figure 8c).
The same approach can also be used in higher dimensions, as the
patterns tile in all directions.

4.4. Sample warping

MC rendering and primitive placement often require warping sam-
ples according to a specified importance function. In Figure 9, we
compare the warping quality of our projective Lloyd patterns against
other patterns on a thin 2D curve, which can represent, e.g. an envi-
ronment light source for rendering or a path on a plane for primitive
placement. To produce the warped patterns, we first create samples
as described before, i. e. using a uniform importance. We then warp

c© 2015 The Authors
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Importance SLP CMJ Lloyd
Projective

Lloyd

Figure 9: Importance-driven warping of different 25-sample 2D
patterns. Our projective Lloyd pattern produces the best distribu-
tion, thanks to its good projections along both axes.
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Figure 10: 2D and projective 1D cost plots at different iterations
of classic and latinized Lloyd relaxation as well as four different
variants of our projective extension for a pattern with 2048 samples
(see Section 4.5). Different weight fading strategies are shown in
different colours, while solid and dashed lines denote the use of 1D
grid snapping (Section 3.2).

these samples to follow a new importance function (Figure 9, left)
using the common approach of tabulating conditional and marginal
distributions along the x- and y-axis, respectively [Dev86, p. 555].
Our pattern achieves the most uniform warped distribution, which
in rendering translates to a low integration error. This is due to its
well-distributed projections along both axes, a property that no other
pattern in the comparison has.

4.5. Lloyd convergence

We now analyse the convergence of different variants of our pro-
jective Lloyd optimization on a 2D point set X. In Figure 10, we
plot the classic 2D cost c(X) (Eq. (5)) and the projective 1D part
cp(X) − w1 · c(X) of the generalized cost (Eq. (6)), where w1 is
the full (2D) space weight, over an increasing number of iterations.
We consider five variants of our algorithm: classic non-projective
as well as variants with and without the weight fading and 1D grid
snapping optimizations from Section 3.2. A sixth graph shows the
effect of latinizing the pattern after 50 optimization iterations.

We see that all non-latinized variants minimize the classic 2D
cost, though with slightly different speeds. Our projective variants
achieve a final 2D cost only 0.76% worse than that of the classical
method (note the small [0.16; 0.18] vertical range in the left plot),
while also minimizing the 1D costs. On the other hand, latinization

brings excellent projective properties but at the expense of increasing
the total cost.

Unsurprisingly, the projective 1D cost is not minimized by the
classic Lloyd relaxation. The weight fading increases the projec-
tive cost initially, but ultimately achieves a substantially faster con-
vergence. The 1D grid snapping adds a further constant runtime
improvement.

4.6. Performance

The GPU implementation of our projective Lloyd relaxation per-
forms slower than classic Lloyd relaxation by a factor slightly
smaller than m (the number of projection spaces). While the per-
formance of the 1D relaxation is improved by the grid snapping
optimization, its computational cost is insignificant compared to the
higher dimensional Voronoi tessellations. Our naı̈ve implementa-
tion of projective dart throwing is about 3× slower than the classic
method.

5. Applications

In this section, we demonstrate the utility of our projective blue-
noise patterns in rendering, image reconstruction and primitive
placement—applications that have traditionally relied on special-
ized distributions.

5.1. Rendering

In Figure 11, we compare several patterns for MC rendering of
direct illumination from three different types of extended light
sources. The light sources used to produce the renderings are (a) an
anisotropic area light with a colour gradient, 21 samples per pixel
(spp); (b) an importance-sampled environment light (see inset in
Figure 11b, Section 4.4), 25 spp and (c) a square area light, 25 spp.
We decorrelate the pixel estimators for all but the SLP and CMJ
patterns via Cranley-Patterson rotation [CP76]. We use (1) Ham-
mersley [KK02], (2) CMJ [Ken13], (3) SLP [KK02], (4) classic
Lloyd relaxation (which was slightly better than dart throwing) and
(5) our projective Lloyd relaxation (again, slightly better than our
projective dart throwing) to sample the rectangluar domains of the
area and environment light sources.

The visual and numerical results in Figure 11 indicate that our
projective blue-noise patterns outperform all others on thin area
lights. SLP is the closest competitor on all scenes and even slightly
outperforms our patterns on the environment map scene. However,
the pattern exhibits pixel correlation which is clearly visible in both
the first and the second scenes, as also observed by Kensler [Ken13].
The environment map in the second scene features thin curved lights
that are importance sampled as described in Section 4.4. In Figure
11(c), we see that the blue-noise patterns perform slightly better
than the classical optimal methods on a square area light source.

To analyse the effect of light source anisotropy, in Figure 12 top-
left we plot the Root Mean Square (RMS) reference error of three
patterns on a simple scene for varying numbers of samples. Classic
Lloyd relaxation (green) and SLP (blue) exhibit strong variation in
quality. For power-of-two sample counts, SLP is on par with our
projective Lloyd pattern (red) which otherwise outperforms consis-
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Figure 11: Rendering comparison of five sample patterns on three scenes with different light sources, discussed in Section 5.1.
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Figure 12: RMS error plots of the renderings of a scene using three
different sample patterns. We plot the error as a function of sample
count (left) and area light source anisotropy (right).

tently better. We speculate that classic Lloyd spuriously achieves
the same quality as ours when it randomly produces patterns with
good 1D projections. For a square area light source (Figure 12,
bottom-left), the differences are smaller, though our approach again

consistently outperforms classic Lloyd relaxation. Finally, in Fig-
ure 12 right we plot the RMS error as a function of the light source
anisotropy.

5.2. Image reconstruction

In Figure 13, we compare the performance of classic Lloyd relax-
ation and our projective extension for reconstructing 2D images.
We test a 2D zone plate function with a 4-pixel-wide Lanczos fil-
ter (512×512 pixels = 262 144 samples) as well as a modified
anisotropic variant (512×16 pixels = 16 384 samples). On the
isotropic zone plate (left), the two patterns perform similarly. How-
ever, our pattern significantly outperforms classic blue noise on the
anisotropic variant (right), demonstrating the importance of having
well-distributed 1D projections.

5.3. Primitive placement

We finally demonstrate the utility of our three-dimensional pro-
jective blue-noise patterns for primitive placement. Our approach
enables arranging objects in 3D in a way that is artistically pleas-
ant [HHD03], has semantic structure along its axes [RRS13] and
fills multiple 2D projection subspaces uniformly. Figure 14 shows
one such arrangement where primitives are sorted by size, bright-
ness and orientation (direction of the primitive’s first principal
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Figure 13: Reconstructions of an isotropic (left) and an anisotropic
(right) 2D zone plate functions using a classic blue-noise pattern
and our projective blue-noise pattern.
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Figure 14: Using 3D, 2D and our projective 3D blue-noise patterns
for distributing primitives ordered by brightness, size and orienta-
tion along the x-, y- and z-axis, respectively.

component) along the x-, y- and z-axis, respectively. The distances
in the projective Lloyd cost (Eq. (6)) have been computed on a
non-toroidal domain by taking the spatial extent of the objects into
account [RRS13]. When looking at the 2D projection along an axis,
the distribution remains uniform and shows one aspect of the data,
e. g. size and brightness when looking down the z-axis.

6. Conclusion

We proposed a simple extension to blue-noise sampling that pro-
duces patterns with good spectral properties when projected onto

lower dimensional subspaces. Our extension is easy to implement
and likely orthogonal to many ways of generating patterns, as we
demonstrated for two popular methods—dart throwing and Lloyd
relaxation. For MC rendering, we showed that the resulting patterns
perform better than classic blue-noise patterns and on par with or
better than low-discrepancy patterns which have been specifically
designed for the purpose of numerical integration. For primitive
placement, we showed arrangements with uniform distribution in
both 3D space and multiple 2D viewing projections. We believe
our approach is a step towards a single universal multi-dimensional
pattern with a wide range of applications.

Compared to low-discrepancy sequences, our patterns are much
more costly to construct. Compared to the cost of common blue-
noise sampling approaches, however, the overhead is small and
the produced patterns are of almost the same quality in the full-
dimensional space. For numerical integration, we have found our
projective 2D Lloyd relaxation to perform consistently better than
most other patterns in all our experiments. Nevertheless, our patterns
can be slightly outperformed by low-discrepancy sequences that
achieve perfect 1D stratification for certain sample counts. We have
only demonstrated our method for up to four dimensions; however
our results indicate that it generalizes to higher dimensions, which
are required in full global illumination rendering.

Our implementation is currently limited to rectangular domains
and allows consequently to (optionally rotated) axis-aligned projec-
tions, although this is not a limitation of our theoretical formulation.
Extensions to non-orthogonal and non-linear projections is an inter-
esting avenue for further research, which requires a more in-depth
analysis of how such projections and the toroidal tiling influence
each other. Other pertinent future work includes the extension of our
and other sampling algorithms, e.g. capacity-constrained Lloyd re-
laxation [BSD09] or farthest point optimization [ELPZ97, SHD11],
to projective blue noise and non-linear projections.

References
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