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Perceptual real-time 2D-t0-3D Conversion
using Cue Fusion

Thomas Leimkihler, Petr Kellnhofer, Tobias Ritschel, Karol Myszkowski, and Hans-Peter Seidel

Abstract—We propose a system to infer binocular disparity from a monocular video stream in real-time. Different from classic
reconstruction of physical depth in computer vision, we compute perceptually plausible disparity, that is numerically inaccurate, but results
in a very similar overall depth impression with plausible overall layout, sharp edges, fine details and agreement between luminance and
disparity. We use several simple monocular cues to estimate disparity maps and confidence maps of low spatial and temporal resolution
in real-time. These are complemented by spatially-varying, appearance-dependent and class-specific disparity prior maps, learned from
example stereo images. Scene classification selects this prior at runtime. Fusion of prior and cues is done by means of robust MAP
inference on a dense spatio-temporal conditional random field with high spatial and temporal resolution. Using normal distributions allows
this in constant-time, parallel per-pixel work. We compare our approach to previous 2D-to-3D conversion systems in terms of different
metrics, as well as a user study and validate our notion of perceptually plausible disparity.

Index Terms—Depth cues, Stereo, Image-based rendering, Perceptual reasoning, Video analysis, Viewing algorithms, Pixel

classification, Real-time systems.
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1 INTRODUCTION

HE majority of images and videos available is 2D and

automatic conversion to 3D is a long-standing challenge
[1]. For applications such as view synthesis, for surveillance,
autonomous driving, human body tracking, relighting or
fabrication, accurate physical depth is mandatory, and ob-
viously binocular disparity can be computed from such
data, resulting in a perfect stereo image pair. However,
for 2D-to-3D stereo conversion, such physical depth is not
required. Instead, we seek to compute perceptually plausible
disparity in this work. It differs from physical depth by three
properties. First, the absolute scale of disparity is not relevant,
and any reasonable smooth remapping [2], [3] is perceived
equally plausible and may even be preferred in terms of
viewing comfort and realism. Second, the natural statistics
of depth and luminance indicate that depth is typically
spatially smooth, except at luminance discontinuities [4], [5].
Therefore, not reproducing disparity details can be acceptable
and is often not even perceived, except at luminance edges
[6]. Third, the temporal perception of disparity allows for
a temporally coarse solution, as fine temporal variations of
disparity are not perceivable [6], [7]. Consequently, as long as
the error is 2D-motion compensated, depth from one point
in time can be used to replace depth at a different, nearby
point in time.

Our method is modular (Sec. 3) and based on priors
learned in a pre-process (Sec. 3.1) combined with stereo cues
extracted from 2D images or videos at runtime (Sec. 3.2).
Both priors and cues are represented as normal distributions
allowing to fuse a plausible disparity map with high spatial
and temporal resolution in real-time (Sec. 3.3). Image-based
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rendering produces a stereo video stream from this map
(Sec. 3.4). In Sec. 4 we validate our notion of perceptually
plausible disparity and discuss our results. We find that our
system can perform 2D-to-3D conversion at ca. 35 Hz for HD
video and compares favorable to off-line methods in terms
of different error metrics as well as user ratings. In summary,
our contributions are

e a real-time 2D-to-3D conversion system based on
the fusion of learned priors and depth cues into a
coherent disparity estimate,

o an analysis of the importance of different depth cues
in different scenes based on estimated confidence, and

e a perceptual analysis of disparity plausibility, includ-
ing spatial and temporal sampling requirements for
perceptual disparity processing tasks.

2 PREvVIOUsS WORK

In this section, we review manual and automatic approaches
for 2D-to-3D with an emphasis on real-time conversion, the
use of luminance and depth edges in computational stereo,
as well as perceptual modeling of binocular and monocular
depth cues.

2.1

Manual conversion produces high-quality results but re-
quires human intervention, which can result in substantial
cost. It is based on painting depth annotations [8] with special
user interfaces [9] and propagation in space and time [10].
The semi-supervised method of Assa and Wolf [11] combines
cues extracted from an image with user intervention to create
depth parallax. User intervention can be included in our
approach as an additional depth cue.

Automatic conversion does not induce manual effort,
but results in long computation times to produce results

2D-to-3D conversion
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of medium quality. The system of Hoiem et al. [12] infers
depth from monocular images by a low number of labels.
Make3D [13] is based on learning appearance features to
infer depth. This approach shows good results for static
street-level scenes with super-pixel resolution but requires
substantial computation. Non-parametric approaches rely
on a large collection of 3D images [14] or 3D videos [15]
that have to contain an exemplar similar to a 2D input.
Conceptually, such an approach aligns all 3D images or 3D
videos in a large collection (hundreds of exemplars) with a
monocular query input image or video and transfers their
depth to the query. Aligning to a large collection of images
or videos of hundreds of elements contradicts our real-time
requirements. We include prior disparity knowledge learned
from exemplars into our inference by means of per-category
disparity and confidence maps conditioned by image location
and appearance. For cel animations, where each frame is
drawn manually and therefore usually contains pronounced
outlines, T-junctions have been shown to provide sufficient
information to add approximate depth [16]. Our approach
includes T-junctions in combination with other cues. The
work of Tao et al. [17] is conceptually similar to our approach.
They estimate depth by fusing information obtained from
defocus and correspondences in a confidence-aware fashion
using a Markov Random Field. Their offline method requires
full light fields, while our real-time approach extracts and
fuses an arbitrary number of cues from conventional videos.

Real-time methods to produce disparity from 2D input
videos usually come at low visual quality. Individual cues
such as color [18], motion [19] or templates [20] are combined
in an ad-hoc fashion. A simple and computationally cheap
solution is to time-shift the image sequence independently
for each eye, such that a space-shift provides a stereo image
pair [21]. This requires to identify the camera velocity and
only works for horizontal motions. For rigid motions in
animations, structure-from-motion (5fM) can directly be
used to produce depth maps [22]. Classical SEM makes
strong assumptions about the scene content such as a rigid
scene with camera motion. More recent work relaxes these
assumptions [23], but comes along with high computational
costs. In the case of no or very unstructured motion, no
stereo is provided by SfM alone, whereas in our fusion-
based approach, motion is just one of many cues used
when available. Commercial 2D-to-3D solutions [1] based on
custom hardware (e. g., JVC’s IF-2D3D1 Stereoscopic Image
Processor) and software (e. g., DDD’s Tri-Def-Player), reveal
little about their used techniques, but anecdotal testing
shows the room for improvement [15]. We subsume all
such approaches in a principled framework that combines
an arbitrary selection of cues in a common disparity-plus-
confidence representation that can be effectively computed.
Finally, most approaches produce low spatial resolution, and
lack agreement between depth and luminance edges, as
discussed next.

2.2 Depth and luminance edges

Since luminance and depth edges often coincide, e.g., at
object silhouettes, full-resolution RGB images have been
used to guide depth map upsampling both in the spatial
[24] and the spatio-temporal [25] domain. An analysis of a

database with range images for natural scenes reveals that
depth maps mostly consist of piecewise smooth patches
separated by edges at object boundaries [4]. This property
is used in depth compression, where depth edge positions
are explicitly encoded, e.g., by using piecewise-constant
or linearly-varying depth representations between edges
[5]. This in turn leads to a significantly better depth-image-
based rendering (DIBR) quality than is possible at the same
bandwidth of MPEG-style compressed depth, which tends to
blur depth edges. In this work, we follow all these guidelines
while reconstructing depth maps, as we also use DIBR to
secure a high-quality 3D experience.

2.3 Computational models of depth perception

In previous work, perception was taken into account for
stereography when disparity is given [3], but it was routinely
ignored when inferring disparity from monocular input
for 2D-to-3D conversion. In this work, we employ depth
perception models to guide the 2D-to-3D reconstruction.
Inference of depth from monocular images is based on depth
cues. In this work, we use monocular cues (Sec. 3.2) to infer
the missing binocular cue. A discussion of individual cues
is beyond the scope of this article and can be found in
Howard and Rogers [7]. The combination of cues into a
perception of depth is called fusion. If multiple cues are
extracted, their computational fusion is considered difficult,
and left to the user as in the system of Assa and Wolf [11].
Two main opposing paradigms of fusion exist: the weak
and the strong model [26]. In the weak model, cues act in
isolation to produce an estimate of depth which is directly
combined in a fixed linear weighting. In a strong model, cues
interact in an unspecified and arbitrarily complex way. Our
work is based on modified weak fusion [26], in which cues are
independent, but their combination is not a linear mixture
with fixed weights, as it locally adapts to the confidence of
each cue. Bayesian fusion [27] using normal distributions is
a formal way to achieve modified weak fusion. Here, cues
are weighted by their confidence before they are combined.
Besides using only the cues of the present stimulus, one
strength of Bayesian inference is that it can account for prior
experience [27]. We acquire disparity distribution priors for
different scene classes using range scanners [4] or by manual
annotation. While Bayesian fusion has been considered in
perception literature [7, Ch. 30] for weighting specific cues
according to their confidence to explain certain observations,
we show for the first time a computational model to fuse
multiple cues and a prior in order to solve a real-world task
such as 2D-to-3D stereo conversion in real-time.

2.4 Spatio-temporal disparity sensitivity

The spatial disparity sensitivity function determines the
minimum disparity magnitude required to detect sinusoidal
depth corrugations of various spatial frequencies [7, Ch. 18].
The highest resolvable spatial frequency is about 3—4 cpd
(cycles per degree), which is almost 20 times below the cut-
off frequencies for luminance contrast [28]. Similar investi-
gations in the temporal domain indicate that the highest
sinusoidal disparity modulation that can be resolved is
about 6-8 Hz [7], which is significantly lower than the 70 Hz
measured for luminance [28]. As analyzed by Kane et al. [6],
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Fig. 1. Overview of our approach (from left to right) as described in Sec. 3. The grey coding used is annotated in the top right.

the picture is different for disparity step-edges in space and
time, which are important in real-world images. They found
that, for step-edge depth discontinuities, observers might
still notice blur due to the removal of spatial frequencies
up to 11 cpd, indicating that while overall disparity can
be smoothed significantly, this is not the case for depth
discontinuities. In this work, we follow this strategy by
maintaining high precision in reconstructing sharp depth
discontinuities, while otherwise allowing for substantial
disparity blurring. Kane et al. could further show that
filtering temporal frequencies higher than 3.6 Hz from a step
signal remains mostly unnoticed. Their findings indicate that
the temporal disparity signal might be sparsely sampled and
even more aggressively low-pass filtered, without causing
visible depth differences. In this work, we conduct similar
experiments for complex scenes.

Surprisingly, depth edges appear sharp, even though
human ability to resolve them in space and time is low. One
explanation for this is that the perceived depth edge location
is determined mostly by the position of the corresponding
luminance edge [29]. In this work, we explicitly align
imprecisely reconstructed and excessively blurred depth
edges with detailed luminance edges. Interestingly, depth
discontinuities that are not accompanied by color edges of
sufficient contrast poorly contribute to the depth perception
and do not require precise reconstruction in stereo 3D
rendering [3].

The upper disparity gradient limit determines the max-
imum disparity for corrugations of a certain frequency the
human visual system can fuse [7, Fig.18.28]. Intuitively,
when increasing the disparity gradient (e.g., by slanting
a surface), retinal images become dissimilar and fusion
becomes impossible [30]. Kane et al. [6] generalize this
observation to space-time. In this work we explicitly enforce
our disparity maps to obey the upper disparity gradient limit
in a post-process.

3 OUR APPROACH

An overview of our approach is shown in Fig. 1. It has two
main parts: a pre-process (Sec. 3.1) to extract disparity priors
(Fig. 1, left) and a runtime component (Fig. 1, right). While

the pre-process uses many example images and requires
considerable time, the runtime components execute in real
time.

At runtime, first disparity and disparity confidence maps
are extracted from monocular images (Sec. 3.2). This is the
most computationally intensive part of our pipeline and
implemented as parallel algorithms to require only a few
milliseconds each. We support a flexible combination of both
static cues (defocus, aerial perspective, vanishing points and
occlusions) and dynamic cues (depth-from-motion). Each cue
alone often has a low confidence in many areas and might
contradict other cues. The cue evidence is then fused into
plausible disparity maps (Sec. 3.3) using a robust maximum
a posteriori (MAP) estimate [27]. This fusion happens again
in real-time, producing results that are smooth in time and
space, except at luminance edges. Finally, the monocular
input image is converted into a stereo image pair obeying
the disparity gradient limit (Sec. 3.4).

We will use a simplified disparity space ranging from
0 (close, depicted as black) to 1 (far, shown as white). As
our goal is producing plausible disparity, we choose not to
work in physical units like difference of vergence angles [7]
or pixel disparities [31]. Rather, our perceptually plausible
disparities arise from a smooth and monotonic remapping
of physical disparities and are inspired by the way depth
maps for manual stereoscopic conversion are painted. The
perceptual effect of monotonic remappings of disparity is
analysed in Sec. 4.2. The resulting disparity values will
later be remapped to a comfortable range depending on
the reproduction device.

3.1 Pre-processing

In a pre-process we learn prior information about disparity
for certain classes of images and how to detect those classes.

3.1.1 Disparity priors

Priors model what is known about disparity in general
without considering any specific image. This information
is acquired from example depth images, validated and
calibrated, and finally fit to a conditional distribution.

A disparity prior is the probability distribution of dis-
parity po(d). For efficient storage and computation, the
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probability distribution po(d) = N (d|po,00) is modeled
as a normal distribution A of a certain mean i, standard
deviation o, and variance JS in this work. Furthermore, our
priors po(d|c, x, a) are conditioned on three parameters: the
scene class ¢ (the depth distribution in “street” is different
from “open countries”), the location x € R? inside the
image (the upper areas are more likely to be distant) and
the appearance (RGB color) a € R? (blue in the top of a
forest image is more likely distant than green). For final
cue fusion, scene class, image location and appearance are
known and unconditioned priors will be used. Formally, the
conditioned prior is defined as two 6D maps containing
mean disparity fig(c, x,a) and the confidence of disparity
&y %(c,x,a). A high-variance value is found for a wide and
unreliable distribution, while a high-confidence value ;>
indicates a reliable estimate.

We use 10 representative scene classes consisting of about
40 example images each. Disparity maps were acquired
both by sensors and by human annotation. Sensor-acquired
classes are “street” and “indoor”. For all other classes (“close-
up”, “coast”, “forest”, “inside city”, “mountain”, “open
country”, “portrait”, “tall buildings”), depth maps were
painted manually. Annotation was done in parts by 2D-
to-3D conversion professionals, and experienced users of
image manipulation software. Images have a resolution of
ca. 100k pixels. We provide the annotated database of our
hand-painted depth maps and the resulting priors in our
supplemental materials.

To compare human annotation performance to physical
measurements, additional manual depth map painting was
repeated for classes where sensor measurements are available
by participants naive in respect to the purpose of the
procedure. A linear fit from painted depth x to physical
vergence angles y with y = .74z — .03 has an error of
adjusted R? = .40, indicating humans do a fair job when
painting vergence compared to a sensor (Fig. 2).

Fig. 2. Example disparity maps for the scene class “street”. (a) Appear-
ance. (b) Disparity from sensor. (c) Disparity from human annotation.

Priors are extracted from example data independently
for each class (see examples in Fig. 3). Each prior is repre-
sented as a 5D regular grid where the spatial dimension is
discretized into 62 x38 and the color dimension into 3x3x3
bins. Normalized image coordinates between 0 and 1 are
used for the spatial component and Y C'rCb color coordinates
for the color component. Consequently, our prior contains
np = 63612 bins, with coordinates denoted as b; € R®. The
2D positions and 3D colors of the ng input pixels from all
input images from that class are concatenated into a set of
5D samples s; € R®, where each sample is labeled with its
disparity d;. Note that the number of bins is much smaller
than the number of samples, n, < ng (Fig. 4). Prior mean
and confidence are each computed independently for all grid
cells in two consecutive passes. In the first pass, the prior
mean is computed as

Forest

Portrait ~ Open Country

Street

i

Fig. 3. Mean, variance, weight and confidence (columns) at different
colors (tiles) for priors of different classes (rows). For “forest”, green
central pixels have a medium depth. For “open country”, brown and green
lower pixels have a nearby depth. For “portrait”, skin-colored central pixels
are more nearby.
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Fig. 4. A schematic of our prior extraction procedure with a 1D location
and appearance domain. The samples s; (blue dots) stem from the
example images. The sparse bins b; (orange circles) constitute the actual
prior data (fio,; and 65?) to be determined. This is done by calculating
the Gaussian weight 1/](5, b) for each possible sample/bin combination
(shown as a radial gradient for the highlighted bin). To avoid a boundary
bias (hatched) a correction «; has to be determined for each bin.

=8

2?11 Wija;

Ho,i = S w0
j=1 Wij

and (s,b) = exp(—(s — b)TA(s — b)) is a Gaussian
kernel with a diagonal precision matrix A. For all results
in this paper, the empirically chosen matrix entries are
Aj1 = Agy = 75 for the spatial and Asz = Agg = Ass = 40
for the appearance term. The normalization «; for bin ¢
is required because the 5D population can be highly non-
uniform, and we use Gaussian filters of infinite support
instead of compact (e. g., Epanechnikov) kernels. At the same
time, our number of bins introduces a boundary bias for bins
closer to the surface of the space-appearance cube which

where w;; = Oéﬂ/J(Sj,bi) (1)
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would receive a lower total weight compared to other pixels.
To compensate for this effect, we compute a correction

-1
i = 7bi d
«a (/(0’1)5 P(s, by) s)

of each 5D bin using Monte Carlo integration and normalize
the result of each bin by this value. In the next pass, prior
per-bin variance and weight

s i 2 Ns
g2 = 2= WilAos — ) D Wy
i ns 2 i nh g
Sy — 2iZa i Dot Dy Wij
]:1 J Zjil Wi
are computed. The final prior confidence is
J—} wi
0o = —5- 2
0,2 0,2

7
For the confidence &, 3 of the prior to be high, the
variance o? has to be low (agreement of samples to the
mean) and the weight w; has to be high (many samples
similar to this bin). This combination prevents bins with
a low number of samples to have a high confidence just
because their estimate of variance is not stable.

3.1.2 Scene classification

Priors depend on the scene class ¢ which is found from the
monocular input RGB image. To this end, an image classifier
is trained from example images that were manually labeled
by their scene class. To meet our real-time requirements at
test time and following ideas from Torralba [32], the image
downscaled to 8 x 8 pixels is used as a feature vector. A linear
Support Vector Machine is trained using gradient descent to
separate each class from the other classes (one-vs.-one). At
test time, we count the number of wins for each class over
the other classes and pick the class ¢ with the largest number
of wins.

3.2 Depth cues

We model the i-th depth cue as a conditional probability
distribution p;(d|x) of disparity d given a position x. This
distribution is described by a spatially-varying map of nor-
mal distributions in our approach. We store and process maps
of mean disparity j;(x) and their confidence j3; .o; %(x) at
position x. The factor f3; . is a global per-cue i and per-
category c weight that gives higher weights to cues that have
shown to work better for certain scene categories. Actual
values were determined empirically and are provided in the
supplemental. We now briefly explain the n. = 6 cues we
use. While the input sequence might have an arbitrary spatio-
temporal resolution, the typical resolution to store each cue
p; is 300 x 170 pixels at 3 Hz, which will later be upsampled
in space and time by the pairwise fusion (Sec. 3.3.4). We
refer to frames of the image sequence holding depth cues
as keyframes. Their position is not essential to our approach,
and we refer to the supplemental material for details and
example responses of cues to different input images and
videos.

Our cue extraction is conceptually similar to other ap-
proaches, but differs with respect to previous work in two
ways: First, that all cues can be processed in time linear in

the number of pixels and in parallel using common GPU
functionality, and second, that they provide an additional
measure of per-pixel confidence.

3.2.1 Defocus

Scenes imaged with a finite-size aperture are increasingly
blurry at image locations with distances different from
the distance of the focal plane. Notably, the defocus only
indicates a difference of distance to the focal plane, but
not the sign. For the cue to be effective, the image has to
contain this depth-of-field, which mostly occurs in images
taken with a larger aperture for nearby objects. Depth-
from-defocus is computed by measuring the local frequency
content around a pixel [33]. Areas with only low-frequency
content are considered out of focus. We use a Laplacian
pyramid in multiple passes but constant amortized time per
pixel (Fig. 5, b). The Laplacian acts as a bandpass while
preserving spatial locality and its absolute value can be
interpreted as the integral over one octave of the frequency
spectrum [34]. On each level of the pyramid, we first soft-
threshold the absolute value of the Laplacian up to 0.02 using
a sigmoid and then blur the resulting per-level map with
a box kernel of size 7 x 7 (Fig. 5, ¢). The thresholding is
required to avoid interpreting high-contrast features (such as
edges) as being more in-focus. We then collapse the pyramid
by summing the contributions of all levels for each pixel,
leveraging hardware-accelerated texture interpolation.

Out-of-focus regions are assumed to lie behind in-
focus regions. This assumption, which is not always valid
(Fig. 16, b) but nevertheless common in the absence of
additional information [35], [36], corresponds to images with
focused objects in front of a defocused background (Fig. 5, a).
Consequently, sharp regions map to a disparity of 0 and
sufficiently blurred regions to a value of 1 (Fig. 5, d).

Confidence for defocus is inversely proportional to dis-
parity. This is motivated by the fact that high-frequency
regions can only stem from scene content close to the focal
plane, while there is an intrinsic ambiguity for low-frequency
regions: either the depicted object is out of focus or it does not
contain any high-frequency details (e. g., a plain-colored wall)
[35]. We found this cue to work better when we additionally
reduce the overall confidence if no defocus blur is present in
the image. In order to determine if in-focus features dominate
the image, we simply calculate the mean disparity of this cue
by employing a MIP map.

3.2.2 Aerial perspective

Distant objects in images showing a landscape-scale range of
depth undergo changes in appearance due to atmospheric
scattering. This typically results in a depth-dependent loss
of luminance contrast and a color shift towards blue, which
can be analyzed to infer depth [37], [38], [39]. As the C'r
channel of the Y C'bC'r color space separates low-frequency
from high-frequency wavelengths, we use its inverse as the
disparity map of this cue [40] in constant time, parallel for
all pixels. Pixels with little local contrast in their vicinity (low
variance) have higher confidence. Local variance is efficiently
estimated using a Laplacian pyramid (cf. Sec. 3.2.1).
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Level 2
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Level 2

Fig. 5. Cue extraction for defocus builds a Laplacian pyramid (b) of
the input image (a). Here, the red/blue color coding represents posi-
tive/negative values. The next step is thresholding and blurring of the
absolute Laplacian per level (c). The final disparity map (d) is created by
collapsing the pyramid as described in Sec. 3.2.1.

3.2.3 \Vanishing points

Perspective projections of parallel 3D lines cross in a 2D
vanishing point. If dominant lines are visible in an image,
their point of convergence is a strong depth cue we would
like to exploit as well. We use an approach based on edge
extraction and line accumulation [41]. First, edge orientation
is found at multiple image scales [42] and edge strength is
measured by counting the number of scales at which the
edge is present. Next, all pixels along a line elongating the
orientation of every edge pixel are incremented by splatting
a line primitive with additive blending (Fig. 6, b). The value
of the line increases linearly with the distance to the pixel
creating this line. This gradient is required, as vanishing
points are more stable if they result in agreement with other
lines at an image position far away from the respective pixel
causing them. Finally, the pixel in the accumulated line-image
that has the highest response to a Harris corner detector is
considered the vanishing point pixel. This pixel is found
using a parallel reduction.

The drawing area of the accumulated line-image is ex-
tended by a factor of 1.5 in both width and height compared
to the input frame (red rectangle in Fig. 6, b). This way,
vanishing points lying a reasonable distance outside the
image boundaries can be detected. We found the recovery of
vanishing points with positions further away from the image
boundaries to become unstable in practice, while additionally
only indicating a diminishing depth gradient.

The vanishing point itself is additionally low-pass filtered
in time using a temporal cut-off of 0.5 Hz. Disparity is created
according to this vanishing point using a radial gradient that
is 1 at the vanishing point and 0 at the pixel farthest away
from this point (Fig. 6, c). Confidence is computed by the
curvature of the accumulated value: If all lines concentrate on
a single pixel, the confidence is high and the vanishing point
is reliable. If multiple vanishing points are found or if the
accumulated lines do not concentrate in a small region, the
cue is considered less confident. While images can contain

multiple vanishing points, we found it more stable in practice
to only pick the dominant one.

h

Fig. 6. Vanishing points are determined by splatting a line primitive (b)
for each multi-scale edge pixel of the input image (a). The red rectangle
indicates the original image boundary. The final disparity map (c) is a
radial gradient centered at the estimated vanishing point (cf. Sec. 3.2.3).

3.2.4 Static Occlusions

Occlusion is a strong depth cue that works on all depth
scales: If an object A occludes object B, A is closer. However,
occlusion is only a relative cue and furthermore cannot be
measured directly, only inferred. Occlusions are found by
detecting T-junctions of edges and lines. This is done by
convolving the image with a bank of separable filter kernels.
24 kernels are necessary to detect incident edges (Fig. 7, a,
top row) and lines (bottom row) with an angular spacing of
30 degrees at a single scale. Note, that the same response can
be created by convolving the image with only 12 centered
kernels (Fig. 7, b) and then offsetting and/or inverting the
resulting responses. We are interested in filter responses at
different scales and for this purpose implement filters of
increasing size by executing same-sized (15-tap) oriented
1D filters on an image pyramid. The approach of Michaelis
and Sommer [43] is used to detect T-configurations based on
these responses. As occlusion only indicates ordering, not
absolute disparity, it cannot directly produce disparity and
confidence, but produces sparse spatial disparity gradients
with high confidence. More precisely, if a Tjunction is found
(Fig. 7, d) at position x with a vertical bar in direction d
at scale s, a line orthogonal to d with length 10s is drawn
with high confidence (we use a constant value of 10 in our
implementation) and a positive gradient at x + sd and with
a negative gradient at x — sd (Fig. 7, e).

b)ll!lﬂl
d)

Fig. 7. Occlusions are found by first convolving the input image (c) with a
filter bank (a, b; the pixel under consideration is marked red) and then
combining the responses to detect T-configurations (d), leading to a
sparse map of depth gradients (e). In a), b) and e) a grey pixel indicates
the value zero. The first row in a) and the first six images in b) show odd
kernels for detecting edges, while the bottom row in a) and the last six
images in b) show even filters for detecting lines. Note that the centered
kernels in b) can be used to produce responses identical to those of the
kernels in a). Individual processing steps are explained in Sec. 3.2.4.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XX 20XX 7

Fig. 8. Cue fusion (left to right). Here, unary fusion combines confident occlusion, aerial perspective and defocus. The prior overrides values in the
sky. Inconclusive evidence between prior and other cues is resolved by iterated re-weighting. The pairwise step propagates confident estimates to
other locations, preserving space-time luminance discontinuities and eliminating low-confidence noise.

3.2.5 Motion

Several different depth cues are related to motion. Particular
observer motions result in typical depth patterns and typical
motions in the scene allow predictions about the relative
depth of objects. In this work we use the computationally

most simple cue that works based on optical flow alone.

First, optical flow f(x) is computed between consecutive
frames using a GPU implementation of Lucas-Kanade [44]
registration. Although the output of the stereo cues is at
low temporal resolution, the flow is computed at the full
temporal, but reduced spatial resolution of the input image
sequence, as we found flow between consecutive frames to

work more reliably than registration of stronger deformations.

Flow is augmented by a confidence map o (x), computed
from the local luminance variance of the respective input
frame: Flow in featureless regions is considered unreliable. f
is later also used for temporal upsampling and propagation
(Sec. 3.3.4).

To determine a disparity and confidence map for each
keyframe, the confidence-weighted flow average is removed
from the flow, leading to a motion residual

£, (x) = £(x) Z”(X()j()")

7 O¢
where the weighted sum over all pixels in the current
keyframe is efficiently determined by employing an image
pyramid. The residual motion magnitude ||f,(x)| is used
as an estimator for motion parallax and finally mapped to
disparity, such that fast moving objects are closer. Confidence
of this cue is determined by

Ortption(X) = o 2(x)n 1 DI (x)],

X

where 7 is the number of pixels in the keyframe. Here, the
average residual motion magnitude of the keyframe serves
as a global indicator that motion parallax is present.

3.2.6 Userinput

Optionally, user input can be included as another depth
cue to augment traditional manual stereo painting with
automatic inference in the propagation. A user simply paints
a disparity and confidence map and the system includes this
additional cue into the inference. No results in this paper
were produced using any manual intervention, except for
Fig. 12. The supplemental materials demonstrate the stereo
improvement achieved by adding a few sparse strokes to the
automatic solution.

3.3 Cue fusion

Cue fusion combines evidence from cues over space and
time with the scene-specific prior (Fig. 8). Here, we will
first explain the use of maximum likelihood estimation
(MLE) to fuse evidence from multiple cues in a single pixel.
Second, we extend the idea to include priors, yielding a
maximum a posteriori (MAP) estimate. Next, we describe
an iteratively reweighted variant of the estimate to make it
robust to outliers and contradicting cues. Finally, we include
interactions over time and space, and compute them using
efficient edge-aware filtering.

3.3.1

The unary estimate predicts the most likely value, given
multiple observations with different levels of confidence.
For a pixel x, the MLE estimate of disparity pmvie(x) is the
confidence-weighted average of disparity means

Unary estimate

pMLE(X) = L iui(x)ﬂiﬁcaid(x),
7Z(x) 4

where Z is the normalizing partition function. Furthermore,
the MLE of the confidence simply is

onie(X) = Bicoy (%) €))
=1

This approach was taken in computer vision for measure-
ments in the presence of sensor uncertainty [45] but not for
2D-to-3D conversion.

3.3.2 Prior

Priors are included in the fusion using Bayesian inference,
which states that the probability distribution p(h|e) of the hy-
pothesis h given the evidence e is p(h|e) = p(e|h)p(h)p~(e),
where p(e|h) is the probability distribution that the evidence
e would be observed when the hypothesis is h, p(h) is the
probability distribution of the hypothesis h and p(e) is the
probability distribution of the evidence e [27]. A prior is
included as an additional observation {1, oy 2}, producing
the MAP estimate of disparity

pnvap(x) = % (uo(x)ﬂo,cffo_g(x) + i#i(x)ﬂi,c0f2(x)) .

The MAP estimate of variance oy;2p(X) is computed by
extending the sum of the MLE confidence (Eq. 3):

Oi2p (%) = Bo.c0g (%) + 3 Breoi 2 (%),
=1
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In practice, the prior extracted in the pre-process (Sec. 3.1)
that expresses information for all possible appearances at a
location (conditioned prior {fig ,7, 2 }; Eq. 1, Eq. 2) is used
for an image with a specific ap};earaﬁce at a specific location
(unconditioned prior {jug,0,°}). Let L(x) € R? — R3
be this appearance, a simple RGB image. We denote the
final unconditioned priors mean and variance as yio(x) =
fetch(fig, (x|L(x)) and oy%(x) = fetch(a,?, (x|L(x)).
The function fetch(X,y) € R5 — R is the 5D linear filtering
of a grid X at position y. For efficiency, we store the prior
as a 2D array (spatial domain) of 3D textures (appearance
domain). As linear filtering is separable, this texture is
read using four 3D linearly-filtered hardware-accelerated
interpolations in the appearance domain followed by spatial
interpolation.

3.3.3 Robust estimate

If multiple high-confidence cues (including the prior) indicate
different disparities, not all can be correct and at least one
of them has to be considered an outlier. As MLE and MAP
estimates for Gaussian noise models are generalized least-
squares fits, they do not perform well in such conditions [46],
as a single outlier quadratically skews the entire solution.
Consider an example of two cues (e.g., focus and aerial
perspective) and the prior that indicate a blurry blue pixel
in the top to be far away, and a single cue (e.g., motion)
to indicate it is close, all with the same confidence. A least
squares-fit would indicate a medium disparity value. A more
robust fit would result in a distant disparity and ignore
the other cue as an outlier. This can be achieved by an
iteratively reweighted MAP estimation. In each step (3 in our
implementation) a weighted MAP is computed. In the first
iteration, the weight is 1 for all evidence. In later iterations,
the weight of evidence not supporting the MAP estimate
of the previous iteration is decreased. Evidence does not
support the estimate, if it is very different from it. The Cauchy
weight function [46] is used to control the reweighting.

3.3.4 Pairwise estimate

The disparity at one space-time location x also depends on
evidence from other pixels at nearby space-time positions y.
This serves both as an additional regularization constraint
and as an opportunity to share information between less
confident and more confident space-time locations. This
dependency is modeled by the domain weight (disparity
of nearby pixels should be similar) and the range weight
(pixels with similar luminance values should have similar
disparity),

v(,y) = N(lIx = ylle, ca) N () = I(y), ov),

where I is the monocular image intensity [24], [25], [47].
Here, we assume the images have been motion-compensated,
i.e., ||x — y||¢ is the spatial distance of x and y moved to
the time coordinate of x along f, or infinite if they are not
related by optical flow. Then the final inference that combines
spatially-varying cues and priors with confidence maps and
interactions of pixels in space and time is

Hix) = % | /Q o(x,Y) o mar(y)dy @)

with confidence

1
70 = g | eeynk a6
where () is the entire space-time domain. This inference
is realized in three steps: i) Pixel-wise pre-multiplication
of the mean disparity map pumap by its confidence map
onap; ii) edge-aware blurring of both the pre-multiplied
mean disparity and confidence maps in time and space; iii)
per-pixel division of the propagated mean disparity by its
confidence [48].

Steps i) and iii) are trivially parallel and equivalent to
compositing using pre-multiplied alpha. For propagation in
time, the two nearby keyframes are first motion-compensated
and then blended [49]. Recall that we compute the flow in
full temporal resolution in the depth-from-motion cue com-
ponent. For motion compensation, we forward-concatenate
the flow from the past keyframe and backward-concatenate
the flow from the future keyframe and use this flow to
warp depth from the respective keyframes into the current
frame. Warping disocclusions are filled using push-pull from
a Gaussian MIP map. The backward flow is approximated
using the negated forward flow, assuming motion is linear
on small time scales. The result is then linearly blended
using the temporal distance to the future and past keyframe
as weights. The output of this step is at full temporal, but
still at low spatial resolution. For propagation in space, a
two-channel bilateral grid [50] with 8 layers and the full
spatial resolution is used. Confidence-weighted disparity
and confidence values are inserted into the layers of that
grid using the final image intensity I as a guide with a
standard deviation of o, = 0.1. This grid is then blurred
using a standard deviation of oq = 0.5 deg using a Gaussian
MIP map. Next, the bilateral grid is upsampled to the
desired high resolution, using the high-resolution luminance
as a guide. After this step, the filtered, high-resolution
disparity-confidence product is finally divided by the filtered
confidence component.

3.4 Stereo image generation

The final step converts the acquired disparity maps into a
stereo image pair. This step is a standard 2D-to-3D procedure
for which many alternatives exist. We use grid-based image
deformation [51] with a cell size of one pixel.

Before converting, however, we assure that the upper dis-
parity gradient limit is maintained. Our disparity is produced
by an automatic process and contains disparity with high
spatial frequencies (Fig. 9, left column) that is important for
the vivid and natural appearance. Consequently, the result
may contain areas which are too distorted to be fused or
even overlap (red box in Fig. 9). In particular, the result may
contain fold-overs, where space runs backwards to create an
overlap. We correct for this issue in a post-process as follows.
First, a Laplacian pyramid of disparity [3] is produced, which
contains gradients of disparity at multiple scales (Fig. 9, top
right). Gradient values outside the level-dependent fusible
disparity range [6], [7] (dotted lines in Fig. 9, top right) are
clamped (red area in Fig. 9, top right). Finally, the resulting
pyramid is collapsed into a new disparity map (Fig. 9, center
right) that is fusible (green box in Fig. 9, lower right). Note,
how the above is not equivalent to global rescaling, nor
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Fig. 9. Disparity maps and stereo images without (first column) and with different approaches (second to fourth column) to enforce the disparity
gradient limit. First column: The original disparity map contains gradients exceeding the limits, resulting in fold-overs in the stereo signal (red box).
Second column: A global linear rescaling resolves the issue, but results in a loss of overall depth contrast. Third column: Simple low-pass filtering is a
natural way to reduce exceeding gradients, but comes at the cost of the loss of fine details. Fourth column: Our approach prevents fold-overs while at
the same time retaining the global depth range and fine-scale details not exceeding the disparity gradient limit (green box).

is it equivalent to blurring. Both are options to fit stereo
content into the gradient limit range, but would result in a
reduced overall depth impression or in loss of fine details
(Fig. 9, second and third column). Instead, our processing
only removes disparity variations that are too strong for their
spatial extent.

4 EVALUATION

Example results of our real-time system are shown in Fig. 13.
All are produced at 35 fps on a Geforce GTX 780 with
an Intel Xeon E5-1620 CPU. A timing breakdown can be
found in Tbl. 1. Results for video are seen in Fig. 10. An
example comparison between our cue-guided manual 2D-
to-3D conversion and a conventional scribble interface is
seen in Fig. 12 and eleven similar results are provided in the
supplemental materials. We found that our system works
well over a range of scenes, while other approaches are more
specific to a certain class, e.g., static street-level outdoor
images. While other approaches are specialized to a specific
cue (like vanishing points), certain motion (like rigid), a
certain shape (like ground plane), or requiring that the image
is similar to an image in a database, our technique relies
on a greater variety of pictorial depth cues combined with
priors based on scene types. Finding a balance between prior
information and individual cues is an important component
of our system (Fig. 14). To use a prior, the scene needs
to be classified, and if classification fails, disparity quality

degrades as seen in Fig. 15. Failure cases are discussed in
Fig. 16.

TABLE 1
Computation time for a keyframe (every ca. 3 Hz) and for every
non-keyframe (more than 30 Hz) at a resolution of 1280 x 720. Time for
the actual computation granularity used is shown in bold.

Part Step Time Res.

10 f. 1f.

Cue Aerial per. 2ms  0.2ms 300 x 170

Defocus 8ms  0.8ms 300 x 170

Van. points 18 ms 1.8 ms 300 x 170

Motion 9ms 0.9ms 300 x 170

Occlusions 11ms 1.1ms 300 x 170

Opt. flow 58ms  5.8ms 300 x 170

Fusion Robust MAP 13 ms 1.3ms 300 x 170

Temp. prop. 30ms  3.0ms 300 x 170

Spatial prop. 46ms  4.6ms 1280 x 720

Warping 80ms 8.0ms 1280 x 720
275ms  27.5ms

4.1

In order to gain insights into the influence of the cues and the
prior on the resulting stereoscopic conversion we analyzed
the results of our system for 83 videos with 80 keyframes
each (a subset of these videos is given in the supplemental
materials). Fig. 11, a lists the mean confidence of each
cue and the prior. One can observe that the contribution
of the prior on the result is about 50 %, while the cues

Cue influence analysis



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XX 20XX 10

a) b) o
18 3
c
] 3 9]
& @ &
5 2 5
V] o V]
a
0 Cue 0 Cue 0 Disparity 1
= Aerial === V/anishing point === Qcclusion
Defocus = Motion =— Prior

Fig. 11. Cue influence analysis: a) Mean confidence. b) Mean deviation
of each cue’s disparity estimate from the robust unary (dark) and the final
pairwise estimate (light). Occlusion is not listed here, as it only provides
disparity gradients. ¢) Normalized confidence distribution over disparity.

contribute the other half of the depth information. Fig. 11, b
gives each cue’s tendency to be an outlier by showing the
confidence-weighted deviation of its disparity estimate from
the robust unary and the final pairwise estimate. One can
observe that the deviation is fairly uniform across the cues,
while the pairwise propagation step of our system tends
to increase the deviation in order to perform the space-
time regularization. Finally, Fig. 11, ¢ shows the normalized
confidence distribution of each cue over the disparity range.
We can observe that the occlusion cue is mostly covering near
distances, while the defocus, vanishing point and motion
cues have their strongest influence in the mid-range. The
aerial perspective cue as well as the prior mostly cover
the larger distances. We conclude that our cues provide
a balanced mixture of sources of information. In our versatile
test dataset all cues provide important information and tend
to complement each other, while our data-driven prior gives
strong indications whenever there is not enough evidence
from the cues alone. We provide an extended analysis of
per-cue and per-scene class influence in the supplemental
materials.

4.2 Validating plausible disparity

We would like to know to what extent the three properties
of perceptually plausible disparity, which motivate our
approach (Sec. 1), are applicable to complex images. To
this end, we run perceptual experiments, in which we
intentionally reduce physical disparity in these aspects [52].

4.2.1 Experiment

Participants were asked if they consider a physical and a
distorted disparity stimulus visually equivalent or not. The
physical disparity in our stimuli is distorted by one out
of four simple operations: i) remapping by a power curve
with a gamma value of r; € {0.9,0.8,0.6,0.3,0}, ii) entire

Luminance-guided
(Previous)
Result & strokes
Disparity map

Cue-guided
(Ours)
Result & strokes
Disparity map

Fig. 12. Manual 2D-to-3D stereo conversion without (fop) and with
(bottom) using our cue fusion. Our approach results in a better disparity
layout and keeps details, such as the wires.

removal of a disparity from circles of radius r» € {1, 3,6, 12}
visual degrees followed by luminance-based edge-ware
inpainting that restores structure but not disparity values,
iii) edge-aware spatial blurring with a spatial std. dev. of
rg1 € {0.25,1,2} visual degrees and range Gaussian std.
dev. of r32 € {0.1,0.6,00} in the intensity range from 0
to 1, as well as iv) temporal blurring with a std. dev. of
ry € {0.025,0.25, 1} seconds. The original image or movie
in comparison to the reference is used as a control group. 17
participants took part in the experiment, which comprised
of 2 repetitions for each of the 4 videos or images being
presented with 1 placebo, 5 different remappings, 4 removals,
3x3 spatial blurs and 3 temporal blurs yielding the total of
2x4x (14+5+4+3x3+3) = 64 trials. In each trial,
participants were shown the reference image and a distorted
variant in a randomly shuffled vertical arrangement for 3
seconds and were asked if they provide an equivalent stereo
impression or not.

4.2.2 Results and Discussion

We compute sample means and confidence intervals (bino-
mial test, 95% Cls, Clopper-Pearson) for the percentage of
trials in which a distorted and an original are considered
equivalent (Fig. 17). The control group that is not distorted
at all (placebo), is considered equivalent to the reference
in 79.0% =+ 4.0% of the cases (Fig. 17, a). Consequently, a
reduction that is equivalent will at best result in a measure
of equivalence of ca. 80%, not 100%. Equivalence is rejected
using two-sample t-test (all p < 0.01). Additionally, the effect
of reduction can be seen from comparing their CIs to the
control group, in particular, its lower bound (Fig. 17, dotted
line).

Remapping values for 7, < 0.6 (stronger deviation
from identity) are significantly nonequivalent (Fig. 17, b),



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XX, NO. X, XX 20XX 11

Fig. 13. Results for static images. (a) (Aerial perspective, occlusion) A typically good result as luminance edges give a good indication for depth
edges. (b) (Prior) The fine details detach flowers from the ground. The overall ground plane is perceivably non-linear in depth, a typical artefact
of our approach. (c) (Prior) The bright sky, the dark trees, the ground plane in the foreground and the forest-typical color-disparity relation in this
image allow a plausible, detailed result. (d) (Prior) Classification into coast is easy by the colors. Human shapes are distinct from their context due to
the edge-aware pairwise propagation. (e) (Vanishing point, prior) This is a typical street-level scene well covered by other approaches. Our result
reproduces the side walls, the sky and the ground plane, but also includes fine details. (f) The twigs indicate occlusions, otherwise this image is
dominated by the prior. Disparity is considerably wrong, but the fractal distribution of disparity combined with a correct tendency from the prior
produces a consistent stereo look. (g) This image works, because the disparity contrast at the strongest depth discontinuity is correct due to a
generic vertical-gradient prior. (h) (Aerial perspective, prior). The color-dependency of the prior correctly places depth edges on the hills horizon lines
at all distances. (i) (Occlusion, vanishing point, prior) It can be noted that the ground plane in the front is not a plane in disparity. (j) (Aerial perspective,
prior) (k) An image following no prior, where defocus is found as the relevant cue, detaching the butterfly from the backdrop. (m) (Occlusion) (I) An
open country prior is fused with occlusion from the fence preserving fine details with good depth discrimination. Disparity mean and confidence maps,
the response of all cues and the prior used for more than 60 images and more than 30 videos are found in our supplemental materials.

Fig. 14. Result (a) and depth map produced by cue fusion without priors
(b), and including the prior for open country (c and d). The defocus cue
has identified the sharpness gradient complemented by the prior.

indicating (but not proving) that more subtle remappings
might be equivalent. Our approach does only reproduce
disparity up to such a smooth remapping. Not reproducing
objects as large as 7, = 6 vis. deg. or larger are significantly
nonequivalent (Fig. 17, c), indicating that removal of smaller
objects might not be objectionable. In our approach, some
objects do not get resolved because neither a cue nor a prior
provides evidence for its depth. As long as such objects

Fig. 15. An image (a) was classified to show mountains, resulting in
a disparity map (b) that is more vertical as seen from the low vertical
contrast and the light-grey beach is mapped to a near depth. With correct
classification as coast (c), the beach will be placed at medium depth (d).

are consistently embedded into the environment, which
typically happens due to our luminance-based edge-aware
upsampling, the proper values of depth are not mandatory.
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Fig. 16. Failure cases: a) High-contrast textures can cause problems in
the cue extraction as well as the cue fusion phase. Here, the occlusion
module detected several T-junctions in the butterfly wing and hallucinated
depth gradients. This misinterpretation cannot be compensated by the
pairwise fusion, since it does not distribute the available depth information
across the whole object, but rather stops at the luminance edges.
This leads to false-positive depth edges in the disparity map. b) If an
assumption made in a cue extraction module is violated, the module
may produce wrong disparity values with high confidence. If only a small
number of cues is present in the input video, there is not much reliable
information to compensate for that. In this case, the assumption of the
defocus cue, that blurred regions are distant, is violated. Since there is no
other strong cue present, this leads to a large disparity in the foreground.
¢) The motion cue fails, because the walking subjects cover the image
in large part. This leads to residual motion, whose magnitude is low for
the subjects and high for the background, hence turning the latter into
foreground. d) For a camera rotating around an object, both close and
far points with high velocity get classified as close.

For blurring (Fig. 17, d), not respecting edges (r3 .2 = 00),
or edge-stopping blurring (32 = 0.6 and 732 = 0.1) with
a spatial Gaussian of std. dev. r3; > 1, resp. r3; > 2 vis.
deg. is not equivalent. This indicates that the slightly larger
spatial extent and similar range support used in our approach
produces a functionally equivalent result.

For temporal blurring (Fig. 17, e) all reductions with
a temporal Gaussian of std. dev. r4 > 1s have been
found visually nonequivalent. This indicates that tempo-
ral disparity sampling can be surprisingly sparse if it is
motion-compensated, as in our approach, where disparity
is computed only for keyframes at ca. 3Hz which likely is
faster than the value required for equivalence. This outcome
indicates that in natural images, even more edge-aware
spatial blurring and temporal filtering is tolerated than what
was reported for disparity-only stimuli by Kane et al. [6].
While the reductions in our experiment (and application)
might introduce conflicts between disparity and pictorial
cues, the latter seem to play the dominant role in depth
perception, and tolerance for disparity reduction is higher.
Edges at larger depth discontinuities must be preserved
(Fig. 17, d), and in the temporal domain (Fig. 17, e) disparity
should follow the image flow, while the temporal update of
specific disparity values can be sparse.

4.3 Perceptual comparison study

We would like to know if the results produced in real time by
our method are preferred over other approaches. Therefore,
image pairs produced by our method and one of three
previous methods were presented using Nvidia 3D Vision
active shutter glasses on a 27” Asus VG278HE display with a
resolution of 1920x1080 pixels at a viewing distance of 60 cm

under normal office lighting. 10 participants (all male, 23 to
30 years old) took part in the study. All of them had normal
or corrected-to-normal vision and passed a stereo-blindness
test. The subjects were naive to the purpose of the experiment.
Overall, 77 image pairs were used. Each pair was presented
as a random horizontal arrangement and participants were
asked which image provides a better 3D impression. The
images have been produced using methods proposed by
Saxena et al. [13], Cheng et al. [18], and Karsch et al. [15].
In our study, we include results on our images for the
method of Cheng et al., images and depths provided by
the original publication for the method of Saxena et al. and
a mixture of both for the method of Karsh et al. To produce
results for our images the method of Karsh et al. was trained
using 400 outdoor images from the Make3D dataset [13]
as done in the original paper. Our main goal in this study
was to maximize the participants’” performance in seeing
differences between the methods. Therefore we chose to
use static images instead of videos, since human disparity
sensitivity decreases with motion [6], [53] and participants
were less likely to overlook artifacts. Our method is preferred
over the method of Cheng et al. in 69.6 % =+ 3.3% (0.95
confidence intervals, binomial) of the cases, over the one
of Saxena et al. in 64.4 % £ 7.0 % and over the approach of
Karsch et al. in 54.5 % =+ 3.6 % of the cases. All comparisons
are statistically significant (p < 0.02). Comparing our result
and the method of Karsch et al. on a subset containing
their images leads to a significant preference for their results
(31.3% =+ 8.1 % prefer ours) while comparing on a subset
only containing our images provides significant preference
for our method (60.0 % + 3.9 %). This can be attributed to a
non-optimal training set for certain images used in the study.
We conclude that we can outperform real-time and offline
2D-to-3D conversion methods for general imagery, while the
performance of data-driven offline methods highly depends
on the training data used.

4.4 Quantitative evaluation

The final quality of a stereo image is due to the complex
interaction of monocular and binocular stereo cues, for which
no computational model is available. The perceived error
of a 2D-to-3D stereo conversion consequently correlates
only very little with the predictions of classic image quality
metrics such as the peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM) index when they are applied
to the disparity maps [52]. Merkle et al. [5] show that
more meaningful quality predictions can be obtained when
the reconstructed disparity is actually applied to generate
stereo-image pairs and those are compared to the ground-
truth images. Tbl. 2 nonetheless lists the numerical error
with respect to the ground truth NYU (Kinect sensor; well-
aligned key luminance and depth edges) and Make3D (laser
scanning; low-resolution depth maps) data sets for the
approaches of Cheng et al. [18], Karsch et al. [15] as well as
ours and a baseline that uses low-frequency fractal noise as
a disparity map. We see that according to the PSNR (which
is poor in detecting localized disparity distortions and rather
assumes their spatially uniform distribution), the approach
of Karsch performs best and that most approaches perform
better than random, but not on all datasets and according
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Fig. 17. Perceptual experiment analysis (Sec. 4.2): The horizontal axis shows different bars for different distortions. The vertical axis is equivalence in
percentage. A high value means that the distortion is more equivalent to a reference. A green bar has a significantly different equivalence compared
to how equivalent the reference is to itself, which is only ca. 80%, not 100%. Bars are grouped by distortions. Inside each group the distortion is the

same, just more or less strong in one (b, ¢ and e) or two (d) respects.

to all metrics. Overall, in terms of SSIM, the margin starts
to get smaller. Finally, when using the most recommended
metric by Merkle et al. [5], the difference between all three
methods is marginalized.

We conclude that we can achieve similar quality in
terms of error numbers as the competitors that either take
much longer to compute and / or have a lower user
preference. Interestingly, although the visual quality of the
fractal baseline stereo-image pairs is clearly not acceptable,
the metric predictions (Tbl. 2) do not show them as clear
outliers in all cases. The fact that, on the one hand, we
do not intend to reproduce ground truth depth but rather
perceptually plausible disparity, and, on the other hand,
the given quantitative evaluation clearly does not reflect
stereoscopic conversion quality, indicates that our perceptual
comparison study (Sec. 4.3) provides the most meaningful
evaluation results.

TABLE 2
Numerical comparison (larger is better).

NYU Range Make3D
Disparity Image pair Disparity Image pair
Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Cheng [18] 996 0.72 21.84 0.80 10.30 0.56 16.91 0.42
Karsch [15] 10.77 0.76 21.77 0.80 11.60 0.77 18.40 0.49
Ours 10.18 0.74 21.03 0.78 10.03 0.66 17.02 0.43
Baseline 10.11 0.75 1820 0.68 8.69 0.69 16.29 0.37

5 CONCLUSION

We proposed a system to infer perceptually plausible binoc-
ular disparity from a monocular video stream in real time.
Several monocular cues estimate disparity and confidence
maps of low spatial and temporal resolution. These are com-
plemented by spatially varying, class-specific disparity priors.
Robust MAP fusion produces stereo image streams with
high spatial and temporal resolution. Perceptual experiments
favorably compared our approach to existing techniques. Our
method reconstructs perceptually plausible disparity and not
physical depth. Instead, we rather draw inspiration from
how humans proceed when manually annotating disparity
in 2D-to-3D conversion. If physical accuracy is required, e. g.,
for viewpoint changes larger than inter-ocular distance or for
refocusing, it is not advised to use our method. We found
our method to produce images that might have physically

incorrect depth, yet, they almost always provide a 3D look
due to the agreement to high-frequency luminance features
and overall plausible layout. Our approach seems to be
less sensitive to the variety of scenes and works on priors
created by painting. Depending on the problem at hand,
working with sensor data can be more or less efficient than
our pragmatic approach.

In future work we would like to integrate more so-
phisticated cues into our method. Structure-from-motion
could be introduced into our system as a cue itself. More
elaborate priors conditioned on texture and flow could add
to the inference without imposing additional complexity and
compute cost. We also would like to model cue fusion with
the goal of improving the quality of stereoscopic experience
when binocular disparity is given, instead of producing it
from monocular images. Finally, our fusion is not limited to
inference of depth, but could include other modalities such
as observer motion, multiple images or real-time sensor data.
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