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Figure 1: Highly detailed animations can be difficult to reproduce on current display devices. Here, four frames from animations used to
evaluate our apparent resolution enhancement are shown: (a) rendering of a ball textured with text; (b) rendering of a detailed assembly of
fibers; (c) a rendered short film (“Big Buck Bunny” c© by Blender Foundation); (d) high-resolution content captured with a video camera.

Abstract

Presenting the variety of high resolution images captured by high-
quality devices, or generated on the computer, is challenging due to
the limited resolution of current display devices. Our recent work
addressed this problem by taking into account human perception.
By applying a specific motion to a high-resolution image shown
on a low-resolution display device, human eye tracking and inte-
gration could be exploited to achieve apparent resolution enhance-
ment. To this end, the high-resolution image is decomposed into a
sequence of temporally varying low-resolution images that are dis-
played at high refresh rates. However, this approach is limited to a
specific class of simple or constant movements, i. e. “panning”. In
this work, we generalize this idea to arbitrary motions, as well as to
videos with arbitrary motion flow. The resulting image sequences
are compared to a range of other down-sampling methods.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
generation—display algorithms,viewing algorithms;
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1 Introduction

High-quality display and capture of images is important to give a
faithful depiction of the natural world on a computer system. Un-
fortunately – although display devices as well as acquisition de-
vices are constantly evolving – there is still a gap: not all images
captured or generated can later be fully reproduced on the display
devices available. This mismatch has recently gained attention and
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attempts were made to go beyond the physical capabilities of dis-
play devices using properties of the Human Visual System (HVS).
One example is high-dynamic-range imaging, where current tech-
niques are able to capture the real world luminance in a very accu-
rate way. However, even the latest display devices are usually not
capable of reproducing such content. In the context of 3D Vision,
where the most popular 3D solutions are using shutter glasses, the
low temporal resolution of the HVS is used to interleave images
coming from the screen to the left and right eye.

In this work we are concerned with the fact, that many images and
image sequences today exceed the spatial resolution of current dis-
plays. First, digital cameras produce still images and videos at
a resolution an order of magnitude higher than displays can cur-
rently show. Additionally, super-sampling methods [Van Ouwerk-
erk 2006] can recover high-resolution spatial information from low-
resolution videos by consolidating temporal variation. Second, ef-
ficient image synthesis algorithms and hardware [Akenine-Möller
et al. 2008] made it possible to generate highly-detailed animations
at even higher resolutions. In all those cases, down-sampling is
required to present high-resolution content on low-resolution dis-
plays. Down-sampling however is prone to the loss of fine spatial
details, such as hair, fur, other fiber structures or fine highlights.

While standard down-sampling methods treat each frame of an an-
imation separately without taking temporal effects into account, it
was shown by Didyk et al. [2010], how properties of the HVS can
be beneficially exploited for moving images. The smooth pursuit
eye movement (SPEM) mechanism can be used to induce subpixel
shifts of the image projected on the retina. This, together with a
high-refresh-rate display and careful derivation of displayed low-
resolution frames, can lead to increased perceived resolution of the
image. In their approach, SPEM was induced by artificially moving
a still image with a constant velocity. In this work we will general-
ize this idea to arbitrary, spatially varying and temporally changing
image motions, coming from the optical flow of an animation.



2 Previous Work

This section discusses related work that seeks to improve the view-
ing experience when observing computer displays. In particular,
it is focused on work that involves human perception to improve
reproduction of fine spatial details.

2.1 Spatial integration

One of the earliest ideas to increase apparent spatial resolution is
to break the assumption that R, G and B channels form a single
pixel [Benzschawel and Howard 1994]. So-called sub-pixel ren-
dering exploits knowledge of sub-pixel layout, as found in modern
liquid-crystal displays (LCDs) to allow for sub-pixel accurate detail
localization. For LCD, the ClearType technology is one incarnation
of this idea that is used to improve the depiction of text, which can
be optimized for this purpose [Platt 2000]. However, only hori-
zontal details are enhanced and best results are achieved for high-
contrast black-and-white text. Application of sub-pixel rendering
to complex images remains challenging, and care has to be taken to
avoid introducing any new artifacts, such as moiré patterns [Mess-
ing and Kerofsky 2006; Klompenhouwer and de Haan 2003]. Hara
and Shiramatsu [2000] observe that a special pixel-color mosaic ex-
tends the pass band of the image spectrum when moving an image
with a specific velocity across the display. Some spatial sub-pixel
layouts – such as an RGGB-mosaic – have shown to improve the
perceived image quality. The standard |RGB|RGB| . . . arrangement,
predominant in current LCD displays however, does not support
such an improvement.

2.2 Temporal integration

Digital light processing (DLP) video projectors exploit the tempo-
ral integration in the HVS for color fusion. Different from spatial
RGB-subpixel integration, they present the RGB color components
sequentially in time with a temporal frequency over the perceiv-
able flickering limit of the HVS. For some cases, such as rapid eye
movements as found in saccades, spatial color disintegration (“rain-
bow effect”) can become objectionable.

2.3 Image (re-)sampling

Displaying continuous or high-resolution input images on a finite,
lower-resolution display is a sampling problem [Mitchell and Ne-
travali 1988]. The display image is reconstructed by convolving
the input image with a reconstruction filter for every output pixel.
Popular reconstruction filters are Lanczos window and the family of
cubic splines derived by Mitchell and Netravali [1988]. While these
techniques were designed for static images, they are commonly ap-
plied to animated content as well. Our solution is different, as it
takes into account multiple frames resulting in filtering that accords
to the time-averaging nature of the HVS. By doing so, apparent
spatial resolution will increase after temporal integration.

2.4 Optimal reconstruction

Recently a range of work has recast such sampling issues into op-
timization problems. Here, a number of spatially and temporally
low-resolution images are optimized to combine into the percep-
tion of one high resolution image.

Wobulated projectors show multiple unique slightly-shifted sub-
images using an opto-mechanical image shifter [Allen and Ulich-
ney 2005], synchronized with the rapid sub-image projection to
avoid flickering. This enhances the perceived image resolution

and increases the perceived pixel area, which is otherwise lim-
ited by the door grid between physical pixels. Display super-
sampling achieves a similar effect by carefully-aligning multiple
standard projectors [Damera-Venkata and Chang 2009]. They use
an optimization for arbitrary (not raster-aligned) sub-pixel configu-
rations. The present work is similar to [Allen and Ulichney 2005]
and [Damera-Venkata and Chang 2009] in the sense that a high-
resolution image is transformed into a set of low-resolution images,
but we aim at a single desktop display or projector with a limited
resolution and fixed pixel layout. We overcome these limitations by
making use of smooth pursuit eye movement (SPEM) in arbitrary
image sequences.

On the sensor-side, sub-pixel information acquired via subtle
camera motion has proven useful in many applications, such as
super-resolution reconstruction [Park et al. 2003] or video restora-
tion [Tekalp 1995]. In these schemes, subpixel samples from sub-
sequent frames are merged into explicitly reconstructed images,
which, finally, are downsampled to match the display resolution.
Note that our problem is, in some sense, an inverse problem. We
do not need to reconstruct high frequency information because it is
available in the original content. Instead, our task is to decompose
high resolution images into low resolution subimages which are fi-
nally perceived as a high resolution image when displayed sequen-
tially. Our approach avoids any explicit reconstruction and relies
on perceptual processes to ensure detail enhancement.

Krapels et al. [2005] as well as Bijl et al. [2006] reported better
object discrimination for subpixel camera panning than for corre-
sponding static frames. Object discrimination improved regardless
of the subpixel sensor motion rate, except for critical velocities
[Tekalp 1995, C. 13] such as a one-pixel shift. A similar observa-
tion applies to rendering with supersampling where several images,
rendered with slightly differing camera positions, are integrated in
order to gain information.

Recently, it was shown by Didyk et al. [2010], how taking into ac-
count the HVS’s SPEM, as well as its temporally integrating nature,
the apparent resolution of a display can be enhanced for moving im-
ages. They proposed a simplified model of the temporal integration
on the human retina, which allows them to predict the perceived
image. In order to increase the apparent resolution of a given high-
resolution image on a lower-resolution display device, they require
to move an initially still image in a specific way. The motion can
be general (arbitrary camera panning), but the method was demon-
strated only for simpler linear motions. This allows to turn their
model into an optimization problem, which takes the high resolu-
tion image as well as a characteristic of the motion as an input and,
assuming SPEM, optimize for a sequence of low-resolution sub-
images to be shown on the output display. Displaying these images
using a high-refresh-rate display creates a retinal image, whose res-
olution is higher than the resolution of the display device.

A similar idea was also proposed recently by Basu et al. [2009].
Their idea is also to introduce a certain motion to the displayed
image and rely on the temporal domain by showing more informa-
tion over time. However, in contrast to the previous method, they
do not attempt to make the resulting image aliasing-free or to as-
sure that temporal artifacts are not perceivable. They also propose
a small circular path for the motion as the best choice, which at
higher frame-rates can lead to simple averaging and no resolution
gain. Whereas Didyk et al. [2010] introduced a motion for images
in order to increase the apparent resolution, we show how to use
existing motion in the scene (e. g., rendering, video animation) to
achieve an enhancement as well. Therefore we will mostly rely on
their findings extending them to arbitrary motion in a scene.



3 Model

Didyk et al. [2010] assume that after time T the response of a sin-
gle receptor r moving over an image I is given by the following
equation:

r =
∫ T

0
I(p(t), t)dt, (1)

where p(t) denotes the position of the receptor at time t (cf. Fig. 2).
While this assumption is not true in general [Van Hateren 2005],
for sufficiently short T and periodic signal of frequency T−1 the
equation holds due to the Talbot-Plateau law, which describes the
HVS as a time-averaging sensor [Kalloniatis and Luu 2009].
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Figure 2: Perceived integration of an animated image I(x, t) (a
space-time cube) by a receptor r moving along a continuous path
p(t). In the discrete case an animated image consists of discrete
pixels at discrete frames of time with a discrete motion in every
frame.

Since I is a piecewise constant function of both time and position,
the integral in Eq. 1 can be rewritten as a finite sum:

r = ∑
i, j,k

wk
i, j · Ik

i, j, (2)

where Ik
i, j denotes the pixel at position (i, j) of the k-th subframe.

The weights wk
i, j sum up to 1, and are proportional to the time spent

by the receptor looking at the respective pixel, which can be for-
mally stated as:

wk
i, j =

1
|p|

∫ T

0
χi, j(p(t))χk(t)dt. (3)

The characteristic function χi, j equals 1 when its argument indi-
cates position covered by pixel (i, j), and χk(t) equals 1 if at time
t the k-th frame is being displayed (cf. Fig. 3). The weight is nor-
malized by the total length of the path, here denoted as |p|.
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Figure 3: Left: A receptor moving in (here 1D) space for different
moments in time. Right: The weight wk

i for every discrete pixel i in
(here 1D) space and frame k in time, is proportional to the time the
receptor is looking at this pixel.

3.1 Solution

The formalism presented above is used by Didyk et al. [2010] to in-
crease the apparent resolution of a 120 Hz display as follows: Sup-
pose, that we want to show an image with a resolution 3 times

higher than the resolution of the display. We assume that there
is one-to-one correspondence between receptors and pixels of the
high resolution image: one high-resolution pixel is seen by one re-
ceptor and one receptor sees one high-resolution pixel. In our solu-
tion, similarly to work by Didyk et al. [2010], we are not concerned
with the size or the actual layout of photoreceptors in the human
eye. Instead, we make the simplifying assumption that the number
of receptors is equal to the number of pixels in the original high
resolution image and that they are arranged on a grid. By moving
the image on the display with a constant velocity we can initiate
smooth pursuit movement of the observer’s eyes. If the velocity,
expressed in pixels of the high-resolution image per frame, is of the
form (i, j), i, j∈N, the position of the receptors during three frames
of the animation will shift by an integer number of display pixels
along both axes. Displaying the same three frames in a loop, shifted
accordingly after every iteration, leads to a periodic signal reaching
the receptors, with a frequency of 40 Hz. Although T = 1/40s is not
short enough for the Talbot-Plateau law to hold under all circum-
stances [Kalloniatis and Luu 2009], it was shown to be sufficient in
this scenario [Didyk et al. 2010].

The response of the receptors at any point of the animation can be
computed according to Eq. 2. We seek to assign such values to
the subframes’ pixels, such that the response of the receptors is the
same as for the high resolution image. Writing the display pixels
from the three subframes as a column vector x, and all the pixels in
the high resolution image as a column vector ih, we get the system
Wx = ih, where the matrix W encodes the weights defined in Eq. 3,
and each row corresponds to one receptor. As the dynamic range
of the display should not be exceeded, every element xi of x is con-
strained to 0≤ xi ≤ 1. Since this system is usually overdetermined,
it does not have a solution. Instead, we find x̃, minimizing the error
with respect to the Euclidean norm: x̃ = argmin

x
‖Wx− ih‖2.

3.2 Simple motion

By choosing a suitable motion, two important simplifications were
made by Didyk et al. [2010]. First, the motion is assumed to be
constant in time and space, i. e. it is a “camera pan”: without any
acceleration and with every part of the image moving at the same
speed. Second, the motion is often set to be of the form (i, j), i, j ∈
N, which we will call an integer motion in the high-resolution image
space (i. e. integer multiples of 1/3 in the display space).

If these two conditions are fulfilled, all triplets (subsequences of 3
successive frames) in the animation are just spatially shifted copies
of all previous or future triplets (cf. Fig. 4). We say, the problem has
become periodic. In this case, the size of W and x̃ is independent
of the length of the animation, because it is sufficient to compute
only a single triplet and repeat the sequence indefinitely, shifting it
accordingly after every iteration.
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Figure 4: Scrolling a high-resolution 4×1-image (left) over a sin-
gle pixel. At integer velocities (middle), triplets of frames have the
same weight (same areas in both triplets), only spatially shifted
(color shift). At general velocities (right), no such periodicity is
present (areas and hues different in both triplets).



3.3 Non-integer motion

We will now generalize the approach of Didyk et al. [2010] to
non-integer motions. The difficulty is, that after every triplet the
position of the high-resolution image relative to the display-pixel
grid changes, and the problem is therefore not periodic anymore
(cf. Fig. 4, right). We extend the original system by adding equa-
tions for every possible triplet of the animation, i. e. for subframes
{1,2,3},{2,3,4},{3,4,5}, etc. These additional equations are sup-
posed to enforce animations, in which for every receptor and for
every three consecutive subframes the integral computed according
to Eq. 1 is as close as possible to the value of the corresponding
high resolution pixel. In other words, our approach solves non-
integer motions using many locally simple motions as done by
Didyk et al. [2010]. It should be noted, however, that even if the
conditions imposed by the additional equations are met for some
receptors, the signal reaching them is not necessarily periodic.

One disadvantage of this approach is, that the size of W and x̃ is
now depending on the length of the animation, limiting, in practice,
the effective length of the processable sequences.

3.4 General motion

As explained before, Didyk et al. [2010] achieve resolution en-
hancement by moving the whole image with a specific, spatially-
invariant velocity enforcing a particular SPEM. We will now per-
form another generalization to spatially varying motion to achieve
apparent resolution enhancement for arbitrary image sequences. As
human observers are well-trained to track moving objects, we as-
sume the tracking velocity to equal the spatially localized optical
flow. Instead of enforcing a certain velocity for the entire image as
done previously [Didyk et al. 2010], we consider the resolution en-
hancement problem locally in order to account for motion already
present in a given animation.

Optical flow Horn and Schunk [1981] define optical flow as the
distribution of apparent velocities of brightness patterns in an im-
age. If one wants to focus on some detail of an image, they have
to follow its apparent movement, thus it is reasonable to assume
that between consecutive saccades SPEM closely follows the opti-
cal flow. We denote optical flow as a function f : R2×R→ R2,
that applied to a location and a certain point in time returns the per-
ceived velocity of the corresponding pattern. The function f can
be obtained by a separate render pass in any advanced 3D anima-
tion authoring software (a so-called “motion vector pass”) or – in
the case of pre-existing animations or video material – using opti-
cal flow estimation methods [Horn and Schunck 1981; Zach et al.
2007].
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Figure 5: Coherent (left) and incoherent (middle) optical flow. We
assume that most of the time the optical flow does not vary over the
foveal solid angle (right).

We aim at animations where f is locally constant, both in space and
time (cf. Fig. 5). Nevertheless f can vary substantially between dis-
tinct image regions and over time. Even though it is not possible to
track the whole animation at once, we will optimize the subframes
in each region according to its optical flow. For some parts of the

animation this will violate the assumption that the eye movement
matches the optical flow of the animation. However, when the eye
does not follow the movement of a pattern, the perception of details
in that region is already impaired, since the image is not stabilized
on the retina. Thus, optimization in such cases should not lead to
visible artifacts, and can improve the quality when the pattern is ac-
tually tracked by the observer. Additionally, as the HVS is not very
sensitive to fine details outside the foveal region, which covers only
ca. 2 visual degree, our assumptions hold perfectly if the optical
flow is constant in the display area under the foveal solid angle.

Virtual receptors In the case of linear image motion, the posi-
tions being observed were well-defined, and formed a set of con-
tinuous paths. Two neighboring receptors that follow the optical
flow can spread out, further, it is more difficult to track receptors
because f can return arbitrary real-number shifts and the new posi-
tion might in general not correspond to an accurate pixel position.
Since we assume that f varies slowly, the velocity of the receptor
could be approximated as a combination of its previous velocity
and the velocities of the neighboring pixels, but this leads to a new
problem: in every frame the number of possible locations to track
increases. We solve those issues by introducing a new set of virtual
receptors for every triplet of subframes. The purpose of the virtual
receptors is to approximate the paths of the real receptors within a
particular triplet. At the beginning of a triplet (i. e. in every frame)
new virtual receptors appear at the positions of the high-resolution
image pixels, then each virtual receptor starts moving with uniform
velocity indicated by f , to disappear eventually after 3 frames. The
response of the virtual receptor introduced in the k-th frame at the
position (x,y)T is defined as follows:

rk
x,y =

∫ 3

0
I(pk

x,y(t),k+ t)dt, (4)

where the path pk
x,y is a segment given by:

pk
x,y(t) = (x,y)+ t · f (x,y,k). (5)

As before, we formulate a system of equations with every row cor-
responding to one virtual receptor, which we solve for minimal er-
ror with respect to the Euclidean norm.

It is worth noting that for the cases considered by
Didyk et al. [2010] this formulation reduces to an equivalent
optimization problem. Also the case of fractional velocities can
be seen as a special case of this approach, with the exception that
the grid of the virtual receptors at the moment of creation does not
have to be pixel-aligned.

4 Implementation

In this section two different implementations of our model are pre-
sented: first, a CPU reference implementation (Sec. 4.1) and sec-
ond, an efficient GPU implementation (Sec. 4.2).

4.1 CPU Implementation

The following iterative optimization scheme, similar to the gradient
descent method is used in our C++ reference implementation:

x(0) = 0 (6)

e(i) = ih−Wx(i) (7)

x(i+1) = ψ(x(i)+µ ◦WTe(i)) (8)
x̃ = xn (9)



where ◦ in Eq. 8 denotes component-wise multiplication, µ is a
vector of scaling factors, and ψ is a clipping function, clamping
every component of a vector to the range of [0,1].

The algorithm proceeds by iteratively improving the current solu-
tion x(i) as follows: Initially, all the solution pixels x(0) are set to
black (Eq. 6). Then, at each iteration, two steps are performed: er-
ror computation (Eq. 7) and error distribution (Eq. 8). Using the
current solution x(i) the receptor responses Wx(i) are computed.
The remaining errors e(i) of this iteration are computed as the dif-
ference of the receptor responses Wx(i) and the high-resolution an-
imation pixels ih. Next, the computed errors are distributed back
onto the subframe pixels: for every subframe pixel, the weighted
sum of the errors at the receptors it contributes to (WTe(i)) is com-
puted. Normalization is achieved, by setting µ

−1
i equal to the sum

of the i-th row of WT. Finally, the weighted average µ ◦WTe(i)

is added to the current solution x(i), and clipped to the dynamic
range of the display by the function ψ . The result x̃ is the outcome
of several iterations of this algorithm; in our experiments we used
n = 7.

The matrix notation was introduced here for brevity, however W is
sparse and its rows do not have to be constructed explicitly. In order
to compute one entry in the error vector e(i) we need to multiply the
corresponding row of W by x(i). However, all the sparse non-zero
entries in one row of W can be enumerated efficiently, using only
the respective receptor’s starting position and its optical flow. Next,
when the errors at the receptors are determined, for every receptor
we iterate over all the contributing pixels again, to add the correc-
tions. Since the normalization terms µ are not known before the
loop over receptors ends, we first accumulate the weighted errors
and the weights themselves in an auxiliary array, and then transfer
them onto the solution pixels, clamping if necessary. Again, we
avoid explicit construction of the rows of WT.

4.2 GPU Implementation

Based on the CPU implementation from the previous section we
will now introduce a parallel version, based on OpenGL shader pro-
grams (cf. Fig. 6). We assume the high resolution animation ih as
well as its motion flow f (arrows in Fig. 6) to be given as floating-
point input textures. No image data needs to be read back to the
CPU at any point.
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Figure 6: One iteration of our GPU solver for a 6-by-6 pixel image
shown on a 2-by-2 pixel display. From left to right, always showing
only the first of three frames: (a): the current solution. (b): The
motion flow. (c): Gathering of the error for four arbitrary example
elements of the current solution. Every thread (solid black border)
integrates over the motion flow (white arrows) in a for loop. (d): Er-
ror distribution for the same arbitrary elements. One line is drawn
along the motion flow (white arrow) for each element (solid box),
covering all non-zero weights, plus some additional pixels (darker
colors).

As described before, the initial solution x(0) is set to black, but now
stored in a renderable texture. Again, one iteration of the algorithm
consist of two steps: error computation and error distribution.

The prediction Wx(i) of how the current solution x(i) is seen by the
retina is computed, and then subtracted from the high-resolution
input animation ih to produce e(i). This is done in parallel for all
receptors using a fragment shader.

The errors e(i) are used in the second step of the iteration to improve
the current solution. To this end, the error of each receptor is dis-
tributed across all solution pixels that contribute to it, proportional
to the amount of time the receptor covers that pixel i. e. the weights
defined in Eq. 3. In the CPU implementation, we took advantage of
the fact, that we could randomly access memory to splat the error
of each receptor to the pixels it sees. Now, for an efficient GPU
implementation, line drawing is used to perform this step in paral-
lel for all receptors. Each receptor along with its error and optical
flow defines a line in the corresponding low resolution subimages.
By drawing all the lines with additive blending we can compute
the overall correction to every pixel in the current iteration. To effi-
ciently draw the lines, a geometry shader is used. For every receptor
the geometry shader produces three lines, one for each subframe,
that start at the receptor’s location and follow the optical flow f .
When drawing the lines, a fragment shader computes the weights,
i. e. how much time the receptor of this line spent in the correspond-
ing pixel. This is done by computing the length of the line segment
resulting from clipping the receptor’s motion flow (a line equation)
against the solution pixel’s rectangle. While rasterizing, the RGB
channels store the distributed error as a color and the alpha channel
accumulates the error weights. In the final step, parallel over all
solution pixels, RGB is normalized by the value stored in the alpha
channel and clamped to the range of [0,1].

4.3 Discussion

Performance As expected, the GPU implementation is several
orders of magnitude faster. For an input sequence of 48 frames,
with a resolution of 900×900 pixels, our C++ implementation
needed 32 minutes to compute the optimized sequence of low res-
olution frames. Using a GPU, the same sequence can be computed
in 13 seconds, which is 148 times faster compared to our CPU im-
plementation.

Convergence Our algorithm closely follows the one used by
Damera-Venkata and Chang [2009], with the exception that we use
a scaling vector µ instead of a single scalar, so strictly speaking it is
not the gradient descent method. While the procedure always con-
verged for our problems, we have no formal proof of convergence.
Intuitively, it can be considered as a localized version of the gradi-
ent descent method. In the special case of constant optical flow our
“vector” variant is equivalent to the “scalar” one. We compared the
performance of both methods for selected animations, and the re-
sults were practically the same. Additionally our method converged
slightly faster.

5 Experiments

This section describes experiments conducted to measure the per-
formance of our method. In Sec. 5.1 fractional movements of a
static image are considered, while Sec. 5.2 describes experiments
with general animations. Afterwards, a user study related to those
animations is presented in Sec. 5.3.

All high-refresh rate image sequences were presented using 120 Hz
Samsung SyncMaster 2233RZ or 120 Hz Acer GD235HZ displays.
The respective image sequences as well as a Microsoft Windows /
OpenGL application to display them are available as supplemental
material.



5.1 Fractional velocities

We conducted a preliminary experiment with a static image moving
with different fractional velocities to analyze dependence of alias-
ing on the velocity.

Animations were generated for the speeds of the form (x,y), where
x,y∈ [0,3] and x≤ y. The range was covered uniformly using steps
of 0.1 which gave 495 different animations. The test image used
was the 600×600 image shown in Fig. 7 (left). The image was
scaled down 3 times using our method. The aliasing found in the
resulting images was subjectively rated using a 7-grade scale, where
1 meant very little or no aliasing and 7 meant very heavy aliasing.
The results are shown in Fig. 7 (right).

Although all the fractional velocities led to aliasing artifacts (in the
form of jaggy edges or visible flickering), for some cases they were
almost imperceivable.
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Figure 7: Left: the image used for testing fractional velocities.
Right: diagram showing the amount of aliasing as a function of ve-
locity. The data was extrapolated by mirroring along the diagonal.

5.2 General animations

To evaluate our method in the general case of arbitrary sequences
we generated four animations of simple objects in Blender 2.49b
and exported color and motion flow information in the floating point
format. Two of these animations depicted rotating objects, with the
axis of rotation parallel to the diagonal of the image: a ball with a
text texture (Fig. 1, left) and a “hairy” ball (Fig. 1, middle-left). The
remaining two animations showed periodic structures with the cam-
era moving in a walk-through manner: two rows of fine-textured
polyhedra (Fig. 8, left) and a text-textured tunnel (Fig. 8, right).

Figure 8: The scenes used for testing. Two rows of fine-textured
polyhedra (left) and a text-textured tunnel (right). In both cases the
camera was moving in a walk-through manner.

We also tested the scenario of unknown optical flow. To estimate
the flow, we used an algorithm based on the TV-L1 functional [Zach
et al. 2007]. There were two test cases: the first one was an ex-

cerpt from the “Big Buck Bunny” film by the Blender Foundation
(a 900×900 crop of frames 554–733). Since this film is intended
for viewing at 24 fps, we chose the opening scene, which – thanks
to the slow camera movement and static environment – can be eas-
ily observed even after speeding it up 5 times. The other test case
was a video sequence of a printed text, sliding along the diagonal.
The material was shot with a hand-held consumer camera.

We compared the results of our algorithm with simple frame-by-
frame downsampling using Lanczos window as a reconstruction
filter, with kernels of radius 3, 4, 5 and 6.

All the results share some common observations. First, Lanczos-6
was always more blurry, and Lanczos-3 resulted in stronger aliasing
artifacts than our optimization method. Second, in all the results
there were some nicely reproduced regions, and regions with visible
aliasing. Finally, the detail level of our method was comparable to
Lanczos-4, however the latter resulted in more pronounced aliasing.

We noticed, that the sharpness of the text-textured objects (the ball
and the tunnel) was slightly better for our method than for Lanczos-
4. The “hairy” ball test revealed one short-coming of our method –
around the fibers little artifacts could be seen, probably originating
from the discontinuities or inaccuracies of the optical flow. Inter-
estingly, the level of artifacts related to the optical flow estimation
errors was very low.

5.3 User Study

Additionaly, we conducted a user study to compare our method with
Lanczos filtering. The solutions obtained using our method were
again compared to the standard downsampling method: Lanczos
filtering with a kernel size corresponding to performed decimation
as well as downsampling using smaller kernels.

In our study we wanted to show, that in most cases our solution
is preferred over Lanczos filtering with the kernel radius adjusted
manually. Fourteen participants took part in the experiment. For
each tested animation the study was performed in two steps. First,
the original sequence was shown to the subject with four downsam-
pled versions using different Lanczos kernels, and they were asked
to choose the most suitable one. In general this is a demanding task
and as shown in [Mitchell and Netravali 1988] the quality of down-
sampled content is subjective due to the trade-off between spatial
detail reproduction and spatial aliasing. Therefore, we asked the
subjects to choose the kernel size that in the best way reproduced
the appearance of the original sequence in terms of detail visibility,
taking also into account possible temporal aliasing problems.

In the second step, the subject was asked to compare the previously
chosen animation to the sequence computed using our method.
Both sequences where shown in random order with the reference
aside. Similarly to the first part, the subject had to choose the
method that reproduces the original animation better. Addition-
ally, we ran the same study but this time downsampled versions
of animations were upscaled in order to match their size with the
reference sequence. This not only helps people match the appear-
ance of two comparing animations, but also simulates bigger pixel
sizes, which would usually occur for larger TV sets. The results of
this study are shown in Tab. 1.

In this scenario, our solution was not always preferred over Lanczos
filtering. To show the advantage coming from using our approach,
we computed a global ranking from the obtained data. This was
possible, as we already had information about how many times our
solution was chosen and which size of the Lanczos filtering was
preferred. The ranking indicates in how many cases each of the
compared methods was preferred over all the others (Tab. 2). It



Figure 9: The optical flow of the test animations.

Step 1 Step 2 (Our)

Lanczos 3 5 % (10 %) 75 % (56 %)
Lanczos 4 14 % (18 %) 58 % (53 %)
Lanczos 5 45 % (45 %) 54 % (58 %)
Lanczos 6 36 % (27 %) 30 % (27 %)

Table 1: The results of the user study. The first column indicates the
Lanczos kernel size. The second column (Step 1) contains the per-
centage of all the cases in which subjects chose the corresponding
Lanczos filtering in the first step of the procedure. The last column
shows in how many cases our solution was preferred comparing to
the previously chosen Lanczos method. For example, in 14 % of all
cases Lanczos-4 was chosen as the best size of the Lanczos filter,
and in 58 % of them it was ranked lower than our solution, which
constitutes 8 % of all the tests. The numbers in brackets correspond
to the second version of the study, where the downsampled anima-
tions were later upscaled.

turned out that our method was preferred in 47 % (60 % for the
second version) of all cases.

Method Preference

Lanczos 3 2 % (1 %)
Lanczos 4 6 % (3 %)
Lanczos 5 20 % (17 %)
Lanczos 6 25 % (19 %)
Our 47 % (60 %)

Table 2: The global ranking computed from the data obtained in the
user study. Percentage in brackets corresponds to the comparison
with upscaled versions of downsampled animations.

6 Discussion

For static image movement, Didyk et al. [2010] used filters of ra-
dius 6, while scaling down by a factor of 3. The reason was to
prevent aliasing in the individual frames: standard decimation by
factor of 3 using Lanczos filtering requires a kernel radius equal
to 6 [Turkowski 1990]. For moving images however, we noticed
that by using smaller kernel sizes we could often achieve very
similar results to those obtained with the method introduced by
Didyk et al. [2010]. Whereas filtering with the standard kernel size
will generally remove the frequencies that cannot be reproduced in
a static frame, smaller kernels – similarly to our approach – can
leave some aliasing in the individual frames which may result in
higher quality after temporal averaging. This led to the decision
to include also smaller filters in further comparisons. Filtering with
smaller kernels is similar to the idea proposed by Basu et al. [2009].
It also corresponds to the fact that the perfect filtering does not exist
and it is usually a matter of taste which filter to use [Mitchell and
Netravali 1988].

The first experiment showed, that our method cannot produce
fully alias-free animations for static images moving with frac-
tional velocities. However, the level of artifacts varies signifi-
cantly from case to case, and for some velocities aliasing problems
are almost imperceivable. Some examples of those velocities are:
(1.0,1.5),(1.8,1.8) or (1.2,2.4). Moreover, it is worth noting that
fractional velocities can be problematic also for the Lanczos recon-
struction method. If we are aiming at a flicker-free animation, the
radius of the kernel often has to be extended beyond 6, and this
leads to a heavily blurred image.

The study showed that our method is on average preferred over all
the others considered in our study. We did not make any special
effort in order to remove possible temporal fluctuations, therefore
people, for whom the temporal coherence is the most important is-
sue, will usually choose the kernel size 6 for Lanczos filtering in
the first step, and subsequently rank it higher in the second step
due to small temporal fluctuations of our method. This can explain
why in the tests where Lanczos with kernel 6 was chosen, only in
30 % (27 %) cases it was later ranked lower than our solution. On
the other hand, it turned out that many people appreciate a more
detailed reconstruction at the price of a small temporal fluctuation,
which in our method is comparable with the method that uses Lan-
czos filtering with the kernel size of 5. Because our solution offers
more detailed reconstruction compared to Lanczos-5 as well as sig-
nificantly less temporal artifacts than methods with smaller kernels,
the participants showed preference of our solution over Lanczos fil-
tering with the kernel size smaller than 6. As a future work it will
be interesting to include a flickering reduction method to possibly
match the temporal fluctuation of our method with those in standard
Lanczos filtering with kernel size 6, keeping at the same time the
detail reproduction high.

An interesting aspect of the proposed algorithm is its influence on
readability of small-sized text. Didyk et al. [2010] proved that for
scrolling text their method results in increased readability compared
to Lanczos-6 downsampling. We observed a similar effect in the
tests with text-textured objects. Our method produced significantly
more legible results than Lanczos-6 and Lanczos-5. Superiority of
our method in comparison with smaller kernels was not obvious,
however it produced less artifacts.

It can be disputed, if using optical flow estimation methods is rea-
sonable, because of their inherent inaccuracy. However, this deci-
sion can be supported to some extent by the following reasoning:
if optical flow estimation gives poor results, the actual flow of the
animation is probably complicated. But in such cases it is also hard
to track the patterns and our perception of details in the animation
is impaired.



7 Conclusion

This work introduced a technique to enhance the depiction of fine
details in arbitrarily animated image sequences on high-refresh rate
displays. Based on two substantial generalizations of a recent per-
ceptual image enhancement approach [Didyk et al. 2010], optimiza-
tion for content with arbitrary, spatially varying optical flow became
possible. Benefits as well as limitations of the approach were ana-
lyzed in a perceptual study, that shows how an improvement is pos-
sible for a range of speeds and how to trade detail reproduction and
aliasing in time and space. An efficient GPU implementation allows
us to produce such enhanced image sequences at near-interactive
computation times in practice.

There is a range of interesting avenues for further research. First,
it will be interesting to see what enhancements are possible with
even higher refresh rates, dynamic range, display sizes etc. For
example higher refresh-rate displays may potentially solve in many
cases the problem of temporal fluctuations, improving the quality of
our method. Second, the optimization would ideally be performed
in real-time for HD content, which is not yet in reach of our imple-
mentation and hardware. Such solution could be used along with an
eye tracker to provide accurate information about the eye movement
as well as allow performing local resolution enhancement. Third,
we assume a regular and discrete layout of pixels and receptors to
be given initially, whereas a raytracer can produce a non-regular
sampling and could compute an arbitrary-resolution sampling when
required. Along those lines, adaptive sampling in image synthe-
sis could be steered by our approach to produce more samples if
the optimization can use them and save computational time where
the high-resolution image can not be reproduced anyway. The big-
ger picture of improving apparent quality on more general “dis-
plays” using on-line optimization for human perception, remains
an exciting direction of further research: moving displays; mov-
ing observer; other reproduction techniques such as printing, stereo
(anaglyph, shutter, polarization), holography and haptics as well as
their mutual combination.
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