
Eurographics Symposium on Rendering 2003
Per Christensen and Daniel Cohen-Or (Editors)

An Efficient Spatio-Temporal Architecture for Animation
Rendering

Vlastimil Havran, Cyrille Damez, Karol Myszkowski, Hans-Peter Seidel

MPI Informatik, Saarbruecken, Germany†

Abstract
Producing high quality animations featuring rich object appearance and compelling lighting effects is very time
consuming using traditional frame-by-frame rendering systems. In this paper we present a rendering architecture
for computing multiple frames at once by exploiting the coherencebetween image samples in the temporal domain.
For each sample representing a given point in the scene we update its view-dependent components for each frame
and add its contribution to pixels identified through the compensation of camera and object motion. This leads
naturally to a high quality motion blur and significantly reduces the cost of illumination computations. The re-
quired visibility information is provided using a custom ray tracing acceleration data structure for multiple frames
simultaneously. We demonstrate that precise and costly global illumination techniques such as bidirectional path
tracing become affordable in this rendering architecture.

Categories and Subject Descriptors (according to ACM
CCS): I.3.2 [Computer Graphics]: Graphics Systems;
I.3.3 [Computer Graphics]: Picture/Image Generation; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Re-
alism

1. Introduction

The rendering of production quality CG movies is consid-
ered very expensive. According to industry reports the av-
erage cost of a single frame computation is still counted in
multiple hours. This means that many weeks of computation
on expensive rendering farms might be required to produce
a full length movie. Reducing this time is of significant prac-
tical importance.

Long computation times are directly related with the com-
plexity of rendered scenes which incurs high costs in terms
of visibility, shading (sometimes including global illumi-
nation), and antialiasing computation. In current render-
ing architectures, animations are computed frame by frame.
Therefore, such architectures are oriented toward the spa-
tial dimension while mostly ignoring the temporal one. This

† email:{Vlastimil.Havran,Cyrille.Damez,Karol.Myszkowski,Hans-
Peter.Seidel}@mpi-sb.mpg.de

means that a vast majority of computation must be repeated
from scratch for each frame. Since temporal coherence is
poorly exploited, temporal aliasing problems are also more
difficult to combat.

Our goal is to develop a more balanced rendering archi-
tecture which treats the temporal dimension on a more equal
basis by computing a sequenceof frames simultaneously. In-
stead of organizing pixel rendering across the image plane,
we consider pixels distributed in the temporal domain which
represent the same sample point in the scene for subsequent
frames. Such pixels can easily be identified by compensating
for the motion of the camera within the currently considered
animation segment. This presupposes that animation paths
are known in advance for the camera and all moving objects,
which is the case for the off-line production of high-quality
animation sequences.

Our rendering solution is based on multi-frame ray trac-
ing which for a given ray provides visibility information for
several pre-selected instances of time at once. We show that
some standard tasks in rendering such as shading, textur-
ing, and spatio-temporal antialiasing can be efficiently per-
formed in our rendering architecture. Moreover, some ex-
pensive sample-based global illumination algorithms such
as bidirectional path tracing (BPT), become affordable us-
ing our approach.

c© The Eurographics Association 2003.

106

http://www.eg.org
http://diglib.eg.org

Havran et al. / An Efficient Spatio-Temporal Architecture for Animation Rendering

The framework is efficient not only from the standpoint of
exploiting the spatio-temporal coherence to reduce the com-
putation load, but also the access to data structures is well
localized which enables more efficient use of system mem-
ory caches. Also, through localizing the computation to co-
herent regions in the image space efficient disc buffering for
rendered frames is designed, which in practice limits the res-
olution of frames only by the disc capacity.

We believe that this work makes the following contribu-
tions:

• Proposing an efficient architecture for animation render-
ing which exploits well the spatio-temporal coherence be-
tween frames and features coherent patterns of access to
data structures in memory.

• Elaborating an efficient acceleration data structure for ray
tracing in dynamic environments which makes it possible
to solve visibility queries for a number of frames at once.

• Extending the BPT algorithm toward re-using the global
illumination samples in the temporal domain.

• Demonstrating efficient motion blur, texturing, and shad-
ing computations within our rendering framework.

In the following section we briefly discuss previous work
on rendering and global illumination techniques from the
standpoint of aggregated space-time processing. In Section 3
we give an overview of the architecture of our animation
rendering system whose central part is a multi-frame ray
tracer. We present the acceleration data structures that are
used in this ray tracer in Section 4. As an example of the
time-domain enabled global illumination solution based on
the multi-frame ray tracer we describe our extensions of the
BPT algorithm in Section 5. We discuss surface shading and
motion blur solutions adapted to our animation rendering
framework in Section 6 and 7. In Section 8 we present the
results obtained using our techniques and we conclude this
work in Section 9.

2. Previous Work

In this section we discuss only those animation rendering
and global illumination techniques which can handle effi-
ciently both camera and object motion in the scene. For this
reason we skip in our discussion many efficient techniques
designed specifically for static camera such as 6, 22 because
they do not fit to the requirements imposed on our anima-
tion framework. In particular, we are interested in such tech-
niques that are designed specifically for space-time process-
ing through exploiting the temporal coherence between the
subsequent animation frames.

The latter requirement is not fulfilled by a vast majority
of architectures for animation rendering developed both in
industry and academia. Current standard industrial solutions
such as PhotorealisticRenderMan 2, Maya Rendering Sys-
tem 32 , or Softimage process all frames independently one

after another. The academic research on rendering architec-
tures is focused mostly on designing object-oriented frame-
works which offer high flexibility in handling various shape
modeling and appearance rendering techniques (refer to 15

for a recent overview of such frameworks).

In the following section we discuss ray tracing exten-
sions that are designed towards handling animation se-
quences. Then we give a brief overview of global illumi-
nation solutions which share the results of the computation
between frames. Finally, we recall state-of-the-art solutions
for spatio-temporal antialiasing which is an integral part of
any production quality animation system.

2.1. Ray Tracing

Temporal coherence has been intensively investigated in ray
tracing. Some solutions exploit the coherence directly on the
level of shaded samples (pixels). In keyframe-based anima-
tion pixels in in-between frames can be derived through lin-
ear interpolation between two neighboring keyframes 26 . For
interpolation only keyframe pixels with the same ray trees
are considered. However, this approach is not conservative
in terms of visibility and produces visually acceptable re-
sults for one to three in-between frames only. Better con-
trol of the visibility can be achieved by reprojecting pixels
from a reference frame to neighboring frames through 3D
warping which requires depth information for each pixel 1 .
Pure sample-based reprojection may lead to significant fluc-
tuations of density of warped samples in derived frames, so
better image quality can be obtained by applying per object
4D radiance interpolants with guaranteed bounds on error 3.

Since the efficiency of shading interpolation is signifi-
cantly reduced for scenes with complex visibility, procedural
textures, and glossy objects, some ray tracing solutions ex-
ploit temporal coherence by reusing the results of ray-object
intersection tests and then recompute shading. Chapman et
al. 10 consider a single pixel and process its value for all
frames in an animation. They trace the primary ray for this
pixel and find all frames for which a given object intersection
is valid. Then they recurse for each higher order ray always
considering all frames at once. Originally this approach is
limited only to the translational motion of objects, still cam-
era, and relies on bounding volumes fully containing each
object for all of its positions during the whole animation,
which may lead to poor performance of ray-object intersec-
tion tests. Essentially our strategy of pixel computation is
similar, but in our solution we overcome all discussed limi-
tations of 10 .

Shinya 29 proposes a spatio-temporal antialiasing algo-
rithm in which camera and object motion compensation tra-
jectories are used to trace pixels, which roughly correspond
to the same object point in the temporal domain. The follow-
up paper 30 extends this algorithm to handle moving shad-
ows, reflections, and refractions in the ray tracing context.

c© The Eurographics Association 2003.

107

Havran et al. / An Efficient Spatio-Temporal Architecture for Animation Rendering

This requires storing a complete ray tree for each pixel in-
cluding shadow masks for all light sources and matrices
transforming all intersection points in the tree into the im-
age plane. Since many frames (128 as reported by the author
29) must be processed at once to achieve good antialiasing
results, the memory requirements are very high. Also, the
processing of reflections and refractions is based on some
approximations, and it is not clear whether the algorithm
is conservative in handling occlusions for secondary and
higher order intersection points because the pixel flow sep-
aration for such points is not discussed. It is not clear how
to extend the algorithm to handle lighting changes between
frames resulting from global illumination.

Temporal coherence can be also exploited on the level of
the acceleration data structures used to minimize the num-
ber of ray-object intersection tests. The most general solu-
tions extend traditional spatial acceleration data structures
by adding a time dimension 17, 18 . Another common sense
approach relies on separating static and dynamic scene data
and updating only the latter for each frame through apply-
ing transforms which describe the object motions 5, 24, 35 . In
our approach we extend the concept of static and dynamic
objects for multiple frames and single ray geometry at once.

2.2. Global Illumination

Temporal coherence in global illumination computations
(refer to the recent survey paper 13 on this topic for more de-
tails) can be considered at various levels ranging from ready
to display shaded pixels to simple visibility samples shared
between frames. Making use of the coherence at a higher
level is generally the approach chosen for interactive appli-
cations where fast response time is a crucial factor. For ex-
ample in the Render Cache technique 37 shaded pixels are
reprojected from the previous frames to the current frame,
while in the Shading Cache technique 33, working in the ob-
ject space, illumination samples are reused for mesh vertices.

Considering temporal coherence at lower levels, e.g., at
the level of single photon paths, usually results in more
flexibility in sharing information for many frames at once.
Myszkowski et al. 28 reuse photon hit points in their stochas-
tic light path tracing technique. This can lead to inaccura-
cies in reconstructed lighting because paths of some photons
computed for previous frames may be affected by moving
objects in the current frame. A more efficient identification
and update of invalid photon paths can be obtained using se-
lective photon tracing 14 . However, this interactive technique
is not conservative either.

Besuievsky and Pueyo 5 proposed a radiosity method that
uses global Monte Carlo estimates of the diffuse light trans-
port and conservatively exploits temporal coherence for vis-
ibility computations. The so-called “global lines” are traced
across the whole scene and tested for intersection once
against all static objects, as well as against every frame po-
sition of the dynamic objects. The visibility information is

then reconstructed for each frame and lighting energy trans-
fer is performed. In our approach we also consider dynamic
object positions for all frames at once during ray tracing.
However, apart from the visibility testing whenever possi-
ble we perform the light transport computation at the same
time for many frames which means that we exploit temporal
coherence at an even higher level. Also, typical frame arti-
facts produced by mesh based solutions are avoided in our
approach.

Many animation rendering solutions based on Monte
Carlo techniques 35, 21 repeat the computation from scratch
for each frame, but use the same random numbers for the
generation of the light transport paths to reduce the flicker of
the reconstructed lighting. Since in dynamic environments
the light paths can change from frame to frame, a random
number sequence must be associated with each path inde-
pendently from other paths. However, this solution is usu-
ally less efficient for paths originating at the eye position
when the camera is moving and for highly dynamic envi-
ronments in which many light transport paths are changed
from frame to frame. In our approach we avoid the redun-
dant computation for each frame since light transport paths
are computed and potentially reused for the whole animation
segment. Also, for pixels affected by object motion we can
arbitrarily increase the number of traced paths and reduce
flickering below the perceivable level.

2.3. Motion blur

For high-quality animations any form of spatio-temporal
aliasing cannot be tolerated, and a common way to combat
it is to introduce motion blur. Relatively little attention has
been focused on the motion blur in the context of global illu-
mination 9. This problem was addressed by Cook et al. 12 in
their seminal paper on distribution ray tracing. Also, Lafor-
tune 23 randomly selects paths in time using the BPT algo-
rithm. This requires updating ray tracing acceleration data
structures for all considered time instances. Also, noise in-
herent in Monte Carlo methods leads to visually percepti-
ble flickering in animations. We extend the BPT algorithm
towards exploiting temporal coherence in a way which sub-
stantially suppresses flickering and enables the motion blur
computation in the image space. Cammarano and Jensen 9

proposed an object space solution for motion blur in the con-
text of photon mapping. However, they emphasized more
on the temporal processing of lighting, while our current
framework simultaneously considers the visibility and shad-
ing aspects of motion blur. A comprehensive survey of mo-
tion blur techniques is provided in the recent paper by Sung
et al. 32 . In Section 7.1 we compare our technique with the
most advanced solutions used in Maya Rendering system 32

and PhotorealisticRenderMan (PRMan) 11, 2 .

c© The Eurographics Association 2003.

108

Havran et al. / An Efficient Spatio-Temporal Architecture for Animation Rendering

3. Space-Time Renderer Architecture

In this section, we describe how motion compensation
schemes can be employed to reuse shading results and
amortize the computational cost of rendering across several
frames. This approach is conservative with respect to visi-
bility computations and produces animations with a quality
equivalent to the results of frame by frame rendering.

In the following sub-sections, we first discuss how to com-
pute images using both shading results that were computed
for one given frame and recycled computations from other
neighboring frames. Then we describe how the rendering re-
sults are stored in memory in the so-called animation buffer
during space time computations. Also, we describe our ani-
mation buffer disc caching strategy to reduce storage in the
computer memory.

3.1. Native Samples and Recycled Samples

We assume that the rendering algorithm used is a variant of
path tracing (i.e. classical ray-tracing, Kajiya’s path-tracing,
bidirectional path tracing, and so on). In such algorithms, the
color of every pixel in an image is computed using several
samples of the incoming radiance at several points within
that pixel. Assuming for the sake of simplicity that a simple
“box function” reconstruction filter is used to compute the
pixel color from those samples (i.e. the color of the pixel is
the average of all samples contributing to it), two types of
samples are used:

• native samples, which are computed from scratch by the
rendering algorithm for a given pixel and frame.

• recycled samples, which are based on native samples pre-
viously computed for the same point in object space for
neighboring frames.

When computing a native sample for a given point Pf in
the image plane of a frame f , the ray originating at the eye
position and passing through Pf is traced until its intersec-
tion point Y with the nearest object is found. Then the shad-
ing computation at Y is performed and the sample value con-
tribution to frame f is added. To derive a recycled sample for
a neighboring frame f ′ based on this native sample, Y is re-
projected to determine its position Pf ′ in the image plane of
f ′. Note that when the camera is moving, or Y represents a
dynamic object, the position of Pf ′ might be different than
the corresponding position Pf (refer to Figure 1). After the
reprojection step, the visibility of Y for frame f ′ must be
checked before adding the recycled sample contribution to
this frame.

Recycling the native sample can be seen as reevaluating
the view dependent part of the rendering process to take into
account the change of camera position. Typically, for a phys-
ically based rendering algorithm, it involves reevaluating the
bidirectional scattering distribution function (BSDF) at point
Y according to the new ray direction. Section 5 describes

Y

Pf
P
f’

f"
f

f’

Figure 1: Camera motion compensation: Because the cam-
era position changes over time, the point in object space
which has been shaded for frame f is seen through differ-
ent pixels in frames f ′ and f ′′.

how this recycling can be done when using the BPT algo-
rithm to compute the native samples. Also, if the rendering
process requires high order ray generation, the correspond-
ing visibility queries must be conservatively answered. Sec-
tion 4 describes a new visibility data structure that allows
aggregate queries for several consecutive frames.

3.2. The Animation Buffer

A buffer must be constructed in order to store the average of
contributions of native and recycled samples for each pixel.
This requires the storage for each pixel of a high dynamic
range sum of all contributions and a sum of their weights w.

A naive approach would involve storing the correspond-
ing entries for every pixel and every frame of the anima-
tion in RAM. This would require a huge amount of memory,
and would therefore limit considerably the length of the an-
imations which is computationally feasible. To reduce the
amount of memory required by this algorithm recycling is
limited to frames within the range [fi−R, fi+R] around the
frame fi for which the native sample has been computed (re-
fer to Figure 2). The memory requirements can be reduced
even further by efficient disc caching of large portions of the
animation buffer (described in Section 3.3).

Our algorithm works iteratively in the following way.
All pixels within a given segment of S frames of the ani-
mation are iterated over. One native sample for each pixel
is computed and recycled for all frames within the range
[fi−R, fi+R] before proceeding to the next pixel. We repeat
this iteration over all pixels in the S frames until the number
of contributions added to them has reached a user-set thresh-
old. We then proceed to the computation of the next segment
of S frames. The total number of frames that need to be pro-
cessed at once is thus S frames, plus the R frames before and
after this segment, since recycled samples can contribute to
them. Every time we move from one segment to the next, S
frames of the animation can be finally saved to disk (refer to
Figure 2).

The bigger the recycling radius R, the higher the number

c© The Eurographics Association 2003.

109

Havran et al. / An Efficient Spatio-Temporal Architecture for Animation Rendering

R RS

frames kept in animation buffer

current segment
next segment

frames saved on disk
S

Frame (time) axis

Figure 2: Structure of the animation buffer: Native samples
are computed for S frames and are reused to add contribu-
tions to the S+2R frames in memory. Every time we go from
one animation segment to the next, S frames are saved on
disk.

of recycled samples that can be computed from one single
native sample (supposing the corresponding point in object-
space stays visible long enough).

The influence of the slice length S is more subtle. In short,
increasing the length S of the slice increases the homogene-
ity of the distribution of native samples between all frames
of the animation. To understand this, let us consider the case
S = 1: in such a case a very high number of native samples
would need to be computed for the first slice (or frame in this
particular case) before moving to the next one. It is likely
that for the next R frames the number of samples already
computed (recycled from the first frame) will already be al-
most sufficient for every pixel. Therefore for those frames
very few natives samples will be computed. In such a case,
our algorithm will behave as if we were computing one ref-
erence frame every R+1 frames, and reuse samples only for
the R frames in between.

The total number of frames kept in the animation buffer
F = S + 2R is of course limited by the memory available.
This organization of computation allows us to schedule and
reduce the amount of work devoted to the update of our vis-
ibility acceleration data structure with respect to the move-
ment of objects. However, increasing the number of frames
kept in memory also increases the overhead of our visibil-
ity queries. Clearly, a compromise has to be made to reach
maximum efficiency (see experimental results in Section 8).

3.3. Disc Caching of the Animation Buffer

Storing the animation buffer in the main memory can be-
come infeasible for higher resolution of images or for a high
number of frames F . To overcome memory limitations, we
implemented an efficient caching scheme where the whole
animation buffer is stored on the disc, and only a small
part of the animation buffer is present in main memory. The
animation buffer is organized in blocks of 8× 8 pixels×8
frames (about 16 KBytes). We use a simple prime number
based hashing scheme with chaining factor 2 16 . During ren-
dering we iterate over the pixels by blocks, first visiting all
pixels in the current block and then going to the next block.
This scheme substantially improves coherence of accesses
to the main memory and to the disc. When storing approxi-
mately 1% of the animation buffer in memory, the total ren-

dering time is increased by less than 10% (e.g. with a resolu-
tion of 4000×4000 and S+2R = 100, 360 MBytes of RAM
would be used).

4. Multi-Frame Visibility Data Structure for Ray
Tracing

An efficient data structure for visibility computations is a
key part of any ray tracing based rendering algorithm. The
main difference between the previous solutions designed in
this context and our visibility data structure (abbreviated
to MFV DS - multi-frame visibility data structure) is that
MFV DS is designed to compute aggregated visibility infor-
mation given a ray and all F = S+2R frames in an animation
segment (see Section 3.2).

The MFV DS is constructed during a preprocessing step
over a set of scene primitives (such as triangles) and sub-
sequently used to answer visibility queries. Static primi-
tives are represented in the MFV DS only once and animated
primitives are instantiated for every frame for which their
motion occurs. Each primitive instance differs only by a
transformation matrix which encodes its displacement from
its reference position. The MFV DS allows us to avoid redun-
dant ray object primitive intersection computations when the
ray does not hit any instantiated primitive. Also, in regions
not populated by animated primitives, the same ray traver-
sal cost as in static scenes is achieved. Our visibility data
structure makes extensive use of Kd-trees which have been
shown to be particularly efficient in the context of ray trac-
ing 19, 36 . In particular, the design of MFV DS is based on the
results of ray shooting algorithm for static scenes described
in detail in Havran’s thesis19.

Section 4.1 describes how the MFV DS is built, and Sec-
tion 4.2 details how this structure is used to compute aggre-
gated visibility queries for multiple frames.

4.1. Building the Visibility Data Structure

We first separate the static and animated primitives in the
scene into two groups Gs and Ga, respectively. The frame
interval over which the validity of the primitive is defined
(the frame-tag) is attached to each primitive. Static primi-
tives are valid for all frames while animated primitives are
typically valid only for a single frame.

For each animated primitive in Ga we create an instance
for every frame in the current animation segment. The mem-
ory consumption overhead due to the instantiation is reason-
able: Each instantiated primitive contains its frame-tag, ref-
erences to its forward and inverse transformation matrices,
a reference to the template primitive from which it was in-
stantiated, and a mailbox to avoid repeated ray-primitive in-
tersection for the same ray. Since the animation paths are
typically common to many primitives simultaneously, the
transformation matrices can be efficiently shared amongst

c© The Eurographics Association 2003.

110

Havran et al. / An Efficient Spatio-Temporal Architecture for Animation Rendering

the primitives. Informations such as material properties and
geometry description are stored for the template primitives
only. As a result, in our implementation, the memory taken
by a single instantiated primitive is 52 bytes.

In a first step, we construct a global Kd-tree Ks over all
static primitives in Gs , using surface area heuristics 25 . In a
second step, for all F ×|Ga| instantiated primitives we then
perform a hierarchical clustering 20 also using a Kd-tree with
surface area heuristics 25 . We limit the number of primitives
in a cluster to an order of a couple of hundred. As a result
of clustering via kd-tree construction, the clusters contain
primitives close in space. The use of Kd-tree in this way is
justified since it provides us with clusters that fit tightly to
the contained primitives, which is crucial for the efficiency
of visibility queries.

Assuming that clustering results in L clusters, for each
cluster we construct a separate Kd-tree K j

a (j ∈ 〈1,L〉). In
the next step we insert all Kd-trees K j

a into the leaves of
the global Kd-tree Ks. Finally, we refine all the leaves of Ks
changed during the insertion using the Kd-tree construction
algorithm with cutting off empty space 19 . This refinement
offers a good separation of all Kd-trees inserted into a leaf.
Furthermore, empty spatial regions inside the leaves of Ks
resulting from the insertion of smaller Kd-trees are cut off.
This improves significantly the traversal cost for rays which
do not hit any animated primitive.

4.2. Answering the Visibility Queries

The MFV DS is designed to efficiently provide an answer to
the following visibility queries:

1. FNIPsingle(ray, frame) - find the nearest intersection point
along a ray traced for a single frame in the current anima-
tion segment.

2. Vsingle(Point1, Point2, frame) - compute the visibility be-
tween two points for a single frame.

3. FNIPaggreg(ray, nativeFrame, visibilityMask) - find the
nearest intersection point as above for a given native
frame. In addition, check if the result for the native frame
is valid for all other frames in the current animation seg-
ment. The visibility mask is a simple boolean array of
size F used to transfer the result of this visibility compu-
tation.

4. Vaggreg(Point1, Point2, visibilityMask) - compute the vis-
ibility between two points at once for all frames in the
current animation segment. The result is stored again in
the visibility mask.

The efficiency of MFV DS is improved by using the fol-
lowing techniques:

• a primitive shadow cache that stores the last occluding
static primitive to speed up the Vsingle and Vaggreg queries.

• mailboxes for instantiated primitives and small inserted

Kd-trees K j
a caching the result of ray-primitive intersec-

tion and ray-Kd-tree node intersections (to speed up ray
traversal in Kd-tree).

• a ray transformation cache storing the results of a ray
transformation from scene space to the canonical space
of template primitives for animated objects. This is effi-
cient since the results for a particular ray can be shared by
multiple primitives that have the same animation path.

• aggregated frame information for each primitive inside
each small Kd-tree K j

a . This is used to avoid traversal
of those trees during FNIPsingle and Vsingle queries if no
primitive valid for the required frame is inside the Kd-
tree.

In our current implementation, MFV DS can efficiently
compute such aggregate visibility queries over a range F up
to 250 frames. Although the number of frames of MFV DS
is limited due to implementation details, it seems to be suf-
ficient according to the results given in Section 8. Prospec-
tively, the performance of MFV DS could be improved by
using temporal bounding volumes 31 .

5. Global Illumination

In this section, we show as an example how estimates com-
puted using a bidirectional path tracing (BPT) algorithm for
a given frame can be recycled for use on other neighbor-
ing frames, where the camera and object positions may have
changed. Using similar techniques, most global illumination
rendering methods based on path-tracing should be possible
to embed into our rendering architecture.

First, we review briefly the principle of BPT and introduce
some notations that are used in the subsequent discussions.
Then, we describe how bidirectional paths computed for a
given frame f can be reused for several other frames in the
simpler case of walkthrough animations. Finally, we expose
the changes that have to be made to this basic reusing pro-
cedure in order to take into account the possible visibility
changes in the more general case of animations of objects in
the scene.

5.1. Bidirectional Path Tracing

Let us review briefly how the radiance along rays arriving at
the eye can be estimated by the BPT algorithm. The basic
idea is that for each estimate, a path is stochastically gen-
erated from both the eye point and a light source. Then, all
N hit points from the light path are connected to the M hit
points on the eye path by casting shadow rays. Thus, an es-
timate is obtained by gathering light through all the N ×M
resulting paths (if the shadow rays are not occluded, refer
to Figure 3), resulting potentially in N ×M contributions.
These contributions, combined using an appropriate heuris-
tic 23, 34 , give an unbiased estimate < L f > of the radiance

c© The Eurographics Association 2003.

111

Havran et al. / An Efficient Spatio-Temporal Architecture for Animation Rendering

along the ray arriving at the eye point. Formally this esti-
mate can be decomposed in the sum of two quantities:

< L f >=
N

∑
i=0

Ci,1
f +

N

∑
i=0

M

∑
j=2

Ci, j
f

where the first sum is the total of all contributions given by
the connection of the first hit point Y of the eye path to all
points on the light path and the second is the sum of all the
other contributions (note that for all these contributions, the
incoming light direction at Y is the one of the second hit
point of the eye path).

original
viewpoint

light
source

screen

light path

eye
path

shadow
 rays

Y

C12

C22

C11

C21

C13

C23

C01

C02

C03

screen

new
viewpoint

Figure 3: Example of connections between all points on the
eye and light paths for N = 2 and M = 3. The BSDFs cor-
responding to the dashed connection rays need to be recom-
puted to take into account the viewpoint movement.

5.2. Taking the Camera Motion into Account

If a native estimate, composed of up to N ×M contribu-
tions has been computed for frame f , a recycled estimate
(for a potentially different pixel) can be computed in a much
shorter time for a neighboring frame f ′. For rendering a
“walkthrough” animation (i.e. only the camera is moving,
the objects in the scene stand still), we need to:

• find where the point Y we are tracking in object space
reprojects in image space and check if it is still visible
(refer to Section 3).

• recompute the bidirectional scattering distribution func-
tion (BSDF) at Y for the new eye direction (since the cam-
era moved) and modify the various contributions accord-
ingly.

Our recycled estimate < L′
f > is therefore computed in

the following way :

< L′
f >=

N

∑
i=0

Ci,1
f ′ +

N

∑
i=0

M

∑
j=2

Ci, j
f ′ =

N

∑
i=0

si
f ′

si
f

Ci,1
f +

s?
f ′

s?
f

N

∑
i=0

M

∑
j=2

Ci, j
f

(1)
where:

si
f is the BSDF value at point Y where the incoming di-
rection is the ith point on the light path and the outgoing
direction is the position of the eye for frame f .

s?
f is the BSDF value at point Y where the incoming direc-
tion is the second point on the eye path and the outgoing
direction is the position of the eye for frame f .

In case the BSDF values at Y are very low for the native
frame f (this may happen, for example when the correspond-
ing surface is a mirror, or glass), the ratios in Equation (1)
can tend to infinity. Similarly, when the BSDF ratio is very
small, then the corresponding path (generated using impor-
tance sampling) is very unlikely for the current viewpoint. It
is therefore better not to reuse estimates when a BSDF ratio
becomes much smaller or much higher than 1.

In practice, this means that we rely only on native esti-
mates to render directly visible mirror-like surfaces when the
camera is moving. In order to be able to reuse the the native
estimate in such cases, one should track the reflected point in
image space instead of the directly visible point, which is a
considerably more complicated task30. On the other hand, all
estimates involving mirror-like surfaces only for secondary
and higher-order rays can be directly reused in our approach.

As a consequence the efficiency of our reusing scheme
decreases when the total area in screen space covered by
highly specular surfaces increases. In the worst case sce-
nario, where every directly visible surface is a mirror, no
sample would be reused. Therefore the rendering time would
be equivalent to a simple frame by frame computation.

5.3. Visibility Changes in Animated Scenes

When some objects are moving in the scene, in order to be
conservative our recycled estimates must take into account
the potential visibility changes between two points on the
eye path or the light path or for the shadow rays connect-
ing the light path and the eye path. This is solved using the
visibility acceleration data structure described in Section 4.

When shooting the eye and light paths for the native es-
timate, the FNIPaggreg visibility query is used to determine
the hit points composing the path and simultaneously check
if the corresponding rays are also valid for the other frames
within the “recycling radius” R (see Section 3). Whenever
the hit points on the eye path or the light path are located on
a moving object, we do not reuse the corresponding contri-
butions. However, in such cases, in order to avoid biasing the
solution, for the frames for which these contributions have
been invalidated, it is necessary to re-compute a new path
starting from the point where it hit a moving object.

Also, for each connection between the eye and light paths,
the visibility is checked using the Vaggreg query simultane-
ously for all frames in the recycling radius. In this case, con-
nections that become occluded by a moving object can be
safely discarded for the corresponding frames.

Therefore, for each eye or light path segment and each
connection, we get a visibility boolean mask encoding for
which frame it is valid and for which it is occluded. By using

c© The Eurographics Association 2003.

112

Havran et al. / An Efficient Spatio-Temporal Architecture for Animation Rendering

simple bitwise boolean operations on those masks it is then
easy to determine for which frame in [fi−R, fi+R] a given
contribution Ci, j corresponding to a connection (i, j) is valid.

6. Shading Computation

Visually attractive appearance of surfaces in the produc-
tion quality animation is achieved through applying complex
shader functions 2 for each rendered point. Often the cost of
shading computation which may include 2D and 3D proce-
dural texturing, bump and displacement mapping, sophisti-
cated models of light interactions with surfaces dominates
the overall rendering cost. It is not unusual to connect vari-
ous shader components into nested cascades of dependency.
Also, procedural textures usually require careful antialias-
ing which often is more costly than texture pattern computa-
tion itself 2 . In our animation framework, significant parts of
the shader cost can be eliminated by reusing information for
a given sample point between frames. Also, by reusing the
same sample point, aliasing can be reduced.

Shading functions are split into view-independent and
view-dependent components, where the former is computed
only once for a given sample point and the latter is recom-
puted for each frame. It is worth noting that in our BPT
technique we need to recompute the view-dependent com-
ponent only for sample points that are hit by primary rays,
while for the remaining path segments shading results are
just reused. Moreover, for such segments, we can avoid the
redundant computation of importance sampling for shader
defined BSDFs, which can be costly for sophisticated re-
flectance functions in frame-by-frame rendering.

7. Motion Blur

A common way to combat spatio-temporal aliasing is to in-
troduce motion blur, which reduces the perceivability of im-
age artifacts resulting from an inadequate sampling and re-
construction of high spatio-temporal frequencies in the im-
age. Motion blur is also a desirable effect when simulating
animations captured using optical systems with controllable
shutter speed.

Our motion blur algorithm operates on single sample val-
ues provided by path tracing and fits well into our scheme
of reusing those samples for neighboring frames in an ani-
mation sequence. The algorithm uses sample values in two
subsequent frames which can be the actual animation frames
or virtual frames inserted between a pair of the actual frames
to improve the temporal sampling rate.

Let us consider two subsequent frames f1 and f2 sepa-
rated by a time interval Tf , and a light path p which in-
tersects the image planes of f1 and f2 at points P1 and P2,
respectively. The primary (eye) ray of p in both cases hits
the same point Y , which is achieved by the reprojection of Y
from f1 to f2 (refer to Figure 1). A similar intersection point

tracking was also used to reduce flickering in interactive ray
tracing 27 .

Our goal is to estimate the energy contribution of p within
time interval Tf to all pixels located on the trajectory drawn
by point PY which is the projection of Y on the image plane
f1. For simplicity we assume that the trajectory can be well
approximated by the line segment P1P2 connecting P1 and
P2, and PY is moving along this trajectory with a constant ve-
locity v = ‖P1P2‖/Tf . In such a case all pixels i overlapped
by P1P2 can be identified using a DDA algorithm 8. Also,
the corresponding sub-segment lengths v∆τi within the pix-
els, which are required to weight the energy transfered along
p to those pixels, are obtained during the DDA computation
7 . Here ∆τi = τout

i − τin
i , where τin

i and τout
i are the time in-

stances measured from f1 when PY enters to and exits from
pixel i, respectively.

P
∆τ

T /2
pixels

1 PY

P2

S

Figure 4: Motion blur processing: The radiance incoming
from sample point Y is distributed to all pixels along segment
P1P2 traversed by PY within the shutter opening time TS/2
(marked in the bold line). The radiance contributes to each
pixel in a proportion to its traversal time ∆τ.

The amount of motion blur is controlled by modifying the
time TS during which the shutter is opened. Therefore, the
energy of p is distributed only to those pixels i which are
traversed by PY within the time intervals of TS/2 seconds
after f1 and symmetrically TS/2 seconds before f2 (refer to
Figure 4). By repeating the same processing for all subse-
quent frame pairs the full shutter speed TS is considered for
each frame 7.

Whenever Y is occluded for f2 but visible for f1 (resp.
occluded for f1 but visible for f2), the energy is only dis-
tributed for the TS/2 seconds after f1 (resp. the TS/2 seconds
before f2). However, we do not take into account possible
visibility changes within those TS/2 seconds. This approach
is motivated by similar simplifications used in the motion
blur solution of the Maya Rendering system without caus-
ing perceivable degradation of animation quality 32 . Also,
possible visibility artifacts are created along the direction of
objects or camera motion which is less objectionable.

The radiance contributed from path p to a pixel i should
be computed by integrating the radiance L(PY) over the time
interval ∆τi and normalizing by TS. In practice, L(PY) is
derived through the linear interpolation between L(P1) and
L(P2) values.

Our motion blur approach is similar to the technique de-
veloped by Brostow and Essa 7 for the post-processing of
animation frames using optical flow estimates. However, our
animation rendering framework derives more precise trajec-

c© The Eurographics Association 2003.

113

Havran et al. / An Efficient Spatio-Temporal Architecture for Animation Rendering

tories of PY motion within the image plane. Also, visibil-
ity changes and reflected lighting information are better re-
solved.

7.1. Discussion

In this section we compare the advanced motion blur solu-
tions used in the Maya Rendering system 32 and Photoreal-
isticRenderMan (PRMan) 11, 2 with our technique described
in the previous section.

In the Maya Rendering system the visibility and shading
components of motion blur are considered separately as a
function of time. In the visibility computation the time inter-
val ∆τl

j is computed in which a given object l is visible for a

given sample point P j
l in the image plane 32 . Such computa-

tions are performed for all objects in the scene and all pixels.
The number of P j

l is adaptively adjusted for each pixel based
on the variance in the lengths of ∆τl

j for this pixel and its
neighbors. Then the shading computation is performed and
for each ∆τl

j stratified stochastically samples in time are se-
lected. For each one a temporal sample shading is computed
for the corresponding location along the so-called object-
time visible curves on the object l. The algorithm leads to
excellent results but the visibility and shading computations
are costly.

In our framework the motion blur computation is more
precise because we operate on the level of single samples
and we average the results for many of such samples for each
pixel. Our spatio-temporal samples incorporate both the ge-
ometrical and shading information. Also, our approach is
more efficient and easier to implement because of the fol-
lowing reasons:

• The computation of the time interval ∆τ is performed in
the image space using a fast DDA-like algorithm instead
of the object space computation as required in the Maya
system.

• The shading computation is always performed for the
same sample point through reprojection. This is much
faster than searching for such a point along object-time
visible curves 32 .

• Shading samples reuse information computed from previ-
ous frames. Only the visibility and BSDF re-weighting for
changing viewing directions must be performed. Sung et
al. do not report on any use of temporal coherence in the
shading computation, which seems to be difficult in their
approach.

• Shading is affected only by changes in lighting and view-
ing direction and is not affected by textures as in the Maya
system. This means that shading information can be sam-
pled more sparsely in the temporal domain.

In PRMan, sample locations in the spatio-temporal do-
main are selected stochastically and their values are linearly
interpolated based on precomputed shading values at prede-

fined spatial locations and time instances. To reduce exces-
sive blurring the temporal domain is supersampled up to six
times. In our framework, the number of explicit samples in
the temporal domain can be reduced because our samples
are motion-compensated.

8. Results

In order to estimate the efficiency of the different features
of our new rendering architecture, we computed animations
and walkthroughs for several scenes using bidirectional path
tracing and simple ray tracing, with and without motion blur.
In all tested cases we obtained significant speedup and a
better quality, due to the reduction of flickering when com-
pared to frame-by-frame results. In particular, an interesting
byproduct of our sample recycling scheme is that it makes
the stochastic noise of bidirectional path tracing coherent in
object space. Thus, it avoids the shimmering artifacts that
would result from a frame-by-frame computation.

All timings in this section are given for frames of resolu-
tion 320× 240 and are measured on a Pentium 4, 2.6 GHz
processor. They can be easily extrapolated for higher resolu-
tions since the complexity of path tracing techniques is linear
with respect to the number of pixels. For these tests we used
disc caching described in Section 3.3. The size of animation
buffer part that is stored in memory (refer to Section 3.3)
was less than 100 MB and the cache hit ratio of access to the
animation buffer stored in a file was better than 99.92%.

We used bidirectional path tracing to render a walk-
through in the CLOISTER scene composed of 80,000 tri-
angles with 150 samples per pixel (refer to Figure 5). We
used an animation segment length S = 50 frames and a recy-
cling radius R = 100 frames. The average rendering time per
frame was 120 seconds, which is 8.6 times faster than using
a frame-by-frame approach. Adding motion blur increased
the rendering time to 150 seconds.

We also performed tests for the LOBBY scene (see Fig-
ure 5) composed of 17,000 triangles and illuminated by 51
light sources. In order to be able to reduce the variance due to
the high number of light sources in this scene, we designed a
scheme to stochastically select emitting light sources accord-
ing to their contribution to the total irradiance at the point
currently considered.

For this scene, we considered the following cases: moving
camera and objects (MCMO), moving camera only (MC), and
moving objects only (MO). For each we measured:

• the average computation time per frame of the animation,
• the speedup obtained when compared to frame-by-frame

computations,
• the percentage of native samples when compared to the

total number of samples (native and recycled) necessary
to compute the animation,

Table 1 summarizes the obtained results (without motion

c© The Eurographics Association 2003.

114

Havran et al. / An Efficient Spatio-Temporal Architecture for Animation Rendering

(a) (b) (c)

Figure 5: Example frames from our animations. From left to right, (a) an overview of the CLOISTER scene, (b) a motion-blurred
frame from the CLOISTER animation, and (c) an overview of the LOBBY scene.

Table 1: Timing statistics for the LOBBY scene animations.

MCMO MC MO

Computation time (per frame) [sec] 415 363 240

Speedup 7.7× 8.8× 13.3×

Proportion of native samples [%] 4.7 3.4 2.4

Table 2: Memory statistics for MFVDS for the LOBBY

scene animations.

FRAMES INST. OBJS. CLUSTERS SIZE

1 1,080 15 0.75 MB

10 10,800 239 4.01 MB

50 54,000 1,530 28.68 MB

100 108,000 3,231 68.92 MB

150 162,000 9,218 171.40 MB

250 270,000 19,494 399.40 MB

blur), which lead us to several comments. First, our new ar-
chitecture achieves significant speedup: our approach per-
forms about 7 to 13 times faster than traditional frame-by-
frame computations. At the same time the quality of ani-
mation is much higher because temporal flickering due to
the stochastic noise incoherence is substantially suppressed.
Even for a small number of BPT samples per pixel the noise
might be visible but remains static, looking like a texture pat-
tern rigidly attached to rendered objects. Second, the very
low number of native samples shows that our architecture
manages to reuse a fair amount of samples. Therefore, fur-
ther reduction of the computation time may be achieved by
decreasing the cost of recycling. It should be noticed that,
in the case of static camera and moving objects, we obtain a
better acceleration factor partly because of some optimiza-
tions of the recycling function for this special case: sam-
ples always reproject to the same pixel, direct visibility can

be computed once and for all using our aggregated queries
(since the camera is static) and BSDF values do not need to
be recomputed. Possible improvements to reduce this recy-
cling cost in the general case are discussed in Section 9.

We also computed the LOBBY animation using simple ray
tracing and procedural shaders (see Section 6), to evaluate
the speedup that can be obtained without global illumination
using our rendering framework. For a 320× 240 animation,
with 16 times supersampling, we achieve a speedup of 2.6
when compared to frame by frame rendering. See Figure 7
for sample frames of our animations described above†.

In order to determine the influence of the size of the an-
imation buffer F = S + 2R on the performance of our algo-
rithm, we computed several smaller scale animations in the
LOBBY scene for moving camera with animated and static
objects (160× 120, 200 frames, 40 samples per pixel) with
varying F (we set R = 2S, so e.g. for F = 250, we have
R = 100 and S = 50). The results are shown in Figure 6.
It appears that in both cases, a good choice of F would be
within 60 to 90 frames. Note that this result is probably de-
pendent on the scene and on the animation. Too large an ani-
mation buffer seems to impair the performances of the algo-
rithm. This can be due to increased costs of our aggregated
visibility queries, as well as reduced coherence in memory
accesses resulting from a too large recycling radius R.

We measured the memory taken by MFV DS with respect
to the number of frames in Table 2, for the LOBBY scene.

† Project related WWW page is at
http://www.mpi-sb.mpg.de/resources/anim/EGSR03/.

c© The Eurographics Association 2003.

115

http://www.mpi-sb.mpg.de/resources/anim/EGSR03/

Havran et al. / An Efficient Spatio-Temporal Architecture for Animation Rendering

2800

3000

3200

3400

3600

3800

4000

4200

4400

0 50 100 150 200 250

Ti
m

e
(s

ec
.)

Animation Buffer Size F (in frames)

"MCMO"
"MC"

Figure 6: Change in computation time as a function of the
animation buffer size F.

For an animation buffer size F within the range 50 to 100
(which has been shown best by our previous experiment), the
memory cost of MFV DS is manageable for current desktop
computers.

While we did not experiment with deformable objects we
believe that our framework can handle them efficiently as
well. All traced light paths interfering with such objects must
simply be recomputed in the same way as animated rigid ob-
jects. Building the MFV DS would require handling a differ-
ent number of scene primitives (triangles) whose scales may
change from frame to frame. Our shading and motion blur
approacheswould require surface parameterization to ensure
that the corresponding points on the deformable surface can
always be found for all considered frames.

9. Conclusions

We have presented a new architecture for animation render-
ing that can be applied to several types of ray-based render-
ing methods. In particular, we demonstrated its use to reduce
the computational cost and flickering of animations rendered
by bidirectional path tracing and ray tracing using complex
surface shaders. We also showed that it allows to perform
motion blur on the computed images at a reasonable added
cost.

Instead of performing frame-by-frame and pixel by pixel
sampling of the incoming radiant flux, our approach uses
motion compensation techniques to track samples in image
space and reuse them over multiple frames, thus reducing the
computation time and flickering due to aliasing or stochas-
tic noise. Although, we have to deal with processing several
frames in an animation buffer, through the use of a caching
strategy, we can transfer large portions of this buffer to disk.
This strategy relies on the fact that, since we know the pixel
trajectories in image space, it is possible to greatly enhance
the coherence of writing accesses in the animation buffer by
concentrating on groups of pixels that move in a coherent

way. As a result, the memory requirements of our algorithm
are reasonable.

We foresee several ways of improving our algorithm’s
performance. Bekaert et al. 4 proposed to reuse light paths
for multiple neighboring pixels which leads to significant
speedup of the path tracing algorithm for static images. Ap-
plying a similar technique in our bidirectional path tracing
should result in similar speedup. Also, it would be interest-
ing to extend their mathematical framework to the tempo-
ral domain in order to cover both approaches in an unified
way. Further speedup of ray tracing and bidirectional path
tracing can also be expected by improving the efficiency of
direct visibility tests for reprojected samples. For example,
Bala et al. 3 report consequent performance increase when
using a shaft culling approach. Sung et al. 32 propose sim-
ple heuristics, which are successfully used in the Maya Ren-
dering System, to skip the visibility test for many samples
based on the results obtained for neighboring samples. An-
other natural extension would be the parallelization of our
rendering architecture.

Acknowledgements

We would like to thank Polina Kondratieva and Markus We-
ber for help in preparing scenes used in our animation ex-
amples. This work was supported partly by the European
Community within the scope of the RealReflect project IST-
2001-34744 “Realtime visualization of complex reflectance
behavior in virtual prototyping”.

References

1. S.J. Adelson and L.F. Hughes. Generating Exact Ray-
Traced Animation Frames by Reprojection. IEEE Com-
puter Graphics & Applications, 15(3):43–53, 1995. 2

2. A.A. Apodaca and L. Gritz. Advanced RenderMan.
Morgan Kaufmann, 1999. 2, 3, 8, 9

3. K. Bala, J. Dorsey, and S. Teller. Ray-Traced Interactive
Scene Editing Using Ray Segment Trees. In Proceed-
ings of the 10th Eurographics Workshop on Rendering,
1999. 2, 11

4. P. Bekaert, M. Sbert, and J. Halton. Accelerating Path
Tracing by Re-Using Paths. In Proceedings of the 13th
Eurographics Workshop on Rendering, pages 125–134,
2002. 11

5. G. Besuievsky and X. Pueyo. Animating Radios-
ity Environments Through the Multi-Frame Lighting
Method. Journal of Visualization and Computer Ani-
mation, 12(2):93–106, 2001. 3

6. N. Briére and P. Poulin. Hierarchical View-Dependent
Structures for Interactive Scene Manipulation. In
Proceedings of SIGGRAPH 96, Computer Graphics
Proceedings, Annual Conference Series, pages 83–90,
1996. 2

7. G.J. Brostow and I. Essa. Image-Based Motion Blur for
Stop Motion Animation. In Proceedings of ACM SIG-

c© The Eurographics Association 2003.

116

Havran et al. / An Efficient Spatio-Temporal Architecture for Animation Rendering

GRAPH 2001, Computer Graphics Proceedings, An-
nual Conference Series, pages 561–566, 2001. 8

8. B. Cabral and L.C. Leedom. Imaging vector fields us-
ing line integral convolution. In Proceedings of ACM
SIGGRAPH 93, Computer Graphics Proceedings, An-
nual Conference Series, pages 263–272, 1993. 8

9. M. Cammarano and H.W. Jensen. Time Dependent
Photon Mapping. In Proceedings of the 13th Eu-
rographics Workshop on Rendering, pages 135–144,
2002. 3

10. J. Chapman, T.W. Calvert, and J. Dill. Spatio-Temporal
Coherence in Ray Tracing. In Graphics Interface ’91,
pages 101–108. Canadian Information Processing So-
ciety, 1991. 2

11. R.L. Cook, L. Carpenter, and E. Catmull. The Reyes
Image Rendering Architecture. In Computer Graphics
(Proceedings of ACM SIGGRAPH 87), 21, pages 95–
102, 1987. 3, 9

12. R.L. Cook, T. Porter, and L. Carpenter. Distributed Ray
Tracing. In Computer Graphics (Proceedings of ACM
SIGGRAPH 84), 18, pages 137–145, 1984. 3

13. C. Damez, K. Dmitriev, and K. Myszkowski. State of
the art in global illumination for interactive applications
and high-quality animations. Computer Graphics Fo-
rum, 22(1):55–77, 2003. 3

14. K. Dmitriev, S. Brabec, K. Myszkowski, and H.-P. Sei-
del. Interactive Global Illumination Using Selective
Photon Tracing. In Proceedings of the 13th Eurograph-
ics Workshop on Rendering, pages 25–36, 2002. 3

15. J. Döllner and K. Hinrichs. A Generic Rendering Sys-
tem. IEEE Transactions on Visualization and Computer
Graphics, 8(2):99–118, 2002. 2

16. D.E. Knuth The Art of Computer Programming, vol-
ume 3. Addison-Wesley, 1973. 5

17. A.S. Glassner. Spacetime Ray Tracing for Animation.
IEEE Computer Graphics & Applications, 8(2):60–70,
1988. 3

18. E. Gröller and W. Purgathofer. Using Temporal and
Spatial Coherence for Accelerating the Calculation of
Animation Sequences. In Eurographics ’91, pages
103–113, 1991. 3

19. V. Havran. Heuristic Ray Shooting Algorithms. PhD
thesis, Czech Technical University in Prague, 2000. 5,
6

20. A.K. Jain and R.C. Dubes. Algorithms for Clustering
Data. Prentice Hall, 1988. 6

21. H.W. Jensen. Realistic Image Synthesis Using Photon
Mapping. AK, Peters, 2001. 3

22. D.A. Jevans. Object Space Temporal Coherence for
Ray Tracing. In Graphics Interface ’92, pages 176–
183, 1992. 2

23. E. Lafortune. Mathematical Models and Monte Carlo
Algorithms. PhD thesis, Katholieke Universiteit Leu-

ven, 1996. 3, 6
24. J. Lext and T. Moller. Towards Rapid Reconstruction

for Animated Ray Tracing. In Short Presentations,
pages 311–318. Eurographics, 2001. 3

25. J.D. MacDonald and K.S. Booth. Heuristics for ray
tracing using space subdivision. In Proceedings of
Graphics Interface ’89, pages 152–63. Canadian Infor-
mation Processing Society, 1989. 6

26. E. Maisel and G. Hegron. A Realistic Image Synthe-
sis of Animation Sequences Based on Temporal Coher-
ence. In 3rd Eurographics Workshop on Animation and
Simulation. Elsevier Science Publishers B.V., 1992. 2

27. W. Martin, E. Reinhard, P. Shirley, S. Parker, and
W. Thompson. Temporally coherent interactive ray
tracing. Journal of Graphics Tools, (2):41–48, 2002.
8

28. K. Myszkowski, T. Tawara, H. Akamine, and H.-P. Sei-
del. Perception-Guided Global Illumination Solution
for Animation Rendering. In Proceedings of ACM SIG-
GRAPH 2001, Computer Graphics Proceedings, An-
nual Conference Series, pages 221–230, 2001. 3

29. M. Shinya. Spatial Anti-aliasing for Animation Se-
quences with Spatio-temporal Filtering. In Proceed-
ings of SIGGRAPH 93, Computer Graphics Proceed-
ings, Annual Conference Series, pages 289–296, 1993.
2, 3

30. M. Shinya. Improvements on the Pixel-tracing Fil-
ter: Reflection/Refraction, Shadows, and Jittering. In
Graphics Interface ’95, pages 92–102, 1995. 2, 7

31. O. Sudarsky and C. Gotsman. Output-sensitive visibil-
ity algorithms for dynamic scenes with applications to
virtual reality. Computer Graphics Forum, 15(3):249–
258, 1996. 6

32. K. Sung, A. Pearce, and C. Wang. Spatial-Temporal
Antialiasing. IEEE Transactions on Visualization and
Computer Graphics, 8(2):144–153, 2002. 2, 3, 8, 9, 11

33. P. Tole, F. Pellacini, B. Walter, and D.P. Greenberg. In-
teractive Global Illumination in Dynamic Scenes. ACM
Transactions on Graphics, 21(3):537–546, 2002. 3

34. E. Veach. Robust Monte Carlo Methods for Light
Transport Simulation. PhD thesis, Stanford University,
1997. 6

35. I. Wald, T. Kollig, C. Benthin, A. Keller, and
P. Slusallek. Interactive Global Illumination. In Pro-
ceedings of the 13th Eurographics Workshop on Ren-
dering, pages 15–24, 2002. 3

36. I. Wald, P. Slusallek, C. Benthin, and M. Wagner. In-
teractive Rendering with Coherent Ray Tracing. Com-
puter Graphics Forum, 20(3):153–164, 2001. 5

37. B. Walter, G. Drettakis, and S. Parker. Interactive Ren-
dering using the Render Cache. In Proceedings of
the 10th Eurographics Workshop on Rendering, pages
235–246, 1999. 3

c© The Eurographics Association 2003.

117

Havran et al. / An Efficient Spatio-Temporal Architecture for Animation Rendering

(a) (b) (c)

Figure 7: Example frames from our animations: (a) the CLOISTER scene rendered using bidirectional path tracing with mo-
tion blur, (b) the LOBBY scene rendered using ray tracing with procedural shaders, and (c) the LOBBY scene rendered by
bidirectional path tracing.

c© The Eurographics Association 2003.

303

