
Vision, Modeling, and Visualization (2014)
J. Bender, A. Kuijper, T. von Landesberger, and P. Urban (Eds.)

Deep Screen Space for Indirect Lighting of Volumes

Oliver Nalbach1 Tobias Ritschel1,2 Hans-Peter Seidel1

1MPI Informatik 2Saarland University / MMCI

Figure 1: Cropped frames from an animated scene with dynamic light, changing participating medium and deforming surfaces,
rendered with our surface-to-volume indirect lighting at 25 fps, 800×600 pixels.

Abstract
We present a method to render approximate indirect light transport from surfaces to volumes which is fully dynamic
with respect to geometry, the medium and the main light sources, running at interactive speed. This is achieved
in a three-step procedure. First, the scene is turned into a view-dependent level-of-detail surfel cloud using fast
hardware tessellation. These surfels are lit and represent the senders of indirect light. Second, the current view of
the volume is converted into a transmittance interval map, containing depth intervals in which the transmittance to
the camera is reduced by the same fraction of the total extinction. These intervals will receive indirect illumination.
Finally, surfels and intervals are linked by splatting the effect of the surfels into a hierarchical framebuffer. This
linking delivers high precision between surfel-interval pairs that exchange much light and is coarser for pairs
exchanging little, without constructing any explicit hierarchical data structure.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Radiosity

1. Introduction

Plausible simulation of indirect lighting constitutes a major
step towards the realistic appearance of virtual scenes. This is
not exclusive to the light transport between surfaces but also
applies to participating media. Rendering of participating
media is still an important challenge even for offline render-
ing. While offline rendering of participating media, e. g., by
means of radiosity [RT87], discrete ordinates [Fat09], diffu-
sion [Sta95], photons [JC98], beams [NNDJ12] or Metropolis
light transport [PKK00] can produce stunning imagery, these
methods usually do not deliver interactive results, in partic-
ular for interactive scenes. In particular, the interaction of

surfaces and volumes in lighting has until now only received
little attention. We present a method to compute approximate
indirect light transport from surfaces to volumes which is
fully dynamic with respect to geometry, the medium and the
main light sources, running at interactive speed.

Our method is based on the idea of screen space shad-
ing [Mit07], where fast rasterization is used to create a frame-
buffer on which shading is computed. In particular, we build
on the idea of a deep screen space [NRS14], where a scene
is tessellated on-the-fly into a surfel-based representation in-
stead of rasterizing it into pixels. The resulting point cloud
is a discrete but complete scene description that overcomes

c© The Eurographics Association 2014.



O. Nalbach, T. Ritschel & H.-P. Seidel / Deep Screen Space for Indirect Lighting of Volumes

important limitations of screen space, while retaining most
of its efficiency. The surfel cloud allows to compute detailed
shading for the near range and approximate shading over
larger distances by splatting to a hierarchical framebuffer.

Deep screen space was used to compute surface shading,
such as ambient occlusion [Mit07], directional occlusion and
bounces [RGS09] or subsurface scattering [JSG09]. In this
work, we extend deep screen space to indirect light transport
from surfaces to volumes. The main challenge is to find a
representation that is suitable for splatting onto. A simple
solution would be to splat cubes to a 3D texture in analogy
to splatting quads into a 2D texture. This however, would
consume prohibitive amounts of storage and compute time
to retain sufficient detail. Instead, we propose to first cache
transmittance for the ray from the camera into the volume at
every pixel. This is similar to Deep Shadow Maps [LV00],
but taking the sensor’s point of view. The ray is marched
once, and we store the depths, at which the accumulated
change of transmittance exceeds certain values. Effectively,
the ray under each pixel is discretized into ray intervals with
likely similar contribution to the sensor. The usual splatting
of the surfels’ contribution onto pixels representing pieces of
surface is then replaced by splatting onto ray intervals.

2. Previous work

Screen space shading is popular, e. g., for ambient occlusion
[Mit07], but suffers from the fact that the information about
the scene is typically limited to very few or only one depth
layer, producing bias. Deep screen space [NRS14] overcomes
some of the screen space limitations by computing a scene
representation which is view-dependent but complete.

For indirect lighting of volumes, many offline methods
based on the idea of instant radiosity [Kel97] exist. Vir-
tual point lights (VPLs) are distributed in the scene from
which light is gathered at sampling points inside the medium
[RSK08]. One shortcoming of those methods is that the dis-
cretization to points leads to intensity singularities close to
the VPLs. This problem has been overcome by means of
intelligent bias compensation [ENSD12] or exchanging the
point lights by ray lights [NED11]. Weber et al. [WKSD13]
show how to compensate for changes in the rendered volume
in an efficient way by progressively readjusting the VPLs.

Volume rendering based on diffusion [Fat09, KD10,
ERDS14] is a general solution to render different types of
illumination, also supporting multiple scattering. This some-
times includes indirect light from surfaces [ERDS14] by
using VPLs. The rendered volumes however typically have
a low spatial resolution and the interaction between surfaces
and volumes is limited to a low number of VPLs. Our tech-
nique resolves fine details between surface pieces and their
nearby rays on a resolution close to the pixel resolution, at
similar speed, and uses thousands of virtual lights.

For the case of single scattering from direct light in homo-

geneous media, recently highly efficient methods emerged,
e. g., by making use of prefiltering and rectification [KSE14].
In contrast, our method deals with indirect single scattering
in heterogeneous media.

Regarding indirect single scattering from specular surfaces
(volume caustics) in heterogeneous media, the method by
Hu et al. [HDI∗10] interactively produces plausible results.
Leveraging that specular surfaces reflect light in only few
directions, pixels affected by caustics are bounded by lines
which are cheap to splat. However, our method deals with
reflections from diffuse surfaces, where the indirect light is
spread over a much larger region of space.

Our transmittance interval map is similar to Deep Shadow
Maps [LV00] but created from the sensor’s perspective. Dif-
ferent from the original, our map is built in linear time while
avoiding sorting or iteration over the transmittance values
which do not fit GPUs. Opacity shadow maps [KN01] seek to
improve the efficiency of deep shadow maps by representing
the volume using geometric primitives and rasterizing them
to planar maps which perpendicular to the light’s direction,
integrating the density along rays from the light. In contrast
to that, we don’t use planar slices as we cannot expect them
to divide the medium into intervals of similar importance,
yielding good sampling intervals. Deep opacity maps [YK08]
iterate the idea by using slices of same depth with respect to
the depth at which the medium is entered in each pixel. How-
ever, the approach targets hair rendering and, using regular
intervals, implicitly assumes a largely homogeneous medium.
Again for rendering hair, Mertens et al. [MKBVR04] con-
struct a compact representation of 1D visibility functions
along rays, too, however, it works by rasterizing individual
hairs and cannot be directly transferred to continuous vol-
umes. Inverse to all these methods, we store a mapping from
transmittance values to depths, from the perspective of the
camera, instead of from the light’s point of view.

3. Background

As our approach method computes single scattering (Sec. 3.1)
using a deep screen space pipeline (Sec. 3.2) we will first
recall the definitions and notations regarding both.

3.1. Single scattering

In computer graphics, the interaction of light with a partici-
pating medium is often described by the equation of radiative
transfer [Cha50, PH10]:

Li(x,ωi) = τ(x← xs)Lo(xs,−ωi)︸ ︷︷ ︸
Attenuated light from first surface

+
∫ t

0
τ(x← x′)S(x′,−ωi)dt′︸ ︷︷ ︸

Attenuated in-scattered or emitted light

c© The Eurographics Association 2014.



O. Nalbach, T. Ritschel & H.-P. Seidel / Deep Screen Space for Indirect Lighting of Volumes

Here, xs is the location of the first surface in direction ωi
when starting at x, τ(a← b) is the transmittance function,
describing the amount of light surviving absorption and out-
scattering between points b and a, x′ = x+ t′ωi is a position
along the ray at distance t′, with xs = x+tωi and S the source
term, accounting for in-scattered or emitted light.

We base our computations on the assumption of single
scattering, i. e., we only consider light paths starting at the
main light source and being scattered towards the camera at
some point inside the medium after none or exactly one prior
bounce from a surface. In the following, we refer to the zero
and one bounce cases by direct and indirect single scattering,
respectively. Also, we assume that the medium itself does not
emit light. Our simplified source term then becomes

S(x′,−ωi) = σs(x′)
∫
S2

ρ(x′,−ω
′,−ωi)Ld/1(x

′,ω′)dω
′,

where Ld/1 only considers direct or one-bounce indirect light
and we are integrating over all directions ω

′ of the unit sphere
S2. Here, σs is the scattering coefficient, determing the prob-
ability of scattering and ρ is the so-called phase function,
describing the angular distribution of the scattering depend-
ing on the angle between −ω

′ and −ωi. We assume that
absorption and scattering probability are both linearly depen-
dent on the density of the medium which is given as a scalar
field over a three-dimensional domain.

For a more extensive theoretical background, we refer to
survey papers like the one by Max [Max95] or the book
chapter by Pharr [PH10] and will only describe the actual
computations we perform (Sec. 4.2).

3.2. Deep screen space

In the following, we outline the deep screen space pipeline
which we use to transport light from the surfaces in the
scene into the medium. For a detailed description, we re-
fer to [NRS14]. The scene primitives are first tessellated into
a view-dependent surfel representation which is then splatted
onto a multi-resolution deferred shading buffer to compute
the effect of the surfels on their surroundings (e. g., trans-
port of indirect light). Lastly, the multiple resolutions are
combined to a final image.

Tessellation of the scene into a surfel cloud The first step
comprises turning the input triangle mesh of the scene into
a surfel cloud. A surfel is an oriented disk defined by its
position, normal and radius [PZVBG00]. The surfel cloud
serves as an approximation of the original scene geometry
using a uniform primitive type which significantly simplifies
shading computations.

To generate surfels from triangles efficiently, hardware
tessellation in “point mode” is used [BBH13]. This is done in
such a way that all surfels have approximately equal size in
screen space, explicitly including triangles seen under grazing
angles as well as those which are back-facing.

In
pu

t

Te
ss

el
la

tio
n

...
po

in
t m

od
e

Figure 2: Triangles are “surfelized” depending on their dis-
tance to the camera, leveraging hardware tessellation in point
mode. Vertices are depicted as rectangles, surfels as disks.

Splatting the point cloud onto a framebuffer To compute
the actual effect, splatting is used to scatter the shading contri-
bution from each surfel to multiple pixels. For this, a special
framebuffer layout based on interleaved sampling [SIMP06]
is employed. The framebuffer is organized as an array of
lmax textures where each texture corresponds to a different
image resolution level. On level l ≥ 0, the pixels of the orig-
inal image are partitioned into 2l × 2l small “sub-buffers":
Neighborhoods consisting of 2l × 2l pixels are taken and
each sub-buffer is assigned one of the pixels at random. The
pixel takes the same relative position in the sub-buffer that
the neighborhood had in the original image (Fig. 3).

Figure 3: The first three levels of a possible framebuffer
layout (left to right). The total number of pixels on each
level is identical, however the original pixels are distributed
among more and more sub-images as the level number in-
creases. Consequently, same-sized screen areas correspond
to increasing world space areas, but with fewer samples.

The surfels’ shading contribution to disjoint, increasingly
large (world space) shells around their centers is computed on
increasing levels. To this end, for each surfel, a shell is splat-
ted into one random sub-buffer on each level. Point-primitives
are used to tightly bound the shells in the framebuffer.

Drawing a quad of size n×n into a random sub-buffer of
image level l will invoke the fragment shader for a random
subset of (at least) n2 pixels in a 2ln× 2ln neighborhood
of the original framebuffer. Thus, with increasing level, the
method achieves a gradual decrease of precision in relating
a surfel with surfaces of increasing distance from it. Every
detail of the scene still can receive shading from the surfel,
only the probability decreases. To compensate for the fact
that each pixel can only be affected by 1/(2l ·2l) of all surfels
on level l, the surfels’ areas are scaled accordingly. Effec-
tively, each enlarged surfel serves as approximation for 2l ·2l

original surfels.

c© The Eurographics Association 2014.



O. Nalbach, T. Ritschel & H.-P. Seidel / Deep Screen Space for Indirect Lighting of Volumes

The size of the shells (and consequently of the splats)
depends on the concrete effect being computed. It is de-
termined by a function getMaxDist, returning the world
space distance in which the effect of a particular surfel be-
comes smaller than a user-defined threshold ε.

Drawing a splat will invoke the fragment shader which
is passed the relevant attributes of the surfel as well as the
inner and outer radius of the shell associated with the splat.
The latter two are necessary to check if world space positions
associated with a fragment are actually inside the shell for
which the effect is to be computed. The fragments are blended
suitably to sum up the effect of all splats.

The formula to compute the splat size and the actual effect
computations in the fragment shader depend on the specific
effect. We discuss them for the case of indirect lighting of
volumes in Sec. 4.2.

Reconstructing the final image After splatting, the level
textures are still partitioned into sub-buffer grids. They are
“unshuffled” and the levels are blurred separately to eliminate
noise due to the random sub-sampling. Finally, the contri-
bution from different levels is summed up in an appropriate
way.

4. Volume shell splatting

Surface Volume

Pixel

Surfel Surfel
Intervals

RaysRays

Frameb. Frameb.

Figure 4: In contrast to surface-to-surface shading where sur-
fels influence nearby pixels (left), for the surface-to-volume
case (right) surfels influence ray intervals at nearby pixels.

A slow but correct approach to compute indirect lighting
from a surfel cloud onto a volume would be to iterate for
each surfel over all points on all camera rays and compute the
contribution to the sensor in a cubic iteration. We will reduce
this iteration to a linear traversal of ray segments, allowing
for a parallel hierarchical evaluation with guaranteed error
bounds at interactive rates as follows:

Transmittance interval map At every pixel we need to it-
erate over all points on a ray through that pixel to compute
the contribution from a surfel to the sensor. In practice, the
number of points is in the order of hundreds and a pixel re-
ceives splats from many surfels. We significantly reduce this
iteration by caching relevant information from the ray traver-
sal in a transmittance interval map. This map decomposes
the ray into a low number of intervals which are expected
to have similar contribution to the sensor. When splatting,

instead of traversing the ray, only the intervals are traversed.
The transmittance interval map is explained in Sec. 4.1.

Splatting Second, we exploit that the screen space area of
rays affected by a surfel can be tightly bound when giving
an error bound ε in the same way as the screen space area of
surfaces affected by a surfel was bound previously (Fig. 4).
This bounding avoids that each surfel has to iterate all rays
(pixels) and instead only iterates over some rays (pixels). The
splatting is explained in Sec. 4.2.

4.1. Transmittance interval map

d1

τmin

d2 d3 d4 d5 d6

1

0
Tr
an

sm
itt
an

ce

Figure 5: Transmittance interval map at one pixel. Intervals
between the distances d1 to dn equally divide the transmit-
tance range between the maximum 1 and the minimum τmin.

Our strategy is to split the ray under each pixel into in-
tervals of equal transmittance to the sensor. The process
is independent for each pixel and will be described for a
pixel p in the following. We parameterize the n ray intervals
under pixel p by a sequence {d1, . . . ,dn ∈ R} of distance
intervals. The 3D positions {x1, . . . ,xn ∈ R3} of the ray in-
terval start and end points can be computed from those dis-
tances, the view parameters and the pixel coord p. Let τ(d)
be the transmittance at distance d along the ray as defined in
Sec. 3.1, which can be computed iteratively by front-to-back
ray-marching [Max95]. First, the largest distance d1 such that
τ(d1) = 1 and the minimum of τ which we denote as τmin are
found. We refer to the distance where τmin is achieved by dn.
This is done by ray-marching the volume front-to-back once,
using a maximum of nmax steps, potentially stopping at an
intersection point with a solid surface. Whether and where
the latter occurs is derived from a deferred shading position
buffer. Finally, a second ray-marching pass starts at distance
d1 and stores the smallest sampling distances d2 to dn such
that τ(di)< 1− i(1− τmin)/(n−1) as shown in Fig. 5. As τ

is approximated by accumulation with finite step sizes, the
inversion is also approximate i. e., the fraction of transmit-
tance is also only almost equal. (Put differently, the vertical
distance of the dotted lines in Fig. 5 is not fully equal.)

Besides the intervals, we also store the minimal transmit-
tance values τmin for all pixels. They are later used during
splatting (Sec. 4.2) to efficiently determine the extinction of
the in-scattering on the way to the camera.

c© The Eurographics Association 2014.



O. Nalbach, T. Ritschel & H.-P. Seidel / Deep Screen Space for Indirect Lighting of Volumes

In the following, we will use the name transmittance inter-
val map for the map holding all di and the minimal transmit-
tance value τmin for each pixel. In contrast to deep shadow
maps, which store a mapping from depths to transmittance
values, the transmittance interval map stores an inverse map-
ping from transmittance values to depths.

Jittering To avoid banding artifacts, we jitter the length of
the first ray-marching step, which is routinely done in classic
methods. Similarly, we add the same random offset to all the
transmittance thresholds (determining where to place the sam-
ples) per pixel, and use τ(di)< 1−(i−ξ)(1−τmin)/(n−1),
where ξ is a uniform random variable between 0 and 1. Fig. 6
demonstrates the effectiveness of this approach.

No JiƩering JiƩered

Figure 6: The relatively large step size we use leads to band-
ing artifacts (left), jittering resolves this problem.

Encoding During splatting, the transmittance interval map
will receive light from surfels several hundred times. For this
reason, we encode the transmittance interval map to reduce
bandwidth when actually exchanging radiance.

We use n = 16 and store the di in an unsigned integer tex-
ture of 4×32 = 128 bits per pixel by encoding the number of
ray-marching steps between the samples (and from the cam-
era to the first sample) in 8 bit each. Doing this, we assume
that the samples are not further than 255 steps apart, which is
valid if the medium’s density varies only slowly. Given the
camera’s position and the ray marching step length, we can
reconstruct the sampling positions precisely (Fig. 7).

Finally, to compute the in-scattering light at each sam-
pling position, the scattering coefficients of the medium at
those points are needed. Since the sampling positions are
known, we can pre-fetch the coefficients. For our case, we
store the coefficients c1 to cn at the respective distances d1
to dn by encoding them relative to the maximal coefficient
cmax = max{c1, . . . ,cn} in 8 bit each. Again, we use a 128 bit
texture. The remaining 8 bits are used to encode cmax rela-
tive to the maximal scattering coefficient across the whole
medium, which we assume to be known.

4.2. Splatting to the sampling positions

To light a volume from a surface, we need to enumerate pairs
of deep screen space surfels (representing the surface) and

1

1511

6

Figure 7: Four sampling depths from a transmittance inter-
val map. Brighter pixels correspond to larger depth. Note the
smaller depth range for the cloud-parts due to the adaptive
sampling which concentrates samples in the denser areas.

pixels of the transmittance interval map (representing the
volume). A simple, but prohibitively slow, solution would
be to enumerate all pairs. Instead, we enumerate pairs with
a probability proportional to an approximate bound of their
light transport. Doing so, strongly-coupled pairs are more
likely to be evaluated resulting in more precision, pairs with
weak exchange are computed rarely and with less precision.

Surfel information To compute the light transport from the
surfels to the volume, we first need to compute the irradiance
at each surfel. We use a cube shadow map for visibility checks
with respect to point light sources and simple ray-marching
with constant step size to determine the extinction of light
between the light source and the surfel.

Bounding As outlined in Sec. 3.2, the size of the splat for
a surfel (with possibly increased radius) is determined by
a function getMaxDist depending on the surfel S and
a threshold ε. Given the radiosity BS and radius rS of the
surfel, we compute the world-space radius of the splat as
rS max

(
BS,r,BS,g,BS,b

)
/ε, which is based on the assump-

tion of a quadratic fall-off of the radiance received by other
points with increasing distance. Note that surfels which are in
shadow are discarded automatically as their radiosity amounts
to 0. Unfortunately, we cannot easily take the density of the
medium around the surfel into account here.

The bound for volumes is naturally less tight, in particular
for small splats: When a small splat is drawn to nearby pixels,
the potential for overdraw is small. When a small splat is
drawn to nearby rays, little overdraw in the image occurs,
however, due to the additional depth-dimension, a small splat
is likely to have an effect on only a small fraction of the
intervals of the ray below the pixel.

c© The Eurographics Association 2014.



O. Nalbach, T. Ritschel & H.-P. Seidel / Deep Screen Space for Indirect Lighting of Volumes

Splatting At each pixel p covered by a splat, we are given a
surfel S with its position xS, normal nS, radius rS and radiosity
BS as well as the inner and outer radius of the shell associated
with the splat. Also, by using three texture lookups, we have
access to the transmittance interval map containing d1 to dn,
the transmittance τmin, the cached scattering coefficients ci of
the di and finally the maximum coefficient cmax with respect
to which they have been encoded.

x1 x2 x3 x4 x5 x6
S

Figure 8: Only at points inside the shell (triangles) associated
with the surfel S, the latter’s contribution is computed.

We march over all sampling points x2 to xn corresponding
to the di, adding up the radiance contributed by S to the pixel
p. At each point, we first have to check whether xi is inside
the shell belonging to the splat (Fig. 8). If this is not the case,
we proceed with the next point, otherwise we compute the
contribution of the surfel S by

Lin(xi,xS)︸ ︷︷ ︸
In-scattering

·
(

1− i (1− τmin)

n−1

)
︸ ︷︷ ︸

Transmittance

· (di−di−1)︸ ︷︷ ︸
Segment length

.

The first term is the in-scattering from the surfel, computed
using the looked-up scattering coefficient, the second term
corresponds to the transmittance between di and the camera
(cf. Sec. 4.1) and the third is the length of the ray segment
associated with the sample. The in-scattering is computed as

Lin(xi,xS) =
πrS

2 max(cosαS,0)

max
(
‖xi−xS‖2

2 ,δ
)BS · ci ·ρ(αscatt) ,

where αS is the angle between the surfel’s normal and the vec-
tor pointing from the surfel to xi and ρ is the phase function
depending on the scattering angle αscatt between the vector
from xS to xi and the vector at xi pointing towards the cam-
era (Fig. 9). To avoid intensity singularities near the surfels,
we clamp the distance ‖xi−xS‖2

2 in the computation of the
in-scattering to a minimum of δ > 0.

x i

xS

nS

S

α scatt

αS

Figure 9: In-scattering from a surfel S at position xS with
normal nS to a point xi.

Blurring After splatting and unshuffling the array of textures
containing the solution for the different shells, we perform a
Gaussian blur. We use a Gaussian MIP map over the textures
and replace level l with an up-sampled version of level l +1
of its MIP map.

4.3. Implementation Details

Direct single scattering To compute the direct single scat-
tering from the main light sources, we perform analogous
computations at all pixels, merely replacing the surfel by the
direct light source and dropping the restriction to a shell.

Number of ray marching steps As a hint for the necessary
number of ray-marching steps when preparing the transmit-
tance interval map, the depth of the wall in our test scene
corresponded to roughly 200 steps. The maximal number of
steps nmax should cover the whole range to the far plane.

Phase function We used the popular phase function by
Henyey and Greenstein [HG41] in our experiments with vary-
ing anisotropy settings.

5. Results

Fig. 10 compares results obtained using our method to a ref-
erence based on ray-marching and ray-tracing for gathering
indirect light. Where not specified otherwise, we used a reso-
lution of 800×600 px and a Nvidia GTX 770 graphics card.
The number of levels for the hierarchical framebuffer was
constantly set to six with an effect threshold ε of 0.06 and
about 14k surfels were used to represent the original scene.
The single scattering was linearly scaled to accentuate it.

A notable difference is in brightness. On one hand, our
method exhibits increased brightness towards the inside of the
medium due to the lack of attenuation between the surfels and
the receiving sampling points. On the other hand, the bright-
ness is underestimated over the long range since we clamp
contributions less than ε. The sub-sampling in our method
leads to noise which makes blurring necessary. This is in
particular visible around the boundaries of the medium which
are less defined. Still, our result looks plausible while being
orders of magnitude faster than the ray-marching approach.

The main parameter influencing quality is the effect thresh-
old ε. Fig. 11 shows how it influences the result and computa-
tion times. For lower quality settings (larger values of ε), the
cloud becomes darker and its boundary is less defined due to
stronger blurring.

Performance Tbl. 1 gives an exemplary performance break-
down for Fig. 10a. As is to be expected, the running time is
dominated by the time for splatting. Another costly part is
generating the transmittance interval map. We only list the
timings for computations related to the indirect lighting of
the volume. Besides classic direct lighting of the surfaces,

c© The Eurographics Association 2014.



O. Nalbach, T. Ritschel & H.-P. Seidel / Deep Screen Space for Indirect Lighting of Volumes

Deep screen space ReferenceRay marching & ray tracingDeep screen space

(b
) C
or
ne
ll 
Bo
x,
 s
e
ng
 2

(a
) C
or
ne
ll 
Bo
x,
 s
e
ng
 1

20 ms >1 s

14 ms >1 s

Figure 10: The first column contains our results; the second shows the reference; the last two columns contain details of our
result and the reference, respectively. Please see the video for some animated scenes.

ε = 1.0, 4.5 ms ε = 0.035, 31 msε = 0.35, 9 ms

N
o 
Fi
lte
rin
g

Bl
ur
re
d

Figure 11: Crops from the Cornell box scene using different
values for epsilon, without (top) and with (bottom) blurring.
Only direct and indirect single scattering are shown. The
timings correspond to the splatting for indirect scattering
alone as other parts are unaffected by the changed setting.

our result images also show direct single scattering and ab-
sorption of direct light by the medium which typically took
us about 1.5 and 3 ms to compute, respectively.

Limitations The main shortcoming of deep screen space is
its lack of indirect visibility, i. e., we have no information

Stage Time
Shadow Map 0.6 ms
Transmittance Interval Map + 8 ms
Scattering Coefficient Caching + 1.4 ms
Surfel Cloud Generation + 3 ms
Splatting + 20 ms
Unshuffling + 1 ms
Blurring + 3 ms
Summing + 0.4 ms
Indirect Single Scattering = 37.4 ms

Table 1: Computation time for different stages.

about the visibility between the surfels and the points receiv-
ing shading from them. In particular, the indirect light is not
occluded by surfaces or attenuated by the medium.

One theoretical shortcoming of our method is the fact that
it does not allow to bound the effect of a surfel onto rays but
only onto ray intervals. If a surfel only affects a small number
n′ of intervals in a ray with n� n′ intervals, the splatting
will still traverse all n ray intervals. In future work, for large
n it could be useful to also cull groups of ray intervals.

Our chosen encoding for the volume map using sixteen
8 bit values to fit everything into just one texture is not suf-
ficient if either the density of the medium or the lighting

c© The Eurographics Association 2014.



O. Nalbach, T. Ritschel & H.-P. Seidel / Deep Screen Space for Indirect Lighting of Volumes

exhibit high frequencies (e. g., due to rapidly changing visi-
bility). However, nothing prevents from using more samples
at the cost of slower computations.

A simplification was to only consider media whose prop-
erties do not vary with the wavelength, i. e., monochromatic
media. The extension to the more general case only amounts
to performing analogous computations for each wavelength,
though, obviously at larger computational cost.

6. Conclusions

This paper presented an interactive method to compute light
transport from surfaces to volumes in fully dynamic scenes.
This was achieved by discretizing the problem into two
adapted representations that allow for efficient hierarchical
transfer. The first is a deep screen space, represented by a
surfel point cloud corresponding to senders of indirect light
to the current view. The second is a transmittance interval
map, that re-parameterizes the volume and the scene as a col-
lection of ray intervals, also for the current view. Transport
from surfaces into the volume can now be achieved by hier-
archical splatting. All steps can be performed at interactive
rates for dynamic scenes and work without maintaining any
pre-computed data structures to be re-used over frames.

Future work will consider more general forms of transport,
such as from volumes to surfaces or multiple bounces. We
have only demonstrated bounces from diffuse surfaces into
the medium, yet specular surfaces using Phong instead of
Lambertian surfels are a potential extension.

References
[BBH13] BARÁK T., BITTNER J., HAVRAN V.: Temporally coher-

ent adaptive sampling for imperfect shadow maps. Comp. Graph.
Forum (Proc. EGSR) 32, 4 (2013), 87–96. 3

[Cha50] CHANDRASEKHAR S.: Radiative Transfer. Oxford Univ.
Press, 1950. 2

[ENSD12] ENGELHARDT T., NOVÁK J., SCHMIDT T.-W.,
DACHSBACHER C.: Approximate bias compensation for ren-
dering scenes with heterogeneous participating media. Comp.
Graph. Forum (Proc. Pacific Graphics) 31, 7 (2012), 2145–54. 2

[ERDS14] ELEK O., RITSCHEL T., DACHSBACHER C., SEIDEL
H.-P.: Interactive light scattering with principal-ordinate propa-
gation. In Proc. Graphics Interface (2014). 2

[Fat09] FATTAL R.: Participating media illumination using light
propagation maps. ACM Trans. Graph. (TOG) 28, 1 (2009), 7. 1,
2

[HDI∗10] HU W., DONG Z., IHRKE I., GROSCH T., YUAN G.,
SEIDEL H.-P.: Interactive volume caustics in single-scattering
media. In Proceedings of the 2010 ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games (2010), I3D ’10, pp. 109–
117. 2

[HG41] HENYEY L. G., GREENSTEIN J. L.: Diffuse radiation in
the galaxy. Astrophysical J 93 (Jan. 1941), 70–83. 6

[JC98] JENSEN H. W., CHRISTENSEN P. H.: Efficient simulation
of light transport in scenes with participating media using photon
maps. In Proc. SIGGRAPH (1998), pp. 311–20. 1

[JSG09] JIMENEZ J., SUNDSTEDT V., GUTIERREZ D.: Screen-
space perceptual rendering of human skin. ACM Trans. App.
Perception 6, 4 (2009), 23. 2

[KD10] KAPLANYAN A., DACHSBACHER C.: Cascaded light
propagation volumes for real-time indirect illumination. In Proc.
ACM i3D (2010), pp. 99–107. 2

[Kel97] KELLER A.: Instant radiosity. In Proc. SIGGRAPH
(1997), pp. 49–56. 2

[KN01] KIM T.-Y., NEUMANN U.: Opacity shadow maps. In
Proc. EGWR (2001). 2

[KSE14] KLEHM O., SEIDEL H.-P., EISEMANN E.: Prefiltered
single scattering. In Proc. ACM i3D (2014), pp. 71–8. 2

[LV00] LOKOVIC T., VEACH E.: Deep shadow maps. In Proc.
SIGGRAPH (2000), Proc. SIGGRAPH, pp. 385–392. 2

[Max95] MAX N.: Optical models for direct volume rendering.
IEEE Trans. Vis. Comp. Graph. 1, 2 (1995), 99–108. 3, 4

[Mit07] MITTRING M.: Finding next gen: Cryengine 2. In ACM
SIGGRAPH 2007 courses (2007), pp. 97–121. 1, 2

[MKBVR04] MERTENS T., KAUTZ J., BEKAERT P., VAN REETH
F.: A self-shadow algorithm for dynamic hair using density clus-
tering. In ACM SIGGRAPH 2004 Sketches (2004), p. 44. 2

[NED11] NOVÁK J., ENGELHARDT T., DACHSBACHER C.:
Screen-space bias compensation for interactive high-quality global
illumination with virtual point lights. In Proc. ACM i3D (2011),
ACM, pp. 119–124. 2

[NNDJ12] NOVÁK J., NOWROUZEZAHRAI D., DACHSBACHER
C., JAROSZ W.: Virtual ray lights for rendering scenes with
participating media. ACM Trans. Graph. (Proc. SIGGRAPH) 31,
4 (2012), 60. 1

[NRS14] NALBACH O., RITSCHEL T., SEIDEL H.-P.: Deep
screen space. In Proc. ACM i3D (2014), ACM. 1, 2, 3

[PH10] PHARR M., HUMPHREYS G.: Physically Based Render-
ing, Second Edition: From Theory To Implementation, 2nd ed.
Morgan Kaufmann Publishers Inc., 2010. 2, 3

[PKK00] PAULY M., KOLLIG T., KELLER A.: Metropolis light
transport for participating media. 1

[PZVBG00] PFISTER H., ZWICKER M., VAN BAAR J., GROSS
M.: Surfels: Surface elements as rendering primitives. In Proc.
SIGGRAPH (2000), pp. 335–342. 3

[RGS09] RITSCHEL T., GROSCH T., SEIDEL H.-P.: Approximat-
ing dynamic global illumination in image space. In Proc. ACM
i3D (2009), ACM, pp. 75–82. 2

[RSK08] RAAB M., SEIBERT D., KELLER A.: Unbiased global
illumination with participating media. In Monte Carlo and Quasi-
Monte Carlo Methods 2006, Keller A., Heinrich S., Niederreiter
H., (Eds.). 2008, pp. 591–605. 2

[RT87] RUSHMEIER H. E., TORRANCE K. E.: The zonal method
for calculating light intensities in the presence of a participating
medium. In ACM SIGGRAPH Computer Graphics (1987), vol. 21,
pp. 293–302. 1

[SIMP06] SEGOVIA B., IEHL J. C., MITANCHEY R., PÉROCHE
B.: Non-interleaved deferred shading of interleaved sample pat-
terns. In Proc. Graphics Hardware (2006), pp. 53–60. 3

[Sta95] STAM J.: Multiple scattering as a diffusion process. In
Rendering Techniques. 1995, pp. 41–50. 1

[WKSD13] WEBER C., KAPLANYAN A., STAMMINGER M.,
DACHSBACHER C.: Interactive direct volume rendering with
many-light methods and transmittance caching. In Proc. VMV
(2013), pp. 195–202. 2

[YK08] YUKSEL C., KEYSER J.: Deep opacity maps. In Comp.
Graph. Forum (2008), vol. 27, pp. 675–80. 2

c© The Eurographics Association 2014.


