

Real-time Novel-view Synthesis for Volume Rendering Using a Piecewise-analytic Representation

Gerrit Lochmann ¹ Bernhard Reinert ² Arend Buchacher ¹ Tobias Ritschel ^{2,3}

Motivation

Coherency between images

Avoid costly computations for slightly different views

Application: Stereo synthesis

Application: In-between-frames

Server

Client

Application: Distribution effects / depth-of-field

Related work

Post-Rendering 3D Warping [Mark et al. 1997]

IBR-Assisted Volume Rendering [Müller et al. 1999]

Depth layers

Piecewise integration

Layerwise Reprojection and Compositing

Image-Based Remote Real-Time Volume Rendering [Zellmann et al. 2013]

Our Algorithm

Dividing the ray

VMV 2016

Traversion

Depth

Compositing

Opacity per segment

$$T_i = \exp(-A_i z_i)$$

Color per segment

$$C_i = E_i \cdot T_i$$

$$\kappa(x) = T_0 + (1 - T_0) \cdot \left(T_1 + (1 - T_1) \cdot \left(T_2 + (1 - T_2) \cdot \left(\dots \right) \right) \right)$$

$$\eta(x) = C_0 + (1 - T_0) \cdot \left(C_1 + (1 - T_1) \cdot \left(C_2 + (1 - T_2) \cdot \left(\dots \right) \right) \right)$$

Results

Visual Quality depending on the layer count

Zellmann et al. (2013)

Müller et al. (1999)

Ours

Applications

Conclusion

Benefits

- Novel views in real-time without reshading
- Original color from the original view
- More accurate results than state-of-the-art competitors

Limitations

- Missing details → stretching artifacts
- Cost and bandwidth increase with accuracy (layer count)
- We assume an isotopic phase function
 - → view dependent shading is not supported

Thank you!

Appendix

Error (DSSIM) among competitors

	Ours	Müller	Zellmann
Zaedyus	.031	.041	.081
Cubus	.005	.006	.010
Ictiobus	.027	.022	.070
Celestus	.036	.070	.067
Cloud	.013	.036	.064
Walnut	.025	.063	.109

10° view rotation, 1024 x 1024 pixels

Error (DSSIM) and speed (in ms)

	2 Layers		4 Layers		8 Layers	
	Error	Speed	Error	Speed	Error	Speed
5 Degrees	.035	22.7	.024	24.3	.016	29.0
10 Degrees	.049	24.5	.031	27.6	.020	35.6
15 Degrees	.060	27.7	.037	30.9	.023	41.8

View rotation, Zaedyus data set, 1024 x 1024 pixels, GeForce GTX 980

Application: Remote rendering / latency reduction

Client

