
EUROGRAPHICS 2016 / E. Grinspun, B. Bickel, and Y. Dobashi
(Guest Editors)

Volume 35 (2016), Number 7

Proxy-guided Image-based Rendering for Mobile Devices

Supplemental Material

Table 1: Hardware specifications of the used devices.

Device CPU RAM GPU Frame rate

Stick 4×1.33 GHz 2 GB Intel HD Baytrail 35.9 fps
Stream 2×1.4 GHz 2 GB Intel HD Haswell 66.3 fps
Pavilion 2×2.9 GHz 4 GB Intel HD 4400 69.8 fps
Surface 4×2.9 GHz 8 GB Intel HD 4400 107.0 fps

1. IBR algorithm pseudocode

The shading decision per pixel in Section 5.1 of the full paper can
be written in pseudocode as follows:

if min (ep,ee) < τdepth then
fragmentDepth := 0.5 × fragmentDepth

else
fragmentDepth := 0.5 + 0.5 × fragmentDepth

end

if ep < ee then
outputColor := primaryColor

else
outputColor := extraColor

end

2. Comparisons

Table 1 and Table 2 show the hardware specifications and framer-
ates we obtained running our and the competing algorithms on the
target devices.

Figure 1 shows a wireframe of a coarse mesh in comparison to a
wireframe of our method.

Figure 2 shows the scenes used throughout the paper.

3. Perceptual Evaluation

We have assessed the effectiveness of our approach in a perceptual
experiment, where it is compared to alternative approaches in terms
of visual fidelity for a remote rendering scenario.

We consider five different approaches to be compared to ours that
all use the same input and are rendered at the target frame rate on
the Intel Compute Stick. The homography approach [Ocu15] con-
sists of a single texture lookup per fragment assuming a constant,

Table 2: Framerates for the used devices and techniques.

Technique Stick Stream Pavilion Surface

Coarse mesh warp1 1.9 fps 6.7 fps 12.5 fps 14.5 fps
Coarse mesh warp2 6.9 fps 22.6 fps 39.1 fps 45.4 fps
Coarse mesh warp3 14.4 fps 42.5 fps 64.4 fps 80.1 fps
Coarse mesh warp4 23.3 fps 59.8 fps 81.7 fps 113.2 fps
Coarse mesh warp5 31.3 fps 74.7 fps 91.4 fps 136.2 fps
Mesh warp 1.5 fps 5.3 fps 9.9 fps 10.1 fps
Homography 44.3 fps 143.0 fps 140.0 fps 238.8 fps
Quadtree 20.9 fps 50.7 fps 72.7 fps 93.7 fps
Point splatting 4.2 fps 15.7 fps 24.4 fps 26.6 fps
Iter. image warping 3.5 fps 15.4 fps 27.8 fps 27.7 fps
Our method 35.9 fps 66.3 fps 69.8 fps 107.0 fps

(a) Coarse mesh (b) Our method

Figure 1: Comparison of coarse warp meshes, a classic IBR algo-
rithm, and our approach. While our approach uses fewer primitives
and is faster to draw – here shown as an overlay –, its primitives
align better with the world geometry, resulting in a better novel
view-image. Note, how our approach produces more accurate re-
sults with fewer triangles.

VIKING VILLAGE ROBOT LAB COURTYARD

Figure 2: Scenes we show throughout the paper.

submitted to EUROGRAPHICS 2016.



2 Supplemental Material / Proxy-guided Image-based Rendering for Mobile Devices

infinite depth per pixel. The mesh warp approach [MMB97] com-
prises of warping both views at full mesh resolution. The Outatime
approach comprises of warping only the first view at a subsampled
mesh resolution (factor 5) to reach a constant output frame rate
of 31.3 fps. The Quadtree approach [DRE∗10] is done by warp-
ing both views with a quadtree resulting in an output frame rate
of 20.9 fps. We did not consider pixel splatting and Iterative im-
age warping in our study as they did not produce favorable im-
age qualities or require an intricate initialization. All approaches
were used to extrapolate novel-views from the same pre-recorded
input. Inputs are sequences of images with a spatial resolution of
2048×2048 pixels for the first and 1024×1024 pixels for the sec-
ond view, showing snippets of 5 s of typical game-play motion in a
scene with detailed architecture, textures, shadows and ambient oc-
clusion as seen in Figure 1 of the full paper. Overall, two sequences
for two scenes (VIKING VILLAGE, ROBOT LAB) are used. A cap-
ture is also seen in the supplemental material. Extrapolation was
done to the current novel view from a stream with a delay of 128 ms
arriving at 10 fps.

Subjects were asked to compare the result of our approach and a
competing approach in a Two-alternative forced choice task. They
were shown two image sequences in parallel in a randomized hor-
izontal spatial layout. Both image sequences were shown on iden-
tical Dell U2412M monitors placed together in front of the partic-
ipants. Sequences were played in a infinite loop, with a grey blank
of 2 s before each repetition. At any moment subjects could indi-
cate their preference by choosing “left” or “right” and providing
optional feedback on a web form presented to them on a third mon-
itor. The screens were blanked between each trial.

We recruited 30 subjects (25 M / 5 F, 25±5.0 ys.) with normal or
corrected-to-normal vision through different gaming related mail-
ing lists in our institutions, as well as asking a few friends and
colleagues. Our solicitation instructed participants to complete a
pre-survey study and promised a meal coupon as an incentive for
participation. From the pre-study survey, our 30 participants spend
on average two hours and a half per day playing videogames. 85%
of our participants consider themselves to be proficient or expert at
videogames while 15% considered themselves to be beginners or
just competent. They produced a total of 30 subjects × 2 scenes ×
2 sequences × 4 video comparisons = 480 binary answers.

Our method is compared to its competitors by a binomial test
which found significant differences (p < .0001) in all cases as seen
in Figure 11 of the original paper. Averaged across all other ap-
proaches, ours is preferred in 90.00% (p < .0001). We conclude,
that subjects understand the question of visual fidelity in novel-
view synthesis for remote rendering content and that our approach
is preferred over other published alternatives.

The participants’ feedback allowed us to better understand their
choices. Participants were very often displeased by low framerate.
However, small framerate differences such as those found between
homography and our approach had little impact on the participants’
decision. In fact, many participants perceived our approach to be
“smoother” than homography. The presence of visible artifacts also
caused the particpants to reject certain image sequences. It was very
noticeable for the quadtree, as many of them quickly discarded it
mentioning the presence of “glitches” and “distortion”. Interest-

Deterministic Forward warping Client-side rendering

Figure 3: Alternatives for dynamic scenes.

ingly, two of the participants mentioned that the presence of arti-
facts was more acceptable in certain scenes. For example, the blur
present in Outatime in disoccluded areas was considered “artistic”
and “matching the scenario” of Viking Village while considered
unacceptable for the Robot Lab. Perhaps for this reason our tech-
nique performed better against Outatime in the Robot Lab than in
the Viking Village. In general the participants found our technique
to produce “smoother” and “less distorted” visuals than our com-
petitors.

4. Dynamic scenes

A limitation of our method is the weak support for dynamic scenes.
We implemented three different fallbacks for supporting certain
kinds of dynamics, each having different advantages and draw-
backs (Figure 3). Since it is difficult to show animations in the
paper, we refer the reader to the dynamics directory in our sup-
plementary material where we show videos demonstrating each of
the three techniques described below.

Deterministic dynamics Our method directly supports non-static
scene elements with deterministic motion, i.e., it is known in ad-
vance for all time steps and cannot be influenced by the user. In this
case the client simply applies the motion to the scene proxy and ac-
counts for it when projecting fragments into the source views. Ex-
amples of this type of motion include periodic motions (e.g., rotat-
ing blades of a wind mill) or noise-based animations (e.g., swaying
trees).

Depth map warping The server can render the dynamic objects
into a color / depth buffer that is transmitted to the client and
forward-warped with one of the techniques described in Section 2
of the full paper. The motion and object complexity is not restricted
in any way, but the animation uses the server frame rate and is de-
layed by the network latency.

Client-side rendering The client can render any object into the
3D scene, either before or after our method. The z-buffer culling
will work normally. This method supports any kind of motion, and
objects may react to user actions. However, it is limited to simple
objects that can be rendered quickly on our target devices.

References

[DRE∗10] DIDYK P., RITSCHEL T., EISEMANN E., MYSZKOWSKI K.,
SEIDEL H.-P.: Adaptive image-space stereo view synthesis. In Proc.
VMV (2010), pp. 299–306. 2

submitted to EUROGRAPHICS 2016.



Supplemental Material / Proxy-guided Image-based Rendering for Mobile Devices 3

[MMB97] MARK W. R., MCMILLAN L., BISHOP G.: Post-rendering
3D warping. In Proc. i3D (1997). 2

[Ocu15] OCULUS VR: Oculus mobile SDK documentation, 2015. 1

submitted to EUROGRAPHICS 2016.


