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Figure 1: We intentionally introduce the depth distortions typically produced by 2D-to-3D conversion into close-to-natural computer
generated images (a, top) such as the one from the MPI Sintel dataset [Butler et al. 2012] where ground truth depth is available (a, bottom).
User response to stereo images (b–e, top) showing typical disparity distortions (b–e, bottom) gives an indication whether a certain amount of
distortion results in functional equivalence for natural images or not. According to numerical measures such as PSNR or perceptual disparity
metrics, the depth is considered very different (inequality sign, bottom), whereas it is functionally equivalent (equivalence sign, top).

Abstract

Different from classic reconstruction of physical depth in computer
vision, depth for 2D-to-3D stereo conversion is assigned by humans
using semi-automatic painting interfaces and, consequently, is of-
ten dramatically wrong. Here we seek to better understand why
it still does not fail to convey a sensation of depth. To this end,
four typical disparity distortions resulting from manual 2D-to-3D
stereo conversion are analyzed: i) smooth remapping, ii) spatial
smoothness, iii) motion-compensated, temporal smoothness, and iv)
completeness. A perceptual experiment is conducted to quantify the
impact of each distortion on the plausibility of the 3D impression
relative to a reference without distortion. Close-to-natural videos
with known depth were distorted in one of the four above-mentioned
aspects and subjects had to indicate if the distortion still allows for a
plausible 3D effect. The smallest amounts of distortion that result in
a significant rejection suggests a conservative upper bound on the
quality requirement of 2D-to-3D conversion.
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1 Introduction

The majority of images and videos available is 2D, and automatic
conversion to 3D is a long-standing challenge [Zhang et al. 2011].
The requirements imposed on the precise meaning of “3D” might
differ: For applications such as view synthesis, surveillance, au-
tonomous driving, human body tracking, relighting or fabrication,
accurate physical depth is mandatory. Obviously, binocular disparity
can be computed from such accurate physical depth, allowing for
the synthesis of a stereo image pair using image-based rendering.

However, it is not clear what depth fidelity is required to produce
plausible disparity in natural images, which include other monocular
cues.

In this paper we argue that physically accurate depth is not required
to produce plausible disparity. Instead, we provide evidence that as
long as four main properties of the disparity hold, it is perceived as
plausible. First, the absolute scale of disparity is not relevant, and
any reasonable smooth remapping [Jones et al. 2001; Lang et al.
2010; Didyk et al. 2012] is perceived equally plausible and may even
be preferred in terms of viewing comfort and realism. Therefore, we
can equally well use disparity that is the same as the physical one
under a smooth remapping. Second, not every detail in the scene can
be augmented with plausible depth information, resulting in isolated
objects that remain 2D or lack disparity relative to their content. We
will see that, unless those objects are large or salient, this defect
often remains largely unnoticed. Third, the natural statistics of depth
and luminance indicate that depth is typically spatially smooth,
except at luminance discontinuities [Yang and Purves 2003; Merkle
et al. 2009]. Therefore, not reproducing disparity details can be
acceptable and is often not even perceived, except at luminance
edges [Kane et al. 2014]. Fourth and finally, the temporal perception
of disparity allows for a temporally coarse disparity map, as fine
temporal variations of disparity are not perceivable [Howard and
Rogers 2012; Kane et al. 2014]. Consequently, as long as the error
is 2D-motion compensated [Shinya 1993], depth from one point in
time can be used to replace depth at a different, nearby point in time.

2 Previous work

In this section, we review the three main approaches for 2D-to-3D
(manual, automatic and real-time), the use of luminance and depth
edges in computational stereo, as well as perceptual modeling of
binocular and monocular depth cues.

2D-to-3D conversion Manual conversion produces high-quality
results but requires human intervention, which can result in substan-
tial cost. They are based on painting depth annotations [Guttmann
et al. 2009] with special user interfaces [Ward et al. 2011] and prop-
agation in space and time [Lang et al. 2012]. The semi-supervised
method of Assa and Wolf [2007] combines cues extracted from an
image with user intervention to create depth parallax.
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Automatic conversion does not need manual effort, but does require
lengthy computation to produce results of medium quality. The
system of Hoiem et al. [2005] infers depth from monocular images
by a low number of labels. Make3D [Saxena et al. 2009] is based on
learning appearance features to infer depth. Both approaches show
good results for static street-level scenes with super-pixel resolution
but require substantial computation. Non-parametric approaches
rely on a large collection of 3D images [Konrad et al. 2012] or 3D
videos [Karsch et al. 2014] that have to contain an exemplar similar
to a 2D input. For cel animation with outlines, T-junctions have been
shown to provide sufficient information to add approximate depth
[Liu et al. 2013].

Real-time methods to produce disparity from 2D input videos usually
come at low visual quality. A simple and computationally cheap
solution is to time-shift the image sequence independently for each
eye, such that a space-shift provides a stereo image pair [Murata et al.
1998]. This requires an estimate of the camera velocity and only
works for horizontal motions. For other rigid motions, structure-
from-motion (SfM) can directly be used to produce depth maps
[Zhang et al. 2007]. SfM makes strong assumptions about the scene
content such as a rigid scene with camera motion. Additionally,
individual cues such as color [Cheng et al. 2010], motion [Huang
et al. 2009] or templates [Yamada and Suzuki 2009] were combined
into a disparity estimate in an ad-hoc fashion.

Commercial 2D-to-3D solutions [Zhang et al. 2011] based on custom
hardware (e. g., JVC’s IF-2D3D1 Stereoscopic Image Processor) and
software (e. g., DDD’s Tri-Def-Player), reveal little about their used
techniques, but anecdotal testing shows the room for improvement
[Karsch et al. 2014].

Perception of luminance and depth Since luminance and depth
edges often coincide, e. g., at object silhouettes, full-resolution RGB
images have been used to guide depth map upsampling both in
the spatial [Kopf et al. 2007] and the spatio-temporal [Richardt
et al. 2012; Pajak et al. 2014] domain. Analysis of a database with
range images for natural scenes reveals that depth maps mostly
consist of piecewise smooth patches separated by edges at object
boundaries [Yang and Purves 2003]. This property is used in depth
compression, where depth edge positions are explicitly encoded,
e. g., by using piecewise-constant or linearly-varying depth repre-
sentations between edges [Merkle et al. 2009]. This in turn leads
to significantly better depth-image-based rendering (DIBR) [Fehn
2004] quality compared to what is possible at the same bandwidth of
MPEG-style compressed depth, which preserves more depth features
at the expense of blurring depth edges.

The spatial disparity sensitivity function determines the minimum
disparity magnitude required to detect sinusoidal depth corrugations
of various spatial frequencies [Howard and Rogers 2012]. The
highest resolvable spatial frequency is about 3–4 cpd (cycles per
degree), which is almost 20 times below the cut-off frequencies
for luminance contrast [Wandell 1995]. Similar investigations in
the temporal domain indicate that the highest sinusoidal disparity
modulation that can be resolved is about 6–8 Hz [Howard and Rogers
2012], which is significantly lower than the 70 Hz measured for
luminance [Wandell 1995]. As analyzed by Kane et al. [2014],
the picture is different for disparity step-edges in space and time,
which are important in real-world images. They found that, for
step-edge depth discontinuities, observers might still notice blur due
to removal of spatial frequencies up to 11 cpd, indicating that while
overall disparity can be smoothed significantly, this is not the case for
depth discontinuities. They could further show that filtering temporal
frequencies higher than 3.6 Hz from a step signal remains mostly
unnoticed. Their findings indicate that the temporal disparity signal
might be sparsely sampled and even more aggressively low-pass

filtered, without causing visible depth differences. In this work, we
conduct similar experiments for natural scenes involving monocular
cues.

Surprisingly, depth edges appear sharp, even though human ability
to resolve them in space and time is low. One explanation for this
is that the perceived depth edge location is determined mostly by
the position of the corresponding luminance edge [Robinson and
MacLeod 2013].

In previous work, perception was taken into account for stereogra-
phy when disparity is given [Didyk et al. 2012], but it was routinely
ignored when inferring disparity from monocular input for 2D-to-3D
conversion. Interestingly, depth discontinuities that are not accom-
panied by luminance edges of sufficient contrast poorly contribute
to the depth perception and do not require precise reconstruction in
stereo 3D rendering [Didyk et al. 2012].

3 Experiment

In this experiment we would like to find how typical 2D-to-3D stereo
conversion distortions affect the plausibility of a stereo image or
movie. To this end, we intentionally reduce physical disparity in one
of four aspects and collect the users’ response.

3.1 Materials

Stimuli Stimuli were distorted variants of a given stereo video
content with known, undistorted disparity. We used four video se-
quences from the MPI Blender Sintel movie dataset [Butler et al.
2012], and the Big Buck Bunny movie by The Blender Founda-
tion, which provide close-to-natural image statistics combined with
ground-truth depth and optical flow. Additionally, we used four
rendered stereo image sequences with particularly discontinuous
motion that are especially susceptible to temporal filtering. Stim-
uli were presented as videos for temporal distortions and as static
frames for spatial distortions to prevent threshold elevation by pres-
ence of motion that would underestimate the effect for a theoretical
completely static scene. The scenes did not show any prominent
specular areas that required special handling [Dabala et al. 2014].

Distortions were performed in linear space with a normalized range
of (0, 1). For stereo display, this normalized depth was mapped
to vergence angles corresponding to a depth range of (57, 65) cm
surrounding a display at 60 cm distance. This distribution around
the display plane reduces the vergence-accommodation conflict,
however, in some cases a window violation occurred. As the salient
content was located at the image center, the influence of this artifact
likely was low. Finally depth-image-based rendering [Fehn 2004]
was used to convert the monocular image with a distorted depth map
into a stereo image pair. Stimuli were subject to exactly one out
of five distortions: identity (placebo), remapping, object removal,
spatial blur and temporal blur.

Placebo Firstly, the original content without any distortion is used
as a control group. This is required to understand how often subjects
report a difference when there is none, establishing an upper bound
on what to expect if there really are distortions.

Remapping of the linear depth map D was performed for each
location x by means of a power curve D′(x) = D(x)γ with a γ
value of r1 ∈ {0.9, 0.8, 0.6, 0.3, 0}. A value close to 1 indicates
no change. Small values indicate a more compressive function. A
value close to zero indicates a 2D stimulus with very little global
disparity. We have chosen the power function as it is the most basic
signal compression method that accounts for weaker abilities of
depth discrimination with increasing depth by the human visual
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Figure 2: Remapping. The top row shows the stereo image, the bottom row the disparity. The columns show different amounts of distortion
due to remapping. a) Original stereo image. b) Remapping by a value of γ = 0.8, leading to equivalence. c) Remapping by a value of γ = 0.6,
leading to non-equivalence.
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Figure 3: Object removal. The top row shows the stereo image, the bottom row the disparity. The columns show different amounts of
distortion due to object removal. a) Original stereo image. b) Removal of a circular region of radius r2 = 3 vis. deg. around the character’s
head, leading to equivalence. c) Removal of a region of radius r2 = 6 vis. deg. at the same location, leading to non-equivalence.

system. It is also inspired by the non-linear operator proposed by
Lang et al. [2010]. Example stimuli are shown in Fig. 2.

Removal of entire regions was realized using luminance edge-aware
inpainting from surrounding depth that restores structure but not
disparity values. The regions removed were randomly positioned
circles of radius r2 ∈ {1, 3, 6, 12} visual degrees. In practice, bilat-
eral filtering with a strongly edge-preserving range radius parameter
choice of 0.1 was used. The spatial radius of the filter was set to
0.5 · r2 and values in the removed region were weighted by zero in
the center of the region and smoothly transitioned to 1 outside the
region. This prevented visible discontinuity on the region boundary.
The transition was generated by Gaussian blur of the binary mask of
the region. Example stimuli are shown in Fig. 3.

Spatial blur was realized using bilateral filtering:

D′(x)=
1

Z(x)

∑
xi∈Ω

D(xi)G(‖x−xi‖,r3,1)G(D(x)−D(xi),r3,2)

where Z(x) is the normalizing partition function, Ω the spatial do-
main ofD andG(d,σ) is a zero-mean Gaussian distribution function
with std. dev. σ chosen as r3,1∈{0.25,1,2} visual degrees for spa-
tial range and r3,2∈{0.1,0.6,∞} for the intensity range from 0 to
1. The visual radius of 2 deg corresponds to ca. 80 px in our stimuli.
Example stimuli are shown in Fig. 4.

Temporal blurring with a std. dev. of r4∈{0.025,0.25,1} seconds

was introduced. The blur was motion-compensated [Shinya 1993],
that is, before combining pixels from a different frame, they were
moved along their (known) optical flow. This assures, that tempo-
ral disparity details are removed for individual objects rather than
blending the disparity values of distinct moving objects in a dynamic
scene. Example stimuli are shown in Fig. 5.

Subjects 17 participants took part in the experiment (23±4 ys,
8M, 9F). Subjects were naı̈ve with respect to the given task, 4 of
them had a background in computer graphics or computer vision.
All had corrected or corrected-to-normal vision. None reported any
stereo vision deficiency and all were able to identify patterns and
digits in test random dot stereograms.

Equipment Stimuli were shown using anaglyph on a DELL
U2412M 60 Hz display with spatial resolution of 1920×1200. As
the videos are provided at 30 Hz, each frame was displayed twice.
The magnitude of crosstalk was not measured. The combination
of display, particular glasses and display settings were experimen-
tally chosen so that ghosting was minimal and the same for every
experimental condition. We argue that presence of minor ghosting
is common in target consumer displays and therefore not violating
the purpose of our study aiming to predict user experience from a
practical 2D-to-3D stereo conversion system.
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Figure 4: Spatial blur. The top row shows the stereo image, the bottom row the disparity. The columns show different amounts of distortion
due to spatial blur. a) Original stereo image. b) Blur with a spatial support of r3,1 = 0.25 vis. deg. and a range support of r3,2 = 0.1, leading
to equivalence. c) Blur with a spatial support of r3,1 = 2 vis. deg. and a range support of r3,2 = 0.1, leading to non-equivalence.
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Figure 5: Temporal blur. The top row shows the stereo image, the bottom row the disparity. The columns show different amounts of
distortion due to temporal blur. a) Original stereo image. b) Blur with a temporal support of r4=0.25 s, leading to equivalence. c) Blur with a
temporal support of r4=1 s, leading to non-equivalence.

3.2 Procedure

In each trial, participants were shown the undistorted reference
image and a distorted variant in a randomly shuffled vertical arrange-
ment for 3 seconds and were asked to answer the question:

“Do both images provide equivalent stereo fidelity?”

by pressing one out of two keys on a keyboard. Asking for equiva-
lence instead of preference removes the influence of a subjective bias
for a particular disparity distribution which might not even favor the
ground-truth in all cases. An example is edge-preserving filtering
that typically results in an edge enhancement, which in turn might
lead to overall preferred depth appearance by some subjects.

Each trial was followed by a screen with confirmation where the sub-
ject could take a rest. A blank screen was displayed for 500 ms imme-
diately before the stimuli was shown. The experiment comprised of
2 repetitions for each of the 4 videos or images being presented with
1 placebo, 5 different remappings, 4 removals, 3×3 spatial blurs and
3 temporal blurs yielding the total of 2×4×(1+5+4+3×3+3)=64
trials, and lasted for approx. 40 minutes.

3.3 Analysis

We compute sample means and confidence intervals (binomial test,
95% confidence intervals (CIs), Clopper-Pearson method) for the
percentage of trials in which a distorted and an original stimulus
are considered equivalent (Fig. 6). The response is aggregated over
all four scenes. Equivalence is rejected using two-sample t-testing
(all p<0.01). Additionally, the effect of reduction can be seen from
comparing their CIs to the control group, in particular, its lower
bound (Fig. 6, dotted line). CIs that do not intersect the placebo
CI after the Clopper-Pearson correction indicate the presence of an
effect.

4 Discussion

In this section, we discuss the outcome of the above experiment
(Sec. 4.1), compare this to observations made for artificial stimuli
(Sec. 4.2), compare our equivalence outcome to the prediction of
established metrics (Sec. 4.3), recall the scope and limitations of the
experiment (Sec. 4.4), and finally propose some recommendations
for assessing 2D-to-3D stereo conversion quality (Sec. 4.5).



4.1 Observations

Placebo The control group, which is not distorted at all, is consid-
ered equivalent to the reference in 79.0%±4.0% of the cases (Fig. 6,
a). This indicates, that subjects roughly understand the task and do
not give random answers. At the same time, it also shows the limits
of what to expect from asking for equivalence: a fifth of the subjects
reports seeing a difference when images are identical. Note, that
this indicates, that a distortion that is equivalent will at best result in
observing a score of ca. 80%, not 100%, which is not even achieved
when no change at all is present.

Remapping Remapping values for r1≤0.6 (stronger deviation
from identity, Fig. 2, c) are significantly nonequivalent (Fig. 6, b),
indicating (but not proving) that more subtle remappings might be
equivalent (Fig. 2, b). This is in agreement with the general practice
of retargeting disparity values using smooth curves [Lang et al. 2010;
Didyk et al. 2012] to better account for human perception on limited
output devices.

Spatial blur For blurring (Fig. 6, d), not respecting edges (r3,2=
∞), or edge-stopping blurring (r3,2=0.6 and r3,2=0.1) with a spa-
tial Gaussian of std. dev. r3,1≥1, resp. r3,1≥2vis. deg. is not equiv-
alent (Fig. 4, c). This indicates that the slightly larger spatial extent
and similar range support produce a functionally equivalent result
(Fig. 4, b). It also highlights the importance of respecting luminance
edges.

Object removal Not reproducing objects as large as r2=6vis. deg.
(Fig. 3, c) or larger is significantly nonequivalent (Fig. 6, c), indi-
cating that removal of smaller objects might not be objectionable
(Fig. 3, b). As long as such objects are consistently embedded into
the environment, which typically happens due to luminance-based
edge-aware upsampling, the proper values of depth are not manda-
tory. This is in agreement with common practice in 2D-to-3D stereo
conversion, that does not manually label all objects with depth in a
scene exhaustively.

Temporal blur For temporal blurring (Fig. 6, e) all reductions
with a temporal Gaussian of std. dev. r4≥1 s have been found visu-
ally nonequivalent (Fig. 5, c). This indicates that temporal disparity
sampling can be surprisingly sparse if it is motion-compensated
[Shinya 1993], i. e., only disparity keyframes at ca. 3Hz have to
be fully recovered while the intermediate disparity frames can be
temporarily interpolated (Fig. 5, b). Temporal upsampling (rotoscop-
ing with keyframes) is a typical component of 2D-to-3D conversion,
producing physically incorrect but perceptually valid results.

4.2 Artificial and natural stimuli

Analysis of thresholds, i. e., what can be perceived, has helped to
better understand how the human visual system perceives both lumi-
nance and stereo [Howard and Rogers 2012, Ch. 18.5]. For finding
these, artificial stimuli such as sinusoidal gratings [Didyk et al. 2012]
or step edges [Kane et al. 2014] in the absence of other cues are
common. However, it is clear, that such thresholds are overly conser-
vative and do not answer the question which two natural stimuli are
functionally equivalent. For this reason, visual equivalence has been
proposed for specialized natural luminance stimuli involving certain
geometry, certain lighting and certain reflectance [Ramanarayanan
et al. 2007].

For stereo, the outcome of the above experiment indicates that in
natural images, even more edge-aware spatial blurring and temporal
filtering is tolerated than what was reported for disparity-only stimuli

by Kane et al. [2014]. While the reductions in our experiment (and
application) might introduce conflicts between disparity and pictorial
cues, the latter seem to play the dominant role in depth perception,
and tolerance for disparity reduction is higher. Still, as can be seen
in Fig. 6, d, edges at larger depth discontinuities must be preserved,
and in the temporal domain (Fig. 6, e) disparity should follow the
pixel flow, while the temporal update of specific disparity values can
be sparse.

4.3 Comparison to other metrics

To see if common metrics could predict the equivalence found, we
compute their prediction of the difference between the reference
and all our distorted stimuli and perform both linear (a+b·x) and
log-linear (a+b·log(x+c)) fits to the equivalence value across all
distortions and stimuli. As common metrics we have tested peak
signal to noise-ratio on depth and on the image pair [Merkle et al.
2009], a perceptual disparity metric on depth [Didyk et al. 2011]
and a structural image similarity metric [Wang et al. 2004] on image
pairs.

Table 1: Linear and log-linear correlation R2 coefficients of study
results with various metrics. Negated values used for PSNR. Mea-
sures that explain a certain distortion best are shown in bold face.

Depth Image pair
PSNR Didyk2011 PSNR DSSIM

Experiment Lin. Log. Lin. Log. Lin. Log. Lin. Log.

Remap. 0.75 0.75 0.82 0.82 0.53 0.52 0.31 0.35
Removal 0.60 0.55 0.64 0.64 0.65 0.62 0.72 0.76
Spat. blur 0.49 0.48 0.60 0.56 0.30 0.30 0.15 0.32
Temp. blur 0.42 0.42 0.39 0.46 0.31 0.31 0.16 0.17

All 0.43 0.43 0.57 0.57 0.30 0.30 0.17 0.25

Fig. 7, (e) shows a scatterplot relating mean equivalence ratings
by subjects to the result of numerical metrics. If any linear fit to
a metric would predict equivalence well, its response would need
to form a line. Similarly, a log-linear fit would need to form a
logarithmic curve. However, we see that all fits predict the actual
perceived difference rather poorly. PSNR has a correlation of R2=
0.44 for the linear and R2=0.44 for the log-linear fit (all correlation
statements in this section are DOF-adjusted R2 values with p<.01
regression significance). As expected, the above-mentioned notions
lack perceptual foundation and cannot predict perceived differences.
Of greater interest is the finding that the perceptual metrics also do
not predict equivalence well. A perceptual model of disparity results
in a correlation of R2=0.57 (linear) and R2=0.57 (log-linear). For
three out of four distortions, the correlation here was highest. The
idea to directly compare the image pair [Merkle et al. 2009] did not
result in an improvement, except for the removal distortion.

We see that a linear fit to the perceptual model produces the best
result, while providing only a weak correlation. In absence of any
better model for equivalence, the fit with a=0.210, b=0.579 to
Didyk et al. [2012] could serve as surrogate. We conclude, that
even perceptual metrics cannot capture the task-specific challenge of
visual equivalence for 2D-to-3D stereo conversion and that explicit
user studies are required until a computational equivalence test is
available.

Similarly poor performance of objective metrics was also observed
when individual experiment conditions were analyzed separately for
object removal (see Fig. 7, b), spatial filtering (see Fig. 7, c) and
temporal filtering (see Fig. 7, d). The only exception was found in
smooth remapping (see Fig. 7, a) where depth-based metrics per-
formed well and achieved a correlation of up to R2=0.82. It seems
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that existing metrics can deal much better with global monotonic
manipulation as introduced by global remapping operators than with
spatially varying artifacts that can arise from measurement imperfec-
tions or compression. See Table 1 for the complete list of measured
correlations.

4.4 Scope and limitations

Working with natural images has inherent difficulties not found for
artificial stimuli. Many other cues such as saliency [Borji and Itti
2013; Itti et al. 1998] due to luminance, motion, or stereo itself
certainly affect the result. We have addressed this by performing
the distortion either globally or in areas that are likely most salient
(such as the moving character).

Another limitation of natural images is that we require both ground
truth depth and natural images. While this data is easy to acquire
for synthetic images, natural video content with ground truth depth
maps is hard to come by. Most data sets available could be called
to have a substantial “campus and LIDAR”-bias: they result from
scanning an open street-level setting with houses and roads using a
laser scanner. Practical stereo movie content however is drastically
different, involving fractal natural objects, close-ups, human and
non-human characters, careful scene arrangement, artistic field-of-
view and cues from scene or observer motion.

Even the Sintel dataset does not have certain types of motion that
are important in practice, in particular discontinuous motion that
makes an important ingredient of vividly moving characters such
as in sports broadcasting. This is why we add a selection of four
movies with such motion to the set.

Finally, this paper only provides evidence that equivalence is not
covered well using common measures. Besides the recommendation

for the closest fit with a moderate amount of correlation, this is a
partially negative result: It indicates, that user studies are clearly
superior over numerical comparison, but does not provide a way
to measure functional equivalence computationally. Note, that this
however is not yet possible for luminance images and remains future
work in computational stereo perception.

4.5 Recommendations

The main conclusion to be drawn from the observations made is,
that metrics, be it numerical or perceptual, are poor predictors of
perceptual equivalence when assessing 2D-to-3D stereo conversion
quality. Instead, results should be compared by explicit user studies,
which can reveal a picture entirely different from MSE, PSNR or
even from perceptual disparity metrics.

The agreement with luminance edges is of particular importance.
When looking at stereoscopic content, nothing is worse than a sharp
disparity edge that does not align to a well-visible luminance edge.
This leads to the recommendation to actually warp the image and
show it to subjects, as only the combination of depth and luminance
will allow for any conclusion.

If the objective is stereo video, the comparison has to be made on
video, where the tolerance for errors is even higher than it already is
for images. In fact it is so high, that for typical natural image footage,
blurs with a standard deviation of around an entire second did not
show a significant non-equivalence, even after a large number of
trials and subjects.

Finally, our results suggest that the procedure of manual 2D-to-3D
provides indications of what is important and what is not. Auto-
matic and semi-automatic computational 2D-to-3D stereo conver-
sion should learn from practitioners and adapt measures that reflect



their know-how.

5 Conclusion

We have shown how the quality of 2D-to-3D stereo conversion is
difficult to quantify using numerical or perceptual metrics, as users
have a wide tolerance for several important distortions in comparison
to a reference. We have suggested a specific fit to a specific metric
that delivers a moderate correlation to user responses. A perceptual
experiment has indicated an upper bound with respect to four im-
portant distortions: smooth remapping, object removal, spatial blur,
and temporal blur. This indicates that quantifying the 3D impression
from 2D-to-3D stereo conversion cannot be done using numerical
or existing perceptual models of disparity, but requires a metric
for stereoscopic visual equivalence, an exciting avenue of further
research. Additionally, in future work, we would like to apply our
current prediction for computer-generated content with reference
3D information to general content processed by commercial or aca-
demic 2D-to-3D systems. This remains challenging, as in general,
no reference 3D information is available to quantify the distortion.

References

ASSA, J., AND WOLF, L. 2007. Diorama construction from single
images. Comp. Graph. Forum (Proc. EG) 26, 3, 599–608.

BORJI, A., AND ITTI, L. 2013. State-of-the-art in visual attention
modeling. Pattern Analysis and Machine Intelligence, IEEE
Transactions on 35, 1, 185–207.

BUTLER, D. J., WULFF, J., STANLEY, G. B., AND BLACK, M. J.
2012. A naturalistic open source movie for optical flow evaluation.
In European Conf. on Computer Vision (ECCV), 611–625.

CHENG, C.-C., LI, C.-T., AND CHEN, L.-G. 2010. An ultra-low-
cost 2D-to-3D video conversion system. SID 41, 1, 766–9.

DABALA, Ł., KELLNHOFER, P., RITSCHEL, T., DIDYK, P., TEM-
PLIN, K., MYSZKOWSKI, K., ROKITA, P., AND SEIDEL, H.-P.
2014. Manipulating refractive and reflective binocular disparity.
Comp. Graph. Forum (Proc. Eurographics 2014) 33, 2, 53–62.

DIDYK, P., RITSCHEL, T., EISEMANN, E., MYSZKOWSKI, K.,
AND SEIDEL, H.-P. 2011. A perceptual model for disparity.
ACM Trans. Graph. (Proc. SIGGRAPH) 30, 96:1–96:10.

DIDYK, P., RITSCHEL, T., EISEMANN, E., MYSZKOWSKI, K.,
SEIDEL, H.-P., AND MATUSIK, W. 2012. A luminance-contrast-
aware disparity model and applications. ACM Trans. Graph.
(Proc. SIGGRAPH Asia) 31, 6.

FEHN, C. 2004. Depth-image-based rendering (DIBR), compres-
sion, and transmission for a new approach on 3D-TV. In Stereo-
scopic Displays and Virtual Reality Systems XI, SPIE, vol. 5291,
93–104.

GUTTMANN, M., WOLF, L., AND COHEN-OR, D. 2009. Semi-
automatic stereo extraction from video footage. In Proc. ICCV,
136–142.

HOIEM, D., EFROS, A. A., AND HEBERT, M. 2005. Automatic
photo pop-up. ACM Trans. Graph. 24, 3, 577–584.

HOWARD, I., AND ROGERS, B. 2012. Perceiving in Depth, Volume
2: Stereoscopic Vision. Oxford Psychology Series.

HUANG, X., WANG, L., HUANG, J., LI, D., AND ZHANG, M.
2009. A depth extraction method based on motion and geometry
for 2D to 3D conversion. In Proc. IITA, 294–298.

ITTI, L., KOCH, C., AND NIEBUR, E. 1998. A model of saliency-
based visual attention for rapid scene analysis. IEEE PAMI 20,
11, 1254–9.

JONES, G., LEE, D., HOLLIMAN, N., AND EZRA, D. 2001.
Controlling perceived depth in stereoscopic images. In SPIE,
vol. 4297, 42–53.

KANE, D., GUAN, P., AND BANKS, M. 2014. The limits of human
stereopsis in space and time. J Neurosc. 34, 4, 1397–408.

KARSCH, K., LIU, C., AND KANG, S. B. 2014. Depth trans-
fer: Depth extraction from video using non-parametric sampling.
IEEE PAMI 36, 11, 2144–58.

KONRAD, J., WANG, M., AND ISHWAR, P. 2012. 2D-to-3D image
conversion by learning depth from examples. In CVPR, 16–22.

KOPF, J., COHEN, M. F., LISCHINSKI, D., AND UYTTENDAELE,
M. 2007. Joint bilateral upsampling. ACM Trans. Graph. (Proc.
SIGGRAPH) 26, 3.

LANG, M., HORNUNG, A., WANG, O., POULAKOS, S., SMOLIC,
A., AND GROSS, M. 2010. Nonlinear disparity mapping for
stereoscopic 3D. ACM Trans. Graph. (Proc. SIGGRAPH) 29, 4.

LANG, M., WANG, O., AYDIN, T., SMOLIC, A., AND GROSS, M.
2012. Practical temporal consistency for image-based graphics
applications. ACM Trans. Graph. (Proc. SIGGRAPH) 31, 4.

LIU, X., MAO, X., YANG, X., ZHANG, L., AND WONG, T.-T.
2013. Stereoscopizing cel animations. ACM Trans. Graph. (Proc.
SIGGRAPH Asia) 32, 6, 223.

MERKLE, P., MORVAN, Y., SMOLIC, A., FARIN, D., MÜLLER,
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