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Perception-Based Fast Rendering and
Antialiasing of Walkthrough Sequences
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Abstract—In this paper, we consider accelerated rendering of high quality walkthrough animation sequences along predefined paths.
To improve rendering performance, we use a combination of a hybrid ray tracing and Image-Based Rendering (IBR) technique and a
novel perception-based antialiasing technique. In our rendering solution, we derive as many pixels as possible using inexpensive IBR
techniques without affecting the animation quality. A perception-based spatiotemporal Animation Quality Metric (AQM) is used to
automatically guide such a hybrid rendering. The Image Flow (IF) obtained as a byproduct of the IBR computation is an integral part of
the AQM. The final animation quality is enhanced by an efficient spatiotemporal antialiasing which utilizes the IF to perform a motion-
compensated filtering. The filter parameters have been tuned using the AQM predictions of animation quality as perceived by the
human observer. These parameters adapt locally to the visual pattern velocity.

Index Terms—Walkthrough animation, human perception, video quality metrics, motion-compensated filtering.

1 INTRODUCTION

RENDERING of animated sequences proves to be a very
computation intensive task which, in professional
production, involves specialized rendering farms designed
specifically for this purpose. While progress in the
efficiency of rendering algorithms and increasing processor
power is very impressive, the requirements imposed by the
complexity of rendered scenes has also increased at a
similar pace. Effectively, rendering times reported for the
final antialiased frames are still counted in tens of minutes
or hours.

It is well-known in the video community that the human
eye is less sensitive to higher spatial frequencies than to
lower frequencies and this knowledge was used in
designing video equipment [11]. It is also conventional
wisdom that the requirements imposed on the quality of
still images must be higher than for images used in an
animated sequence. Another intuitive point is that the
quality of rendering can usually be relaxed as the velocity of
the moving object (visual pattern) increases. These observa-
tions are confirmed by systematic psychophysical experi-
ments investigating the sensitivity of the human eye for
various spatiotemporal patterns [18], [38]. For example, the
perceived sharpness of moving low resolution (or blurred)
patterns increases with velocity, which is attributed to the
higher level processing in the visual system [43]. This
means that all techniques attempting to speed up the
rendering of every single frame separately cannot account
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for the eye sensitivity variations resulting from temporal
considerations. Effectively, computational efforts can be
easily wasted on processing image details which cannot be
perceived in the animated sequence. In this context, a global
approach involving both spatial and temporal dimensions
appears promising [28] and is a relatively unexplored
research direction.

This research is an attempt to develop a framework for
the perceptually-based accelerated rendering of antialiased
animated sequences. In our approach, computation is
focused on those selected frames (keyframes) and frame
fragments (in-between frames) which strongly affect the
whole animation appearance by depicting image details
readily perceivable by the human observer. All pixels
related to these frames and frame fragments are computed
using a costly rendering method (we use ray tracing as the
final pass of our global illumination solution), which
provides images of high quality. The remaining pixels are
derived using an inexpensive method (we use IBR
techniques [25], [24], [32]). Ideally, the differences between
pixels computed using the slower and faster methods
should not be perceived in animated sequences, even
though such differences can be readily seen when the
corresponding frames are observed as still images. The
spatiotemporal perception-based quality metric for ani-
mated sequences is used to guide frame computation in a
fully automatic and recursive manner. Special care is taken
for efficient reduction of spatial and especially annoying
temporal artifacts, which occasionally can be observed even
in professionally produced animated sequences.

In our approach, we use the image flow (IF) [17], which
is computed as the velocity vector field in the image plane
due to the motion of the camera along the animation path.
The velocity distribution is provided for all pixels and all
frames in the animation sequence. The IF is the key point in
our overall animated sequence processing. It is computed
using IBR techniques, which guarantees very good accuracy
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and high speed of processing for the synthetic images.' The
IF is used in our technique in four ways:

e to support nearer to optimal keyframe selection

along the predefined animation path,

e  to reproject pixels from the ray traced keyframes to

the image-based in-betweens,

e to improve the temporal considerations of our

perception-based animation quality metric,

e to enhance the animation quality by performing

antialiasing based on motion-compensated filtering.
Obviously, the best cost-performance is achieved when the
IF is used in all four processing steps. However, since these
steps are only loosely coupled and the cost of computing IF
is very low, other scenarios are also possible, e.g., fully ray
traced animation can be filtered with motion compensation.

In this paper, we narrow our discussion to the produc-
tion of high-quality walkthrough animations (only camera
animation is considered), although some of the solutions
proposed can be used in a more general animation
framework (refer to [28] for discussion of problems with
global illumination in this more general case). We assume
that walkthrough animation is of high quality, involving
complex geometry and global illumination solutions, and,
thus, a single frame rendering incurs significant costs (e.g.,
about 170 minutes in the ATRIUM example chosen as one of
the case studies in this research [1]). We also make other
reasonable assumptions such as: The animation path and all
camera positions are known in advance, ray tracing (or
other high quality rendering method) for selected pixels is
available, depth (range) data for each pixel is inexpensive to
derive for every frame (e.g., using z-buffer), and the object
identifiers for each pixel can be easily accessed for every
frame (e.g., using item buffer [42]).

The material in this paper consolidates and expands on
the results presented in [27]. In the following section, we
discuss previous work on perception-based video quality
metrics and improving performance of animation render-
ing. In Section 3, we present our animation quality metric.
Then, we describe efficient methods of in-between frames
computation we have used in our research. Section 5
describes our 3D antialiasing technique based on motion-
compensated filtering. Section 6 and the accompanying
Web page [1] show results obtained using our approach.
Finally, we conclude this work.

2 PREvVIOUS WORK

In this research, our objective is the reduction of the time
required for rendering in-between frames, which can be
derived from the high-quality keyframes. To our knowl-
edge, a method that automatically selects keyframes while
minimizing distortions visible by human observers has not
been presented yet. We review the perceptually-based
video quality metrics which could be used to guide
rendering of in-between frames. Next, we discuss the
problem of keyframes selection, which improves the
performance of in-between frames computation using IBR

1. For the natural image sequences, the optical flow can be derived [34],
but is more costly and usually far less accurate.

techniques. Finally, we review the IF applications in
animation rendering.

2.1 Video Quality Metrics

Assessment of video quality in terms of artifacts visible to
the human observer is becoming very important in various
applications dealing with digital video technology. Sub-
jective video quality measurement usually is costly and
time-consuming and requires many human viewers to
obtain statistically meaningful results [36]. Also, it is
impractical or even impossible to involve human viewers
in some routine applications such as continuous monitoring
of the quality of a digital television broadcast. In recent
years, a number of automatic video quality metrics based
on the computational models of human vision have been
proposed. Some of these metrics were designed specifically
for video [11], [44], while others were extensions of some
well-established still image quality metrics into the time
domain [22], [39], [36]. While the majority of these objective
metrics have had the same general purpose, one of the main
motivations driving their development was the need to
evaluate the performance of digital video encoding,
transmission, and compression techniques. Because of these
particular applications, some metrics [45] are specifically
tuned for the assessment of perceivability of typical
distortions arising in lossy video compression such as
blocking artifacts, blurring, color shifts, and fragmentation.
In this study, we deal exclusively with synthetic images and
we are looking for a metric well-tuned to our application,
even at the expense of some loss of its generality.

The existing video quality metrics account for the
following important characteristics of the Human Visual
System (HVS):

e temporal and spatial channels (mechanisms),
which are used to represent the visual information
at various scales and orientations in a similar way
as it is believed that the primary visual cortex does
[10], [37],

e spatio-temporal sensitivity to contrast, which varies
with the spatial and temporal frequencies. The
sensitivity is characterized by so-called spatiotem-
poral Contrast Sensitivity Function (CSF), which
defines the detection threshold for a stimulus as a
function of its spatial and temporal frequencies [18],

e visual masking accounts for the modification of the
detection threshold of a stimulus as a function of the
interfering background stimulus which is closely
coupled in space or time [20]. The background
stimulus located within the same frame causes the
spatial masking, while the background stimulus
considered along the time axis (which effectively
corresponds to the previous and subsequent frames
in respect to a given frame) causes the temporal
masking [4].

The differences between the existing metrics rely mostly on
the complexity of the human vision models that attempt to
fit some psychophysical data derived for various experi-
mental conditions and settings.

Spatial frequency and orientation channels are modeled

by filter banks such as the steerable pyramid transform [44],
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Fig. 1. Cortex transform: (a) organization of the filter bank and (b)
decomposition of the image frequency plane into the radial and
orientation selectivity channels. The filled regions show an example of
the spatial frequencies allocated to a single channel. At the left side of
(b), the spatial frequency scale in cycles per pixel is shown, which
makes possible estimation of the bandpass frequencies of every radial
channel. Also, the orientation of the band center in degrees is shown for
every orientation channel.

Discrete Cosine Transform (DCT) [39], Differences of
Gaussians (Laplacian) pyramid [22], and others. The choice
of a particular filter bank seems not to be critical as long as it
roughly approximates the point-spread function of the
visual cortex neurons [23] and the frequency and orienta-
tion bandwidths are not too broad [35]. For all the above
channel models, usually four to six bands are used, with
each exhibiting three to six different orientations. In
practical applications, the computational efficiency of a
particular filter bank is a factor of primary importance. For
example, Watson [39] promotes, in digital video applica-
tions, a metric based on the DCT because the channel
decomposition can be obtained as a byproduct of MPEG
compression and, on some platforms, the DCT computation
can be supported by dedicated hardware. In this research,
we use the Cortex transform developed by Daly [6], which
is a pyramid-style, invertible, and computationally efficient
image representation. In Fig. 1a, we show organization of
the filter bank in the Cortex transform, which models the
combined radial frequency and orientational selectivity of
cortical neurons. After decomposing the input image into
six frequency bands, each of these bands (except the lowest-
frequency baseband) undergoes identical orientational
selectivity processing. The resulting decomposition of the
image frequency plane into 31 radial frequency and
orientation channels is shown in Fig. 1b.

Temporal channels are usually modeled using just two
channels [11], [22], [39] to account for transient (low pass)
and sustained (band pass with a peak frequency around
8 Hz) channels [38]. A practical problem is computational
cost and memory requirements involved in processing in
the time domain (a number of consecutive frames must be
considered). A support of about 150-400 milliseconds
(5-13 frames) is usually assumed for temporal filters [39],
[36], [45]. This choice is consistent with the experimental
results reported by Watson and Ahumada [40] which show
that the motion sensors in the human brain integrate over
only a brief interval of time (less than 400 milliseconds) and
further increase of the exposure duration has almost no
effect on discrimination improvement.

There is general agreement on using the spatiotemporal
CSF, which approximates the data from Kelly [18]. Fig. 2a
shows changes of the human spatial CSF for stimuli of
various temporal frequencies. The spatial sensitivity de-
creases at high spatial frequency for all temporal frequen-
cies. Also, the spatial sensitivity falls at low spatial
frequencies for a low temporal frequency (1 Hz), which is
typical for the steady patterns as well. Such a loss of
sensitivity cannot be observed for increasing temporal
frequencies, in which case the shape of the spatial CSF
curves changes. This results in the limited separability of
the spatiotemporal CSF [18], which is separable (has the
same shape up to a scale factor) only at high spatial and
temporal frequencies [38]. In practice, spatial and temporal
channels are modeled separately by a filterbank and the
spatiotemporal interaction is then modeled at the level of
respective gains of the filters [11], [39], [44], [36].

The spatial CSF shown in Fig. 2a was obtained for foveal
vision. However, with the increase of retinal eccentricity,
the contrast sensitivity falls rapidly (refer to Fig. 2b). The
predictions of video quality metrics are tuned for foveal
vision and are obviously too conservative for the whole
frame since the eye can fixate only at its selected region. A
practical problem is that it is difficult to predict in advance
which frame region will be chosen by a viewer. Some
consistency of viewers’ gazes while watching the same
video sequences has been reported [16], which suggests that
there is some potential in considering the likely eye
movements to reduce the requirements concerning local
frame quality.

The vast majority of the existing video quality metrics
limit visual masking considerations to spatial masking
(refer to [14] for a comprehensive discussion of the spatial
masking and related computational models). Yeh et al. [45]
proposed a very simple model for the temporal masking
involving just the global difference of the average lumi-
nances between two consecutive frames. It seems that the
temporal masking is the most important at scene cuts [45]
accompanied by dark-to-bright or bright-to-dark transi-
tions. In such a case, the visibility thresholds are usually
elevated for less than 100 milliseconds [4]. In this research,
we ignore the temporal masking because, in our application
(walkthroughs), the number of scene cuts is usually very
limited. Moreover, since temporary losses of eye sensitivity
usually affect at most two to three frames following the cut,
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Fig. 2. (a) Spatial CSF measured using flickering grating stimuli of temporal frequencies 1, 6, 16, and 22 Hz. Reprinted with permission from [30]
copyright (1966) Optical Society of America. (b) Spatial CSF measured using steady grating stimuli of small size for the following retinal eccentricities
0, 1.5, 4, 7.5, 14, and 30 degrees. The spatial frequency is expressed in cycles per degree (cpd) units. Reprinted with permission from Nature [31]

copyright (1978) Macmillan Magazines Ltd.

only a very small reduction of the computation cost can be
expected by exploiting temporal masking.

Lack of comparative studies makes it difficult to evaluate
the actual performance of the discussed metrics. It seems
that Sarnoff’s Just-Noticeable Difference (JND) Model [22] is
the most developed, while a DCT-based model proposed by
Watson [39] is computationally efficient and retains many
basic characteristics of the Sarnoff model [41]. In this
research, we decided to use our own metric of animated
sequence quality which takes advantage of the IF that is
readily available in our application. For this purpose, we
extended a static image quality metric proposed by Eriksson
et al. [13], which we selected because of its suitable
architecture and good performance for static images.

A majority of the discussed video quality metrics
perform some form of color processing. Usually three
separable pattern-color visual mechanisms are considered
[11], [39], [44], [36] and the spatiotemporal filters are
applied independently to each mechanism, which can
effectively triple computational efforts. To reduce computa-
tion in the temporal domain, usually only the low pass
channel is considered [11], [44] since the temporal sensitiv-
ity drops very quickly for chrominance [19]. Some
computation savings can be made in spatial processing as
well [11] since the spatial sensitivity for chrominance is very
low at above eight cpd (cycles per degree) [19]. Color
considerations, although still very costly, are an important
part of a quality metric, especially in digital video
applications in which lossy-compression of pattern-color
components is performed independently. In our applica-
tion, which involves IBR techniques, the pattern-color
information is never separated and always undergoes the
same processing (i.e., image warping and resampling).
Taking into account much poorer acuity of color vision than
pattern vision [19], we believe that, in our application, most
of the animation impairments can be captured by achro-
matic processing. In this research, we ignore color proces-
sing for efficiency reasons and we leave for future work a
more rigorous performance comparison of chromatic and
achromatic video quality metrics in our application invol-
ving the perception-based guiding of in-between frame
computation.

2.2 In-Between Frame Generation

Frame-to-frame coherence has been widely used in camera
animation to speedup rendering (refer to [21] for discussion
of the existing solutions). Early research focused mostly on
speeding up ray tracing by interpolating images for views
similar to a given keyframe [3], [2]. These algorithms
involved costly procedures for cleaning up image artifacts
such as gaps between pixels (resulting from stretching
samples reprojected from keyframes to in-between frames)
and occlusion (visibility) errors. Recently developed IBR
techniques solve these problems more efficiently and are
the usual choice in applications requiring free camera
motion within an environment [32], [21], [26]. In our
walkthrough applications, having a predefined animation
path, even less general solutions are required because the
camera motion is limited [24].

In this work, we apply well-known off-the-shelf IBR
solutions suitable for in-between frame computations which
are based on simple data structures and do not require
intensive preparatory computations. We use a combination
of the following standard techniques:

e To account for proper IF computation and occlusion
relations, we select 3D warping and warp ordering
algorithms developed by McMillan [25], which
require just the reference image and the correspond-
ing range data.

e To reduce gaps between stretched samples during
image reprojection, we use the adaptive “splatting”
technique proposed by Shade et al. [32].

e To remove holes resulting from occluded objects, we
composite the two warped keyframes as proposed
by Mark et al. [24]. Pixels depicting objects occluded
in the two warped keyframes are computed using
ray tracing.

This choice is the result of extensive analysis of the
suitability of existing IBR techniques for walkthrough
applications which we presented in [27]. Fig. 3 summarizes
the processing flow for the in-between frame derivation
using the techniques we selected.

In this paper, we focus on the important problem of

keyframe selection along the animation path, which has not
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attracted much attention in the IBR literature so far.
Usually, keyframes are placed manually [9], uniformly
distributed along the animation time code [24], or dis-
tributed in space at the nodes of some 2D or 3D lattice [5]. A
notable exception is contained in the work done by
Nimeroff et al. [28], who introduced a quality criterion
which guides keyframe placement in space. At the initial
step, the keyframe cameras were placed at the corners of the
“view-space” and the corresponding images were com-
puted. The quality criterion relied on computing the
percentage of pixels whose item buffer identifiers were
identical for all these images. If the percentage was below a
predefined threshold value, the space was subdivided (the
2D case was investigated) and additional keyframe cameras
were inserted. The quality criterion proposed by Nimeroff
et al. seems not to be very reliable in the context of high
quality rendering involving global illumination effects. For
example, for scenes with mirrors and transparent objects,
the distortion of reflected/refracted patterns is not esti-
mated, while it can be quite significant in the in-between
frames due to interpolation. From the standpoint of our
application, rendering keyframes covering the whole view-
space might not pay off in terms of the gains obtained
during in-between frame computation along a predefined
walkthrough path. Also, there is no guarantee that the
quality of the resulting frames will be adequate for the
human observer since the quality criterion does not take
into account even the basic properties of human perception.

In this research, we investigate an automatic solution for
placement of keyframes which improves both the IBR
rendering performance and the quality of the animation as
perceived by the human observer.

2.3 Image Flow Applications in Animation
Rendering

The IF (also called the pixel flow [34], pixel tracing [33], or
motion prediction [15]) found many successful applications
in video signal processing [34] and animated sequence
compression [15]. Also, some applications in computer
animation have been shown. Zeghers et al. [46] used the
linear interpolation between densely placed keyframes,
which was performed along the IF trajectories. To avoid
visible image distortions, only a limited number of in-
between frames could be derived (the authors showed
examples for one or three consecutive in-betweens only).
Shinya [33] proposed the motion-compensated filtering as
an antialiasing tool for animation sequences. Shinya derived
the subpixel information improving the efficiency of the
antialiasing for the image sequences by tracking a given
sample point location along the IF trajectories. In his
approach, Shinya emphasized temporal filtering (his filter
has ideal antialiasing properties when its size is infinite),
which lead to costly filters because of their very wide
support. In practice, Shinya acquired temporal samples
from 16-128 subsequent frames of animation. Shinya did
not take into account perceptual considerations for moving
visual patterns [43], which creates a possible trade-off
between reducing the support of filters in the temporal
domain and collecting the samples required for proper
antialiasing in the spatial domain.

Zeghers et al. and Shinya used animation information
to compute the IF between images, while visibility
computations were performed explicitly for every pixel.
Using IBR techniques, the IF computation is greatly
simplified for walkthrough sequences and visibility is
handled automatically.
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3 QuALITY METRIC FOR ANIMATED SEQUENCES

In this section, we propose a novel animation quality metric
which is particularly suitable for synthetic image sequences.
Before we move on to the description of our metric, we
recall the well-known relationship between sensitivity to
temporal fluctuations and moving visual patterns [38]. This
relationship is used to justify the replacement of the central
part of all state-of-the-art video quality metrics—the
spatiotemporal CSF, with the spatiovelocity CSF, which is
far more convenient to use in our application. Also, we
discuss extensions to the spatiovelocity CSF derived in
experimental settings with the stabilized retina toward
more reliable sensitivity estimation for natural observation
conditions.

3.1 Spatiovelocity vs. Spatiotemporal

Considerations

Let f(z,y,t) denote the space-time distribution of an
intensity function (image) f, and v, and v, denote the
horizontal and vertical components of the velocity vector ¥,
which is defined in the zy plane of f. For simplicity, we
assume that the whole image f moves with constant
velocity ¥ and the same reasoning can be applied separately
to any finite region of f that moves with a homogeneous,
constant velocity [46]. The intensity distribution function f3
of the image moving with speed v can be expressed as:

fV(xayat) :f(x_v:rtay_vytao)' (1)

Let F(p1, p2,w) denote the 3D Fourier transform of f(x,y,t),
where p; and p; are spatial frequencies and w is temporal
frequency. Then, the Fourier transform Fy of the image
moving with speed ¥ can be expressed as:

F5(p1, p2,w) = F(p1, p2)d(vepr + vyp2 + w). (2)

This equation shows the relation between the spatial
frequencies and the temporal frequencies, resulting from
the movement of the image along the image plane. We can
see that a given flickering pattern, characterized by the
spatial frequencies p; and p;, and the temporal fluctuation
w, is equivalent to the steady visual pattern of the same
spatial frequencies, but moving along the image plane with
speed V such that

W:prl‘FprZ:\_;'ﬁ'

3)

Equation (2) defines the relationship between temporal
fluctuations and moving visual patterns, which is instru-
mental in understanding of the visual system sensitivity
issues for these kinds of stimuli.

3.2 Spatiovelocity CSF Model

The spatiotemporal CSF of the visual system is widely used
in multiple applications such as digital imaging systems
dealing with motion imagery. One of the most commonly
used analytical approximations of the spatiotemporal CSF is
the formulas derived experimentally by Kelly [18]. Kelly
measured contrast sensitivity at several fixed velocities for
traveling waves of various spatial frequencies. Kelly found
that the constant velocity CSF curves have a very regular
shape at any velocity greater than about 0.1 degree/second.
This made it easy to fit an analytical approximation to the
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contrast sensitivity data derived by Kelly in the psycho-
physical experiment. As a result, Kelly obtained the
spatiovelocity CSF, which he was able to convert into the
spatiotemporal CSF using (3).

Kelly originally designed his spatiovelocity CSF for
displays of relatively low luminance levels (less that
20 cd/m?). Daly [7] extended Kelly’s model to accomodate
the requirements of current displays (luminance levels of
100 cd/m? were assumed) and obtained the following
formula:

CSF(p,v) =

f 4 2
(61 +7.3/log () I*)exv(2merp)* exp (_ %) ’
(4)

where p is spatial frequency in cycles per degree, v is retinal
velocity in degrees per second, and ¢y = 1.14, ¢; = 0.67, c; =
1.7 are coefficients introduced by Daly. Fig. 4 depicts the
spatiovelocity CSF model specified in (4).

3.3 Eye Movements

Kelly performed his psychophysical experiments with
stabilization of the retinal image to eliminate eye move-
ments. Effectively, the retinal image velocity depended
exclusively on the velocity of the visual pattern. However,
in natural observation conditions, the spatial acuity of a
visual system is affected also by eye movements of three
types: smooth pursuit, saccadic, and natural drift. Tracking
moving image patterns with smooth-pursuit eye move-
ments makes it possible to compensate for the motion of the
object of interest, which leads to a reduction of the retinal
velocity and improving acuity. Smooth pursuit movements
also make it possible to keep the retinal image of the object
of interest in the foveal region in which the ability for
resolving spatial details is the best. The smooth-pursuit
eye movement is affected by saccades, which shift the
eye’s focus of attention and may occur every 100-500
milliseconds [29]. The saccadic eye movements are of
very high velocity (160-300 deg/sec) and, during this
motion, the eye sensitivity is effectively zero [7]. During
intentional gaze fixation, drift eye movements are present
and their velocity can be estimated at 0.15 deg/sec based
on the good match between the CSF curve obtained by
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Fig. 5. The displacement vectors between positions of the correspond-
ing pixels which represent the same scene detail in the subsequent
animation frames I,,_i, I,,, and I,,.,. The planar image-warping equation
[25] is used to derive the displacement vectors that are computed in
respect to the pixel positions in I,,. The computation requires the range
data for I,, and the camera parameters of all three involved frames. Note
that the RGB values are not needed to compute the displacement
vectors.

Kelly for stabilized retinal image and the normal,
unstabilized CSF curves [18], [7].

Daly [7] pointed out that a direct use of spatiotemporal
CSF as developed by Kelly usually leads to underestimating
human vision sensitivity because target tracking by the eye
movements is ignored. It is relatively easy to extend Kelly’s
spatiovelocity CSF model (4) to account for eye movements
(it is far more difficult to perform such an extension directly
for the spatiotemporal CSF). The retinal velocity v in (4) can
be estimated as the difference between the image velocity vy
and the eye movement velocity vg [7]:

v =wvr —vg = vy — min(0.82v; + Vasin, Vrraz), (5)

where vy, =0.15 deg/sec is the estimated eye drift
velocity, var, =80 deg/sec the maximum velocity of
smooth eye pursuit, and the coefficient 0.82 is the
experimentally derived efficiency of eye tracking for a
simple stimulus on the CRT display [7].

In general, the estimate of retinal velocity given by (5) is
very conservative because it assumes that the eye is tracking
all moving image elements at the same time. However, it
cannot be considered as the upper bound of eye sensitivity
because, for lower spatial frequencies, the sensitivity may
increase with increasing retinal velocity (refer to Fig. 4). In
such a case, the best detection can occur when the eye is
moving in the opposite direction as the moving visual
pattern so that it effectively boosts the retinal velocity. Since
it is difficult to predict actual eye movements, in practice,
eye movement is completely ignored by a vast majority of
existing video quality metrics [11], [22], [39].

To improve reliability of the eye sensitivity measure-
ment, two retinal velocity estimates can be considered:
1) including an estimate of the smooth eye pursuit velocity
using (5) and 2) ignoring the eye motion at all (vg = 0), in
which case v = v;. The maximum value of the sensitivity for
these two retinal velocity estimates should then be chosen.

The practical question that arises then is how to estimate
local image velocity v;. In our framework, the computation
of vy is equivalent to the IF derivation between neighboring
frames in the animation sequence. For a given frame I,,, we
compute vy in respect to the previous I,,_; and subsequent
I,.1 frames and, based on the obtained wv; values, we

compute their average value to improve the accuracy of
retinal velocity estimate. For every pixel of I,,, we apply the
planar image-warping equation (refer to Section 3.3 in [25]
for more details on this equation) to derive the correspond-
ing image-space coordinates in I, and I,,1;. This makes it
possible to compute the displacement vectors between
pixels in I, and their new locations in ,,_; and I,,4; (refer to
Fig. 5). Based on the displacement vectors, and knowing the
time span between the subsequent animation frames (e.g.,
in the NTSC composite, video standard 30 frames per
second are displayed), it is easy to compute the correspond-
ing velocity vectors. Finally, the obtained v; values, which
are expressed in pixels per second, are converted into the
visual degrees per second as required by (4) and (5).

In the following section, we describe the animation
quality metric developed in this research. This metric
requires the above-discussed estimates of retinal velocity
in order to predict the eye sensitivity for moving visual
patterns.

3.4 Animation Quality Metric

Before we move on to a description of our quality metric, let
us justify an important design decision that we have made.
As we discussed in Section 2.1, the spatiotemporal CSF is
one of the most important components in virtually all state-
of-the-art video quality metrics. However, we found that, in
our application, it is more convenient to include the
spatiovelocity CSF directly in our animation quality metric.
The following reasons may justify our approach:

e The widely used spatiotemporal CSF was in fact
derived from Kelly’s spatiovelocity CSF, which was
measured for moving stimuli (traveling waves).

e As Daly has shown [7], accounting for eye move-
ments is more straightforward for a spatiovelocity
CSF than for a spatiotemporal CSF.

e It is not clear whether vision channels are better
described as spatiotemporal or spatiovelocity [18],
[8]. It is an unresolved issue whether or not the
aggregates of cell behavior are best described as
spatiotemporal or spatiovelocity.

e The IF provides us directly with local velocity
estimates for every frame.

As the framework of our Animation Quality Metric
(AQM), we decided to expand the perception-based visible
differences predictor for static images proposed by Eriksson
et al. [13]. The architecture of this predictor was validated
by Eriksson et al. through psychophysical experiments and
its integrity was shown for various contrast and visual
masking models [13]. Also, we found that the responses of
this predictor are very robust and its architecture was
suitable for incorporation into the spatiovelocity CSF.

Fig. 6 illustrates the processing flow of the AQM. Two
comparison animation sequences are provided as input. For
every pair of input frames I’ and I”, a map of probability
values is generated as output, which characterizes the
difference perceivability. Also, the percentage of pixels with
the predicted differences over the Just Noticeable Differ-
ences (JND) unit [22], [6] is reported. Each of the compared
animation frames I’ and I” undergoes the identical initial
processing. At first, the original pixel intensities are
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Fig. 6. Animation Quality Metric. The spatiovelocity CSF requires the velocity information for every pixel, which involves 3D warping and the IF

computation (refer to Fig. 5 for details on the velocity derivation).

compressed by amplitude nonlinearity and normalized to
the luminance levels of the CRT display. Then, the resulting
images are converted into the frequency domain and
decomposition into radial frequency and orientation chan-
nels is performed using the Cortex transform proposed by
Daly [6] (refer to Section 2.1 for more details). Then, the
individual channels are transformed back to the spatial
domain and contrast in every channel is computed (the
global contrast definition [13] with respect to the mean
luminance value of the whole image was assumed). In the
next stage, the spatiovelocity CSF is computed according to
the Kelly model. The contrast sensitivity values are
calculated using (4) for the center frequency p of each
Cortex frequency band. The visual pattern velocity is
estimated based on the average IF magnitude between the
currently considered frame and the previous/subsequent
frames (refer to Section 3.3 for details). Since the visual
pattern is maximally blurred in the direction of retinal
motion and spatial acuity is retained in the direction
orthogonal to the retinal motion direction [12], we project
the retinal velocity vector onto the direction of the filter
band orientation. The contrast sensitivity values resulting
from such processing are used to normalize the contrasts in
every frequency-orientation channel into the JND units.
Next, the visual masking is modeled using the threshold
elevation approach [13]. The final stage is error pooling
across all channels.

In this research, we apply the AQM to guide in-between
frame computation and to adjust the parameters of our
spatiotemporal animation quality enhancement technique.
We discuss these AQM applications in the following two
sections.

4 RENDERING OF THE ANIMATION

For animation techniques relying on keyframing, the
rendering cost depends heavily upon the efficiency of
in-between frame computation because the in-between
frames usually significantly outnumber the keyframes. We
use IBR techniques [25], [24] discussed in Section 2.2 to
derive the in-between frames. However, the quality of
pixels computed using these techniques can be deteriorated
occasionally due to such reasons as occlusions in the
keyframes of the scene regions that are visible in the in-
between frames, specular properties of depicted objects,
and so on. In the following section, we discuss our solutions

to modifying bad pixels which could affect the animation
quality as perceived by the human observer. One of the
important factors toward reducing the number of bad pixels
is selection of keyframes along the walkthrough trajectory.
In Section 4.2, we propose an efficient method for initial
keyframe selection which is specifically tuned for deriving
in-between frames using IBR techniques. Finally, we
describe our algorithm for adaptive keyframe selection,
which is guided by the AQM predictions.

4.1 Quality Problems with In-Between Frames

The goal of our animation rendering solution is to maximize
the number of pixels computed using the IBR approach
without deteriorating the animation quality. However, the
quality of pixels derived using IBR techniques is usually
lower than ray-traced pixels, e.g., in the regions of in-
between frames which are expanded in respect to the
keyframe frames.

Human vision is especially sensitive to distortions in
image regions with low IF velocities. As a part of our
antialiasing solution (which we describe in more detail in
Section 5), we replace IBR-derived pixels in such regions
with ray-traced pixels. The replacement is performed when
the IF velocity is below a specified threshold value, which
we estimated in subjective and objective (using the AQM)
experiments. In typical animations, usually only a few
percent of the pixels are replaced, unless the camera motion
is very slow.

Since specular effects are usually of high contrast and
they attract the viewer’s attention when looking at a video
sequence [29], special care is taken to process them
properly. In existing IBR methods, handling of nondiffuse
reflectance functions requires very costly preprocessing to
derive images of good quality. For example, a huge number
of images is needed to obtain crisp mirror reflections [26],
[21]. Because of these problems, we decided to use ray
tracing for pixels depicting objects with strong specular or
transparent properties. We use our AQM to decide for
which objects with glossy reflectance properties such
computations are required.

Pixels appearing in the in-between frames that are not
visible in the keyframes cannot be properly derived using the
IBR techniques and we apply ray tracing to fill in the resulting
holes. An appropriate selection of keyframes, which we
discuss in the following section, is an important factor in
reducing the number of pixels which must be ray traced.
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4.2 Initial Keyframe Placement

The selection of keyframes should be considered in the
context of the actual technique used for in-between frame
computation. Our goal is to find an inexpensive and
automatic solution for the initial placement of keyframes
which improves the IBR rendering performance. We
assume a fixed number of initial keyframes and we want
to minimize the number of pixels which cannot be properly
derived from the keyframes due to visibility problems [25].
In this section, we focus on the initial keyframe placement,
which is driven by the above objective. In Section 4.3, we
discuss a further refinement of keyframe placement which
is performed taking into account perceptual considerations
and is guided by AQM predictions.

The occlusion problems in 3D warping usually are
somehow dependent on the differences between the virtual
camera parameters for the keyframes and in-between
frames. A good and compact measure of such differences
which does not involve any explicit camera parameter is the
IF between these two frames. When the keyframe camera
parameters are changed in such a way that pixel disloca-
tions (which are proportional to the IF magnitude) are
reduced, then the number of pixels which cannot be
processed properly due to occlusion problems is also
usually reduced. We used this observation in our approach
to initial keyframe placement in which we reduce the
variance in the average IF magnitude between keyframes.
In our first attempt, we accumulated the average IF for all
frames along the animation path and, by splitting the total
accumulated IF value into equal intervals, we obtained the
keyframe placement. This approach resulted in a well-
balanced per frame distribution of pixels, which cannot be
properly derived using IBR techniques. However, in the
tests that we performed, the total number of such pixels was
usually bigger than in the case of uniform keyframe
placement along the time axis. We found that, for sequences
with little difference in the IF magnitude between frames,
the uniform keyframe placement is a good choice. How-
ever, when the IF variance within a sequence is high, better
results can be obtained when limited dislocation of key-
frames from uniform spacing is allowed to accommodate
the IF variations. Let us assume that, in the initial phase, the
spacing between keyframes is constant and equal to A. It is
also assumed that maximal possible change of keyframe
spacing is expressed by £AA, where A is a fixed coefficient
which usually takes values of 0.25 < A < 0.75. Let g; denote
the actual accumulated IF magnitude between the currently
considered pair of keyframes and let ) denote the average
accumulated IF magnitude for all pairs of keyframes in the
sequence. The fixed spacing A is assumed for ¢; and Q
computation. Then, the actual spacing 6; for the currently
considered animation segment can be computed as follows:

_Q-gq
Q; = =
Q
—-A if a; < —A
o = o if A< <A (6)
A if o > A
57:(1+a7)A

A new length ¢; is assigned to the currently processed
segment and the procedure is repeated until the whole
sequence is processed. According to our experience using
this procedure, we are able to significantly reduce the
percentage of pixels which cannot be properly generated by
IBR techniques due to the occlusion problem. The cost of the
procedure is negligible and the IF information used by this
procedure is required nonetheless in the subsequent stages
of our animation rendering, such as AQM processing and
motion-compensated filtering.

4.3 Adaptive Refinement of Keyframe Placement

After selecting the initial frame placement, every resulting
segment S of length 6 =N +1 is processed separately
through application of the following recursive procedure:

1. Generate the first frame I and the last frame Iy in S
using ray tracing. The keyframes that are shared by
two neighboring segments are computed only once.

2. Derive two instances of the central in-between frame

Iiy /o and Iy ) for segment S by 3D warping [25] the
keyframes:

o I I[/N/Z] = 3DWarp(Iy), and

o Iyt 1[/;\*/2] = 3DWarp(Iy).

3. Use the AQM to compute the probability map
Pyrop with perceivable differences between I[’N 52
and I, /2"

4. Mask out from Py, all pixels that must be ray
traced because of the IBR deficiencies (discussed in
Section 4.1). The following order for masking out
pixels is taken:

a. Mask out from Py, pixels with low IF values
(in Section 5.2, we discuss experimental deriva-
tion of the IF threshold value used for such
masking).

b. Mask out from Py, pixels depicting objects
with strong specular properties (i.e., mirrors,
transparent and glossy objects). The item buffer
[42] of frame Ijy/y is used to identify pixels
representing objects with such properties. Only
those specular objects are masked out for which
the differences between I[’N 52 and Iflv Jo), AS
reported in Py, can be readily perceived by
the human observer. In Section 6, we provide
details on setting the thresholds of the AQM
response which are used by us to discriminate
between the perceivable and imperceivable
differences.

c. Mask out from Py, holes composed of pixels
that could not be derived from keyframes I, and
Iy using 3D warping.

5. If masked-out Py, shows the differences between

Iiy /o and Ify ) for a bigger percentage of pixels than

the assumed threshold value:

a. Split S at frame Iy into two subsegments S
(o, - -, Iiny2)) and Sy (Ijnya)s - -5 I)-
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Fig. 7. The processing flow for in-between frames computation.

b. Process recursively S; and S, starting this
procedure from the beginning for each of them.

Else

a. Composite I{y , and Iy, with correct proces-
sing of object occlusions [24], [32] to derive I|x /o).
Ray trace all pixels which were masked out in
Step 4 of this procedure and composite these

pixels with Ijy/y.

b.

c. Repeat two latter steps for all remaining in-
between frames, i.e., Ii,...,Iy/-1 and
Iinjats -+ Ao in S,

To avoid image quality degradation resulting from
multiple resamplings, the fully ray-traced keyframes I
and Iy are always warped in Step 5c to obtain all in-
between frames in S. Pixels to be ray traced, i.e., pixels with
low IF values, pixels depicting specular objects with visible
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differences (such objects are selected once for the whole S in
step 4b), and pixels with holes resulting from the IBR
processing, must be identified for every in-between frame
separately.

We evaluate the AQM response only for frame I}y 5. We
assume that derivation of /|y /9 applying the IBR techniques
is the most error-prone in the whole segment S because its
arclength distance along the animation path to either the I
or Iy frames is the longest one. This assumption is a trade-
off between the time spent for rendering and for the control
of its quality (we discuss the costs of AQM in Section 6),
but, in practice, it holds well for typical animation paths.

Fig. 7 summarizes the computation and compositing of
an in-between frame. We used a dotted line to mark
those processing stages that are performed only once for
segment S. All other processing stages are repeated for all
in-between frames.

As a final step, we perform our spatiotemporal anti-
aliasing. To speed up the rendering phase, all pixels
(including those that have been ray traced) are not
antialiased until the last stage of processing. The following
section discusses our antialiasing solution in more detail.

5 ANIMATION QUALITY ENHANCEMENT

Composing still images of high quality into an animated
sequence might not result in an equally high quality of
animation because of possible temporal artifacts. On the
other hand, proper temporal processing of the sequence
makes it possible to relax the quality of frames without a
perceivable degradation in the animation quality, which
effectively means that simpler and faster rendering meth-
ods can be applied. In this section, we propose an efficient
spatiotemporal antialiasing technique which makes it
possible to replace the traditionally used supersampled
pixels by raw pixels derived using IBR techniques or ray
tracing (one sample per pixel only) without perceivable
losses in the animation quality. Our antialiasing technique
makes intensive use of the IF. In this context, we discuss
some technical problems with IF validity for objects that
occlude each other and for objects with specular reflectance
properties.

5.1 Spatiotemporal Antialiasing

It is well-known that aliasing affects the quality of images
generated using rendering techniques. This also concerns
images obtained using IBR methods which may addition-
ally exhibit various kind of discontinuities (such as holes
resulting from visibility problems). These discontinuities
can be significantly reduced using techniques like splatting
and the image compositing introduced above, but, none-
theless, in many places in the resulting images, instead of
smooth transitions, jagged unwanted edges and contours
will be easily perceivable (refer to animation samples
posted at [1]).

Aliasing is also inherent in all raster images with
significant content. Images obtained in computer graphics
or, in general, all digital images, are the sampled versions of
their synthetic or real world continuous counterparts.
Sampling theory states that a signal can be properly
reconstructed from its samples if the original signal is

sampled at the Nyquist rate. Due to limited resolution of
output devices, such as printers and, especially, CRTs, the
Nyquist rate criterion in computer graphics is rarely met—
and the image signal cannot be represented properly with a
restricted number of samples.

From the point of view of signal processing theory, the
discontinuities and aliasing artifacts described above are
high frequency distortions. This suggests the possibility of
replacing the traditional, computationally expensive anti-
aliasing techniques, like unweighted and weighted area
sampling and supersampling, by an appropriate image
processing method. Shinya [33] noticed that the subpixel
information required for antialiasing can be derived in the
time domain by tracking a given sample point location
along the IF trajectories. This approach is based on the
fundamental principle of ideal motion compensation, which
requires that the intensity of a pixel remains unchanged
along a well-defined motion trajectory [34]. Shinya used
temporal filters of very wide and fixed support. In our
research, we have found that by treating both aspects,
spatial and temporal, in a balanced way and by adapting
the filter support size as a function of IF, we were able to
improve both the quality and the efficiency of antialiasing.
We have obtained a very efficient antialiasing and image
quality enhancement method based on low pass filtering
using spatial convolution. Spatial convolution is a neighbor-
hood operation, ie. the result at each output pixel is
calculated using the corresponding input pixel and its
neighboring pixels. For the convolution, this result is the
sum of the products of pixel intensities and their corre-
sponding weights from the convolution mask. The values in
the convolution mask determine the effect of the convolu-
tion by defining the filter to be applied. Those values are
derived from the point spread function of the particular
filter (in the case of low pass filtering, typically it will be the
Gaussian function). In our case (i.e., the case of a sequence
of images composing an animation), we have to consider
not only the spatial but also the temporal aspect of aliasing
and discontinuities. The proper way of solving the problem
is to filter the three-dimensional intensity function (com-
posed of a sequence of frames) not along the time axis, but
along the IF introduced earlier in this paper (results and
differences between those approaches can be seen on
animation samples posted at [1]). Such a filtering approach,
known also as the motion compensated filtering, was used
earlier in video signal processing [34], image interpolation
[46], and image compression [15].

5.2 Selection of Filter Parameters

It is well-known that low pass filtering as a side effect
causes blurring and, in fact, a loss of information in the
processed signal or image. In our case, we have to consider
that the content and the final quality of the resulting
animation is to be judged by a human observer. We were
quite fortunate to find that, with the pixels velocity increase,
there is an increase in perceived sharpness (see also [43]).
For example, an animation perceived as sharp and of good
quality can be composed of relatively highly blurred
frames, while the same frames observed as still images
would be judged as blurred and unacceptable by the human
observer. Our antialiasing approach is based on this
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(@)

(b)

Fig. 8. Selected animation frame computed using: (a) ray tracing with antialiasing, (b) compositing of IBR-derived and ray-traced pixels as described
in Section 4, and (c) as in (b), but processed by our 3D antialiasing solution. Note that frames in (a) and (c) are visually indistinguishable when

observed within the animation context.

perceptual phenomena and takes advantage of compensa-
tion by the visual system of excessive blurring introduced
by low pass filtering in animation frames. Fig. 8a and Fig. 8b
show the result for a single frame from an animation
sequence that was obtained using ray tracing with
antialiasing and that from our technique of in-between
frame computation described in Section 4. Fig. 8c shows the
frame depicted in Fig. 8b, which was processed using our
spatiotemporal antialiasing. Although the frames in Fig. 8a
and Fig. 8c exhibit many perceivable differences when
observed as still images, they are visually indistinguishable
when observed within animation sequences.

A practical problem that arises is how to select the filter
support size to avoid perceivable image blurring and, at the
same time, efficiently remove the spatial and temporal
aliasing. To solve this problem properly, the ability to
resolve spatial details by the human observer for objects
moving in the image plane should be taken into account.
The object’s velocity may vary from zero for still frames or
their fragments, under which conditions the eye sensitivity
is very high, to tens of visual degrees per second when the
eye is hardly able to resolve any spatial detail. Moreover, in
walkthrough applications, the velocity of different objects’
motions can be quite different within a single frame; thus, a
local adaptive approach to the selection of filter support size
should be considered. In summary, a filtering solution

taking into account all these characteristics of human
perception for still and moving visual patterns requires a
kind of continuum approach between traditional 2D and
spatiotemporal 3D antialiasing techniques.

The problem of antialiasing for still images is well-
elaborated in computer graphics and image processing
literature. However, it is not clear how to adapt antialiasing
parameters when the visual pattern starts to move and
changes its velocity. Our intention was to investigate this
problem experimentally, taking into account basic char-
acteristics of human vision and using AQM for objective
predictions of the resulting animation quality.

Before we move on to a more detailed description of our
antialiasing technique, let us make some simple observa-
tions which lay the foundation of our approach. Filtering of
still visual patterns by processing neighboring pixels may
lead to excessively blurry images that are objectionable for
the human observer. Subpixel information is usually
required to accommodate the high sensitivity of the eye
when observing still images. Since such subpixel informa-
tion, required for proper antialiasing, cannot be derived in
the time domain, some traditional approaches such as
adaptive supersampling or jittered sampling must be
considered. Fortunately, computation of high quality still
frames in animation using the traditional techniques is not a
problem, especially if the same image can be duplicated and
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used for multiple animation frames. The eye is highly
sensitive to very slowly moving patterns as well, but there
is a chance that adequate samples can be collected in the
temporal domain. Thus, for slow IF velocities, the temporal
filter support should change adaptively. A practical
problem here is that due to the limited accuracy of IF and
intensity values, excessive expansion of the filter support in
the time domain results in an accumulation of errors, which
may cause image artifacts perceivable by the human
observer. When the velocity of moving patterns increases,
the eye sensitivity for high spatial frequencies decreases
and samples required for antialiasing can be collected in the
spatial domain as well. When the spatial filter support is
selected properly as a function of the pattern velocity, the
image blurriness resulting from filtering neighboring pixels
within a frame cannot be perceived. In such conditions, the
temporal domain is not the only source of samples and
temporal filter support can be limited to the size which
results in proper antialiasing. As the visual pattern velocity
further increases, expansion of the spatial filter support
becomes possible. For quickly moving objects, instead of
expanding filter support, more sparse image sampling
could be performed and then, at the filtering stage, intensity
of nonsampled pixels could be interpolated. This possibility
could be especially attractive for rendering techniques
involving the high cost of image sample computation
(e.g., ray tracing). In this research, we do not explore
reduction of sample density for quickly moving visual
patterns because, in this case, deriving samples using the
IBR approach is inexpensive and more reliable.

A practical problem that arises is how to tune the size of
spatial and temporal filter supports, taking into account the
above observations, in order to get a reliable antialiasing
technique which performs well for various animations. We
feel that the continuum approach to spatial and spatiotem-
poral filtering as we outlined in the previous paragraph, is a
research topic in itself which requires separate further in-
depth treatment. In this research, we attempt to provide a
practical antialiasing solution which works well for typical
animation sequences.

Before we move on to the discussion of our filter settings,
we want to address the accuracy problem of the IF and pixel
intensity information. Obviously, the density of the IF and
the intensity samples is limited by the frame resolution.
Effectively, the exact IF values are known for the centers
of pixels only. This is also the case when intensity is
computed using ray tracing (one sample per pixel). When
the IBR technique is used, the exact intensity value
corresponds to some point within the selected pixel on
the splat center, so, in fact, the reliability of the intensity
information is much worse. Since, for temporal proces-
sing, subpixel accuracy is required, the IBR-pixels
accuracy might not be sufficient for slowly moving visual
patterns when eye sensitivity is extremely high. In such
image regions, replacement of the IBR-derived pixels by
ray-traced pixels should be considered.

Another issue is the computation of sample point
positions along the IF trajectory with subpixel accuracy.
We assume that the IF information which is available for
every frame and every pixel is derived with respect to the

next/previous frame and that it is stored as a floating point
value. To derive the IF between a pair of nonneighboring
frames, the IF for all intermediate frames must be
accumulated along the IF trajectory. Since the exact IF
values are stored only for pixel centers, to derive the IF
value for an arbitrary point within a frame, we perform a
bilinear interpolation of the IF using the centers of four
pixels in the proximity of this point. When the position of
the sample point in the next/previous frame is established
based on the interpolated IF, the intensity at this point is
also bilinearly interpolated. Such an intensity value is used
for temporal filtering.

The following problems should be addressed to make
our spatiotemporal antialiasing technique workable: 1) con-
trolling the temporal and spatial filter support as a function
of moving visual pattern velocity v, s, which is derived from
the IF, and 2) selecting the upper velocity threshold v; for
slowly moving visual patterns which always require ray-
traced pixels. All filter support settings given below are
expressed in pixels, assuming that the CRT observation
distance was 0.5 meter, the image diagonal was 0.25 meter,
and the image resolution is 640 x 480 (i.e., 1 visual degree
corresponds to about 28 pixels).

The size of the temporal filter support is decided,
keeping in mind the trade-off between excessive animation
blurring and the reduction of temporal aliasing. Obviously,
the reduction of the filter support size improves computa-
tion efficiency as well. Subjectively, we found that a size of
11 frames is a good trade-off which results in visually
pleasant animations. The only exceptions are frame regions
with slowly moving visual patterns. In such regions,
expanding the support size is the only way to increase the
number of samples used for antialiasing. We adaptively
expand the support size over 11 frames when the IF velocity
is below 0.15 degrees/second, which, for our observation
conditions specified above, is equivalent to 0.14 pixel/frame
(assuming 30 frames/second). For low IF velocities, we
estimate the size of the temporal filter support by proces-
sing the subsequent frames until the accumulated IF
magnitude reaches the size of half a pixel, which means
that the collected samples roughly cover the pixel area.
However, due to excessive accumulation of IF errors which
affect the accuracy of motion compensation and result in
blurry images, we limit the maximum size of our temporal
filter to 15 frames.

We decided to tune the spatial filter support manually,
keeping in mind the trade-off between image aliasing and
blurring. Subjectively, we obtained good visual results with
the following settings:

e For 0 < v,y < 16 degrees/second, the filter support
size should be linearly changed from 3 x 3 to 9 x 9
pixels.

e For v,y > 16 degrees/second, a filter size of 11 x 11
pixels was used because the wider filter support did
not introduce perceivable changes in the animation
quality. As we discussed above, for such quickly
moving visual patterns, the sampling density during
rendering can be relaxed, but, in our application, we
did not expect significant gains because the IBR
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Fig. 9. Experimental settings for estimating the upper threshold of IF velocity which is used to identify image regions that require ray-traced pixels to
avoid deterioration of the animation quality as perceived by the human observer.

technique we used generates samples at very low

cost.
We validated these settings objectively as well as by using
the AQM. We computed the perceivable differences
between 1) the fully ray traced animation (one sample per
pixel) and 2) the IBR-based animation with occlusion
problems fixed using ray traced samples. The resulting
two sequences were spatiotemporally processed using the
above filter settings. The only perceivable differences that

were predicted by the AQM were located in the image
regions with very small v,; values. The differences in these
image regions can be eliminated by replacing IBR-derived
pixels by ray-traced pixels. To make such a replacement
automatic, the velocity threshold v; should be appropriately
adjusted and pixels with v,; < v; should be replaced.

We used the experimental setting shown in Fig. 9 to
estimate a reliable value of v;.. Two input images were
considered: I,; with all pixels ray-traced and I;;, with IBR-
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Fig. 10. Image flow separation problem for occluding objects: ( a) ray-traced frame (one sample per pixel) without temporal processing, (b) ray-traced
frame resulting from our spatiotemporal processing, (c) the AQM prediction of visible differences between the two frames in the context of animation,
(d) the corresponding IF velocity, (e) the color scale used to encode the probability of detecting the differences, and (f) the color scale used to encode

the velocity in degree/second units.

based pixels (the IBR occlusion problems were fixed with
ray traced pixels). Next, based on the IF and for a given
value of v;, we composed a new image I. with pixels taken
from I, when v,y < v, and with pixels acquired from Iy,
otherwise. All three images undergo identical spatiotem-
poral processing using motion-compensated filtering. The
goal of this processing is to prepare these frames in the
same way as the final frames in our animation were
prepared. The AQM is used to compare I, and I, and to
check whether the visible differences do not appear in the
regions which are not ray-traced. When such differences are
predicted, v+ must be increased to include more ray-traced
pixels in I.. The AQM is also used to find the visible
differences between I, and I.. If the differences are only
reported for velocity values v, significantly lower than the
velocity limit v, then this limit can be reduced without
impairing the animation quality. This means that the
rendering cost can be reduced as well. The described
procedure was performed repeatedly for various settings of

v and for various scenes with various v, distributions. We
found that v; ~ 0.5 degree/second favorably accommodates
the required AQM predictions for all scenes we tested. For
some scenes, this threshold is too conservative; however,
we decided to use this value for the sake of robustness of
our animation rendering system. In our discussion, we
assumed that v; is the same for the whole animation.
Important savings could be expected when the v, value
could be adaptively changed across every frame as a
function of visual pattern complexity. We leave such
investigations as future work.

5.3 Image Flow Separation

There are some practical problems with collecting the
proper samples along the IF trajectory due to occlusions
between objects. Effectively, samples representing different
objects can be considered during temporal filtering, which
leads to improper sample blending. On the other hand,
when samples representing different objects will be
separated (e.g., using the item buffer and by comparing
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their z-values), the temporal filter support can be reduced to
single samples which might compromise the antialiasing
quality.

To illustrate this problem, let us consider the relevant
fragment of the animation frame shown in Fig. 10a in which
the foreground lamp occludes the background portions of
the wall and ceiling. In this animation sequence, the virtual
camera moves quite fast (Fig. 10d depicts the corresponding
IF velocity) and it is located close to the lamp. In this
particular configuration of the camera, foreground occlu-
der, and background objects, the motion parallax effect is
very strong, which results in significant occluding of
different portions of the wall and ceiling by the lamp in
neighboring frames. Now, if some portion of the wall that is
visible in the current frame is obscured by the lamp in the
previous/subsequent frames, the temporal processing
along the IF trajectories causes an improper blending of
pixels. Fig. 10b shows results of such motion-compensated
filtering which ignores the IF separation of different objects.
The “ghosting” effect is clearly visible on the wall in the
foreground lamp proximity. To prevent such improper
blending, Shinya [33] applied a quite involved and costly
process to separate the IF for different objects that
occasionally “cross” their paths at some pixels. Shinya used
temporal filters with extremely wide support, so the
involvement of the IF separation procedure was quite likely
for many pixels.

In the animation examples we investigate in this study,
we were not able to perceive animation artifacts caused by
ignoring the IF separation, even though we specifically
knew in advance in which image regions they should be
expected based on the preview of still frames. These
subjective observations were also confirmed by objective
measurements using our AQM. We compared the anima-
tion quality between the two sequences (we used ray-traced
sequences to eliminate the possibility of artifacts resulting
from IBR-derived pixels): 1) ray traced images (one sample
per pixel) without any temporal processing and 2) ray
traced images with our spatiotemporal filtering, but with-
out the IF separation. The corresponding frames are
presented in Fig. 10a and Fig. 10b. The AQM response
which is shown in Fig. 10c does not reveal any differences
between the two sequences in the region of the ghost
appearance. The results of our subjective and objective
experiments can be explained more intuitively as follows:
The ghosting effect in the temporally processed frames
always appears along the IF trajectories and can be
considered as a form of motion blur. Because of such
temporal coherence, the ghosts are not so objectionable to
the viewer as they could be if appearing unexpectedly in the
image space (refer to the example of improper mirror
reflection pattern described in Section 5.4, which can be
readily perceived for animation). For a quickly moving
camera, the motion parallax effect can be strong for some
object configurations; however, eye sensitivity is reduced
and the image artifacts, which can be readily seen in the still
frames, cannot be perceived in the animation. On the other
hand, for a slowly moving camera when the eye is more
sensitive, the motion parallax effect between subsequent
frames is weak and the “ghosting” effect appears as a

Keyframes spacing

1 — Uniform time step
81 modified by Image Flow

— Uniform time step
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j r\

0 50 100 150 200 250 300 350 400
Frame #

[%] of pixels with occlusion problems

Fig. 11. Selection of the initial keyframes for the ROOM walkthrough.

slightly fuzzy boundary on occluding objects. Again, these
fuzzy boundaries can usually be perceived for the still
images, but the apparent boundary sharpness “improves”
in the context of animation [43]. Obviously, the fuzziness of
boundaries is a function of the temporal extent of the filter
support which, in our solution, is fortunately quite narrow.

5.4 Image Flow for Specular Surfaces

The drawback of our current motion-compensated filtering
(as well as the other solutions [33], [46], [34]) is the incorrect
processing of directional lighting effects, which are espe-
cially objectionable for crisp mirror reflections. The objec-
tive measure which compares animation frames with and
without motion-compensated filtering using our AQM also
confirmed these subjective results. Indeed, the motion of the
reflected /refracted patterns over the specular surfaces as a
function of camera motion does not correspond to the
motion of these surfaces in the image plane which is
described by the IF. Since the estimation of the optical flow
for reflections and refractions is quite involved, we used a
simple heuristic relying on the reduction of the size of
temporal filter support for objects with strong directional
reflectance/refraction properties. While, in the still frame,
some reflection artifacts can be seen, in the context of
animation they become imperceivable, which was con-
firmed both by the objective and subjective measures. We
found that the heuristic worked well in the walkthroughs
that we tested. However, more systematic investigation of
the optical flow for specular surfaces would be required,
which we leave as a topic for future work.

6 RESULTS

As the case study in this research we selected a walk-
through animation for two different scenes: the ATRIUM of
the University of Aizu [1] and a ROOM. Selected frames
from the ATRIUM scene are shown in Fig. 7 and Fig. 8 and
from the ROOM scene in Fig. 9 and Fig. 10. The main
motivation for this choice was the interesting occlusion
relationships between objects which are challenging for IBR.
In the case of the ATRIUM scene, a vast majority of the
surfaces exhibit some view-dependent reflection properties,
including the mirror-like and transparent surfaces, which
made in-between frames calculation more difficult. Under
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Fig. 12. ATRIUM walkthrough statistics: (a) the average IF velocity
expressed in degree/second units, (b) the AQM prediction of the
perceived differences between the warped images of two neighboring
keyframes (taking into account various retinal image velocity), (c) the
percentage of pixels to be recalculated by ray tracing. In (b), lines
connecting the symbols were added for figure readability; they do not
have any meaning for the unmarked frames.

such conditions, the AQM guided selection of keyframes
and glossy objects within in-between frames to be recom-
puted was more critical and wrong decisions concerning
these issues could be easy to perceive. For the ROOM scene,
we disabled specular properties and we designed an
animation path which causes great variation in the IF
velocity. Our goal was to investigate the performance of our
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Fig. 13. ROOM walkthrough statistics: (a) the average IF velocity
expressed in degree/second units, (b) the AQM prediction of the
perceived differences between the warped images of two neighboring
keyframes (taking into account various retinal image velocity), (c) the
percentage of pixels to be recalculated by ray tracing. In (b), lines
connected the symbols were added for figure readability; they do not
have any meaning for unmarked frames.

animation rendering solution for the conditions in which
eye sensitivity changes dramatically.

For our experiments, we selected a walkthrough se-
quence of 200 frames for the ATRIUM and 448 frames for the
ROOM. The resolution of each frame was 640 x 480 (to
accommodate for the NTSC standard). At the initial
keyframe selection step (refer to Section 4.2), we assumed
an animation segment length of A =25 frames. For the
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TABLE 1
Statistics of the Ray Traced Pixels in the ATRIUM and rRooM Walkthroughs
Scene Slow motion | Specular objects | IBR occlusions | Keyframes | Total
[%] [%] (%] (%] [%]
ATRIUM 2.4 40.8 0.3 6.0 49.5
ROOM 28.1 0.0 1.9 5.1 35.1

ATRIUM walkthrough, we kept the length of every segment
fixed, ie., 6; = A, because, as can be seen in Fig. 12a,
changes in the average IF velocity computed for every
frame are relatively small. For the ROOM scene, the average
IF velocity variates significantly (refer to Fig. 13a), so we
adjusted the length of every segment ¢; using the algorithm
presented in Section 4.2. The goal of such adjustment was
reduction in the percentage of pixels with occlusion
problems which arise in IBR techniques. Fig. 11 shows
distribution of the percentage of improperly IBR-derived
pixels per frame (these pixels have to be recomputed using
ray tracing) for two keyframe placement methods: the
uniform time step and the uniform time step modified by IF
with the coefficient A = 0.5 in (6). The average percentage
per frame of recomputed pixels was, respectively, 4.04 per-
cent and 2.00 percent. The keyframe placement obtained in
the latter case (in which we obtained over 50 percent
reduction of recomputed pixels compared with the other
solutions) was used in further experiments with the ROOM
sequence.

As described in Section 4.3, for every segment S, we run
the AQM once to decide upon the specular objects which
require recomputation. The AQM is calibrated in such a
way that 1 JND unit corresponds to a 75 percent probability
that an observer can perceive the difference between the
corresponding image regions (such a probability value is
the standard threshold value for discrimination tasks [6]). If
a group of connected pixels representing an object (or a part
of an object) exhibits differences greater than 2 JND
(93.75 percent probability of discrimination), we select such
an object for recalculation. If for an object the differences
below 2 JND are reported by the AQM, then we estimate the
ratio of pixels exhibiting such differences to all pixels
depicting this object. If the ratio is bigger than 25 percent,
we select such an object for recomputation—25 percent is an
experimentally selected trade-off value which makes
possible a reduction in the number of specular objects
requiring recomputation at the expense of some potentially
perceivable image artifacts. These artifacts are usually hard
to notice unless the observer’s attention is specifically
directed to the given image region. Visual sensitivity is high
only in the region of approximately 5.2 visual degrees” due
to foveal vision [37], while the sensitivity decreases
significantly for the remaining image regions which are
perceived by means of peripheral vision (refer to Fig. 2b
illustrating the eccentricity effect). This means that the

2. Assuming that the viewer is located 50 centimeters away from the
display, 5.2 visual degrees corresponds to the image region of diameter
approximately 4.5 centimeters.

AQM predictions which are tuned for foveal vision might
be too conservative for many image regions.

After masking out the pixels to be recomputed, the
decision for further splitting S is made using AQM
predictions for the remaining pixels. The predictions are
expressed by the percentage of unmasked pixels for which
the probability p of detecting the differences is greater than
0.75. Based on experiments that we conducted, we decided
to split every segment S when the percentage of such pixels
is bigger than 10 percent. When computing the AQM
predictions that we used to decide upon segment splitting,
we assumed good tracking of moving visual patterns with
smooth-pursuit eye movements (the retinal velocity is
computed using (5)). The filled squares in Fig. 12b and
Fig. 13b show such predictions for the in-between frames
located in the middle of every initial segment .S. Segments
with AQM predictions over 10 percent were split and the
filled diamonds show the corresponding reduction of the
predicted perceivable differences. We also performed
experiments assuming higher levels of retinal velocity for
our walkthrough animation. The filled triangles in Fig. 12b
and Fig. 13b show the AQM predictions when the retinal
velocity is equal to the IF (eye movements are ignored). For
all segments selected for splitting based on smooth-pursuit
eye movement assumption, the AQM predictions also
exceeded the threshold of 10 percent when the eye move-
ments were ignored. As we discussed in Section 3.4,
although, in general, eye sensitivity improves when eye
tracking is considered, for some visual patterns, eye
sensitivity can be better when eye tracking is ignored
(e.g., refer to the AQM predictions in Fig. 12b for the in-
between frame #38).

The overall costs of in-between frame computations are
strongly affected by the average number of pixels that must
be ray traced. The graph in Fig. 12c shows the percentage of
pixels depicting specular objects that are replaced by ray
traced pixels in the ATRIUM walkthrough sequence. This
graph also shows the percentage of replaced pixels due to
IBR occlusion problems and the high sensitivity of the

TABLE 2
Average Computation Time per Frame
for Various Animation Rendering Solutions

Scene ART RT IBR+RT
[minutes] | [minutes] | [minutes]

ATRIUM 170.0 40.0 20.5

ROOM 6.9 1.5 1.1

All timings were measured on the MIPS 195 MHz processor.
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visual system for image patterns moving with low velocity
(the velocity threshold of 0.5 degree/second was assumed
as explained in Section 5.2). Obviously, a given pixel was
replaced only once and we assumed the following proces-
sing order of pixels replacement: 1) pixels depicting slowly
moving patterns, 2) pixels with possible reflection/refrac-
tion artifacts, and 3) pixels with occlusion problems. Fig. 13c
shows the equivalent results for the scene ROOM. Table 1
presents the average percentage of pixels to be ray traced
per frame.

To evaluate the efficiency of our animation rendering
system we compared the average time required for a single
frame of our test walkthroughs using the following
rendering methods: ART—fully ray traced frames with
antialiasing (using adaptive supersampling) which are
commonly applied in the traditional rendering animation
approach, RT—fully ray traced frames (one sample per
pixel), and IBR+RT frames generated using our approach
with mixed ray traced and IBR-derived pixels. Table 2
summarizes the obtained results for the ATRIUM and ROOM
walkthroughs. In the case IBR+RT, we included the
computation involved in IBR rendering (which requires
about 12 seconds to warp and composite two keyframes
frames), motion-compensated 3D filtering which added an
overhead of 10 seconds per frame, and AQM processing
which takes 243 seconds to process a pair of frames. The
AQM computations are so costly mainly because of the
software implemented Fast Fourier Transform (FFT). Since
our frames are of resolution 640 x 480, we had to consider
images of resolution 1,024 x 512 for the FFT processing.

The most significant speedup was achieved by using our
spatiotemporal antialiasing technique and avoiding the
traditional adaptive supersampling. Our in-between frames
rendering technique added a further 25-50 percent of
speedup with respect to the RT approach. The tested scenes
were hard for our algorithm because of the strong specular
reflectance properties exhibited by many of the surfaces
(ATRIUM) and the slow motion of the camera, in which case,
eye sensitivity is high (ROOM). Also, the chessboard-like
pattern of textures in the ROOM scene made it quite
challenging in terms of proper antialiasing. Even better
performance can be expected for environments in which
specular objects are depicted by a moderate percentage of
pixels, and camera motion is faster.

7 CONCLUSIONS

In this work, we proposed an efficient approach for
rendering of high quality walkthrough animation se-
quences. Our contribution is in developing a fully auto-
matic, perception-based guidance of in-between frame
computation which minimizes the number of pixels
computed using costly ray tracing and seamlessly (in terms
of the perception of animated sequences) replaces them by
pixels derived using inexpensive IBR techniques. Also, we
have shown three very important applications of the image
flow obtained as a by-product of IBR processing. It was
applied to: 1) place keyframes along the animation path,
which improved in-between frame computation perfor-
mance, 2) estimate the spatio-velocity Contrast Sensitivity
Function, which made it possible to incorporate temporal

factors into our perceptually-based image quality metric,
3) perform the spatiotemporal antialiasing with motion-
compensated filtering based on image processing principles
(in contrast to traditional antialiasing techniques used in
computer graphics). We integrated all these techniques into

a balanced animation rendering system.
As future work, we plan to conduct validation studies of

our AQM in psychophysical experiments. Also, we believe
that our approach has some potential for the automatic
selection of keyframes used in IBR systems.
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