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1. INTRODUCTION

This article investigates a novel data-driven approach to biomechanical simulation to
inform User Interface (UI) design. Motion capture-based biomechanical simulation is
an inverse approach to observed motion of the human body. It bears great potential
for Human-Computer Interaction (HCI) because it yields a very rich description of a
user’s movement—including velocities and angles of limb segments, forces and mo-
ments at joints, and, most importantly, muscle activations [Thelen et al. 2003]. Muscle
activations could be particularly useful in interface design as indices of users’ fatigue
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and energy usage. Moreover, as a method, it has advantages over direct measurements
like electromyography (EMG): It is nonintrusive; can estimate activation of all mus-
cles, not only those close to surface; and it does not suffer from cross-talk, variable
skin-conductivity, or muscle movement noise. Moreover, open simulation software is
emerging [Delp et al. 2007], and optical motion tracking equipment is becoming more
common in HCI laboratories around the world. However, despite the attempts to vali-
date the method [Lund et al. 2012; Bachynskyi et al. 2014] and develop software [Delp
et al. 2007; Rasmussen et al. 2002; Veloso et al. 2006; Murai et al. 2010], we have yet to
see a breakthrough comparable to its success in medicine, industrial ergonomics, and
sports perhaps because of the high costs of experimental setups and analyses.

Our goal is to make biomechanical simulation more accessible by significantly low-
ering the barriers to its use. To this end, we have investigated a way to summarize the
major muscle activations and user performance in interactive tasks. As a concrete case,
we investigate interfaces operated by pointing with the human arm. Aimed movements
[MacKenzie 1992] are ubiquitous in HCI and typically registered by intermediaries
such as mouse, touchpad, trackpoint, or joystick. In-air pointing with the arm has
recently become more important with the development of advanced computer vision
methods and other sensors. Recent examples of freehand pointing and gesturing in-
clude medical image exploration [Gallo et al. 2011], tabletops [Wobbrock et al. 2009],
hand articulation interactions [Chaudhary et al. 2013], large interactive displays [Vogel
and Balakrishnan 2005; Banerjee 2012], projector phones [Winkler et al. 2012], video
gaming, exergames [Sinclair et al. 2007], and rehabilitation [Lange et al. 2011].

We propose a clustering that summarizes the main aspects of pointing movements
with the human arm from a biological perspective and associates them with standard
measurements of user performance. Associating muscle loading with performance data
is useful for HCI because a usable input method not only allows the user to send a high
rate of “messages” with movement, but it also minimizes physical ergonomic costs such
as energy use, muscular load, fatigue, and strain.

Formally, clusters refer to “patterns whose distribution in feature space is governed
by a probability density specific to each cluster” [Jain et al. 1999: 7]. In our particular
case, the clusters are understood as muscular equivalence sets of aimed movements
that are similar in time-dependent muscle coactivation patterns in an upper extremity
of the human body. The clustering concerns the time-dependent activation signal of
41 muscles of the upper extremities in pointing movements. Every movement in this
dataset is mapped to one cluster for which we also compute standard indices of per-
formance (speed, accuracy, throughput) from the optical tracking data. The clustering
is based on a novel dataset in which muscle coactivations are estimated for real 3D
pointing performance of an athlete uniformly covering the whole reachable space of the
arm: altogether 72,000 movements. To our knowledge, this is the most comprehensive
dataset of this kind; as we explain later, it covers many scenarios of novel user UIs.

The clusters capture the largest trends in the highly nonuniform motion space of the
human arm. Previous work has demonstrated that the space of pointing movements in
general is nonuniform with respect to location [Caminiti et al. 1990], direction [Caminiti
et al. 1991], performance [Hoffmann et al. 2011; Grossman and Balakrishnan 2004; Lin
and Ho 2011; Plamondon and Alimi 1997; Harris and Wolpert 1998; Whisenand and
Emurian 1999], and involved muscles [Koshland and Hasan 1994]. Because muscles
differ in size, fiber distribution, and force-length-velocity properties, they are differen-
tially recruited in movements in terms of force, timing, moment, and acceleration. A
movement of the arm on the left-hand side of the torso will recruit a different subset
of muscles than will a movement on the right-hand side. We sought to find a minimum
number of clusters that captures such variability in the whole reachable space of the
arm.
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The clustering makes the assumption that muscles are mainly responsible for the
physical forces behind a movement. Human movements are produced by neural im-
pulses (action potential) transferred by the neural system to muscles, similarly to
electric current. Muscles react to action potential by contraction to produce an active
force. Forces produced by groups of muscles working at a particular joint sum to produce
total moment at the joint. Finally, the joint rotates, producing visible movement. In this
regard, their activation patterns contain the necessary “information” about movement.
Thus, our clustering task makes no prior assumption that certain locations, directions,
or amplitudes of movements are “special,” but it lets such differences emerge bottom-
up from muscle coactivations. Moreover, the idea of clustering coactivation patterns
is biologically plausible in the light of a current theory of how muscles act together
synergistically [Tresch et al. 1999]. However, our clustering is a bottom-up summa-
rization of muscle simulation data and is meant for practical purposes in HCI rather
than taken as a neuromechanical hypothesis. Biomechanical simulation subscribes to
the assumption that the neural system is optimal in that it produces ideal (optimal)
activation signals and transmits them losslessly to muscles. Thus, the clusters are best
viewed as a summarization of the upper boundary of human pointing performance in
the absence of moderating neural (e.g., signal loss), muscular (e.g., suboptimal muscle
recruitment), or physical (e.g., friction) factors. We also show that predictive models of
movement time can be improved based on the clusters.

This article builds on previous work from HCI and motor control and broadens it by:

—collecting an extensive dataset of aimed movements uniformly covering the whole
space reachable by the arm,

—augmenting the dataset with activation data of all the main muscles of the upper
extremity, including those not accessible by previous analysis methods,

—associating pointing performance, location in 3D space, and ergonomics properties of
movements with muscle activation patterns,

—summarizing a complex dataset with multisource data in a single simple-to-
understand clustering.

The clustering can be be utilized by practitioners as a heuristic prior to or in the
absence of a full-fledged biomechanical analysis. The clusters predict the performance
and muscle loading of a given pointing gesture with location, direction, and amplitude.
As we show, a whole input region can be defined consisting of a set of movements
that a designer expects for a given user interface. It can also be used inversely: Given
target ranges for muscle loads and user performance, the permissible movements can be
identified. Thus, instead of working with separate movement models and biomechanics
methods, designers can cross-check the demands of a movement if they know anything
about its ego-centric location. The clustering may help designers in four pursuits:

(1) Assess if a given input style is efficient or if slight changes could improve it
(2) Compare different input styles
(3) Identify input regions with optimal tradeoffs between performance and muscle load
(4) Find ways to alternate between muscle groups that can minimize fatigue

We conclude with a demonstration of applications in HCI and discuss opportunities
in using optical motion tracking-based biomechanical simulation in HCI more broadly.
Although this article focuses on the case of interfaces controlled with large arm move-
ments, the approach followed here will have broader usability once the tracking and
simulation techniques allow us to deal with dynamic ground reaction forces (e.g., upon
touching a display) and fine motor movements involving the fingers [Vignais et al.
2013].
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2. RELATED WORK

There is compelling evidence suggesting nonuniformity of human movement: two move-
ments that differ in location, direction, and amplitude can and will vary in many impor-
tant aspects. Simplifying these heterogeneous patterns is the prime goal of our work.

First, studies of movement trajectories have shown the tangential velocity pat-
tern generally to be asymmetric and bell-shaped [Freund and Büdingen 1978]. How-
ever, several factors affect trajectory and velocity profiles, such as starting posture,
the location of the end-effector, and ending posture [Soechting et al. 1995], as well
as the availability of visual feedback [Adamovich et al. 1999; Gribble et al. 2003;
Baud-Bovy and Viviani 1998]. Movement properties also depend on ego-centric loca-
tion and direction of movement [Caminiti et al. 1990, 1991; Koshland and Hasan 1994].
Some of these effects have been captured in a number of movement models, including
the minimum jerk principle [Todorov and Jordan 1998], the torque change minimiza-
tion model [Uno et al. 1989], and the endpoint variance minimization model [Harris
and Wolpert 1998]. Our experimental paradigm for data collection includes the effects
of different starting postures, egocentric location, and direction. No limitations were
imposed on the use of visual feedback.

Second, performance models capture the speed-accuracy tradeoff of pointing tasks
[Hoffmann et al. 2011; Grossman and Balakrishnan 2004; Lin and Ho 2011; Plamondon
and Alimi 1997; Harris and Wolpert 1998]. The earlier models treated movements as
equal in regards to starting location and direction [Fitts 1954; Welford 1968; Schmidt
et al. 1979; MacKenzie and Buxton 1992; MacKenzie 1992]. Some recent models have
started to capture these factors [Grossman and Balakrishnan 2004; Plamondon and
Alimi 1997; Cha and Myung 2013]. Because three target sizes were used and the whole
3D space of the arm covered, our dataset allows grouping any movements in the 3D
space for performance modeling. The clusters we identify differ in movement location,
direction, and amplitude. We show that performance prediction can be improved by
segmenting the data based on muscle-based clusters.

Third, studies of muscle dynamics have shown a general three-phasic pattern of
muscle activations from agonist to antagonist [Wierzbicka et al. 1986; Gielen et al.
1985]. Muscle activations in the initial agonist activation are directly proportional to
the duration of the acceleration phase [Cooke and Brown 1994; Wadman et al. 1979].
Durations of the initial electromyelogram (EMG) bursts of the agonist muscles are
proportional to the movement amplitude [Gielen et al. 1985]. It has been found that the
set of muscles activated at the initialization phase of movement depends on the target
location [Koshland and Hasan 1994]. Also, depending on the movement direction, a
common waveform of muscle activation is scaled and delayed in a specific way for each
muscle [Flanders 1991]. Furthermore, earlier studies have exposed co-dependencies,
such that shoulder and elbow joints are coupled during movement, but the wrist is
independent [Lacquaniti et al. 1986; Hong et al. 1994]. Our muscle activation data
confirm the general pattern and, as such, show large differences within the pointing
space (see Section 3). The goal of our clustering is to capture the tendencies in the
whole reachable space of the arm. As stated, no a priori assumptions are made about
muscle recruitment, but we identify classes in a data-driven approach.

We are aware of few attempts to apply statistical methods of modeling, classifying,
or clustering to biomechanical data. Santos et al. performed clustering of kinetic and
kinematic variables of gait and stair ascent and descent to identify different functional
fitness levels of elderly people [Santos et al. 2014]. However, this work was focused
on identification of the most relevant feature set and used ground truth data identi-
fied in a separate test to assess quality of clustering. Even fewer papers attempt to
model and classify muscle activation patterns of arm movements. They are based on
EMG recordings that were statistically related to kinematics or dynamics of the arm.
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Fig. 1. Performance was recorded for all reciprocal pointings among 25 targets (left) covering the reach-
able space of the arm. To allow biomechanical simulation, optical markers on the subject’s body (center)
are mapped via anatomical landmarks to a generalized model of the human (right). Physical targets are
registered in the virtual 3D space to allow the computation of performance metrics (speed, accuracy, and
throughput).

Flanders [1991] extracts two principal components from the EMG signals. These com-
ponents contain similar patterns among muscles, with the differences in amplitude
and temporal shift depending on the desired movement direction. Micera et al. [1999,
2000] use machine learning techniques to classify EMG signals into three categories.
The involved movements are all planar, and only three muscles are examined. These
studies account for nonuniformity, but they cover only a narrow set of upper extremity
muscles and are limited to close-to-the-surface muscles. Moreover, they do not associate
the patterns to pointing performance.

In our previous work, we collected the motion capture dataset of aimed movements
[Bachynskyi et al. 2013] covering the whole reachable space. We validated biome-
chanical simulation for the full-arm aimed movements [Bachynskyi et al. 2014]. To
better support visual analysis of complex datasets consisting of spatial, performance,
and ergonomic variables, we developed an interactive visualization tool [Palmas et al.
2014]. This background allows us to build on previous work on modeling movement
data by

—including the main muscles of the upper extremities,
—covering the whole reachable space of the arm,
—associating activation patterns to pointing performance.

3. DATA COLLECTION

To cover all aimed movements within the reachable space of the arm, we collected
optical motion tracking data of the 3D pointing performance of an athlete. The dataset
contains 72,000 movements among 25 targets uniformly covering the whole reachable
space of the dominant arm.

We tracked the full-body motion of the subject during the movements. Motion cap-
ture data of the full body allows us to perform biomechanical simulation of recorded
movements to look at the indices inside the body: joint angles, moments and forces at
joints, forces exerted by muscles, and muscle activations [Delp et al. 2007]. These data
can be also used as an estimation of energy expenditure and fatigue indices for each
movement.

The data collection setup with the 25 targets is shown at the left in Figure 1. Since we
use targets with three different sizes (yellow, orange, and red in the figure) and include
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varying target-to-target distances, the data allow for the computation of performance
models.

The athlete is an amateur kickboxer: This sport emphasizes stamina and hand-eye
coordination. Hence, the dataset estimates the upper bound of performance reachable
by regular users. By studying aimed movements to physical targets with no inter-
mediary input device, we can study the performance directly without the typical
limitations of devices such as dwell-time, visibility of the user interface, or latency of
cursor updates.

3.1. Method

Participant: The subject is a 27-year-old male (right-handed, 180cm, 72.5kg) with
no known health problems. During the past 5 years, he placed first in the French
and German amateur kickboxing competitions. However, he is a well-balanced athlete
and regularly does different types of training in addition to kickboxing: athletics and
running, push-ups and pull-ups, cycling, swimming, hiking, and dancing.

Movement targets: Figure 1 (left) shows the reachable space studied: a half-sphere
with radius equal to the subject’s arm length and centered at the right shoulder’s pivot
point. The targets were distributed over the 3D space by means of the densest sphere-
packing algorithm. They were created from cardboard disks of three colors (yellow,
orange, and red) that correspond to three target-width conditions, with radii of 8cm,
4cm, and 2cm, respectively. These were attached to the ends of aluminum pipes. To
ensure that the shoulder stays at the center of the sphere, we prevented leaning with
a horizontal obstacle placed about 2 cm in front of the chest.

Experimental design: The experiment consists of 80–85 aiming movements carried
out for all pairs of the 25 targets, each with three target-width conditions (2, 4, and
8cm). This yields a total of 72,000 pointing acts. The order of trials was randomized in
the experiment.

Procedure: Thirty sessions of 90–120 minutes each were carried out over three
weeks. The subject stands in a position marked on the floor and repeatedly moves
between two given targets as accurately and quickly as possible. Before each target
pair, the subject can find the best manner of aiming at the targets. Timing starts with
the index finger on a target. After a trial, if the self-reported fatigue level is high,
5 minutes of rest is allowed. All movements were made with the subject’s dominant
hand. We imposed a minimum recovery interval of 6 hours between sessions to allow
fast twitch muscle fibers to restore their potential energy.

Apparatus: The PhaseSpace system with 12 Impulse cameras at 480fps was used
to record the movement of 38 active markers (Figure 1, center). Marker placement was
done with care to minimize drift during a session. The tracking accuracy is approx.
1/5 mm.

3.2. Performance Indices and Modeling

We computed movement speed and offset to the target center (inaccuracy) as indices
of pointing performance. The effective target width We was computed as a width of a
sphere containing 96% of movement endpoints at the target [MacKenzie 1992]. The
movement time (MT ) is the time necessary for the participant to move from the starting
point to the target, and, for each condition of target pair and target size, we calculate
the MT value as the average time length of all corresponding movements recorded in
the experiment. Indices of difficulty (IDs) and Fitts’s law models of MT were calculated
for a set of amplitudes D and target sizes We of movements belonging to a particular
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cluster as
ID = log2(D/We + 1)

MT = a + b × ID,

where a and b are regression coefficients of a linear model fit for the given set of
movements. To check goodness of fit for each model, we computed the coefficient of
determination R2.1

3.3. Biomechanical Simulation

Optical motion capture provides only a cloud of points in 3D space tracked on the body
during the movement. The biomechanical simulation is necessary to transform that
cloud of points to the space of indices describing the processes inside the body; among
them, muscle activations are of particular interest for the HCI analyses.

Currently, the best-known software tools for biomechanical simulation are OpenSim,
AnyBody, LifeModeler, and SantosHuman. We chose OpenSim [Delp et al. 2007], the
only comprehensive open source simulator. It supports editing of the musculoskeletal
model, scripting, and visual investigation of the results in a GUI. Because of the lack
of free high-fidelity full-body models, we use the commercial SIMM Full Body model
(SIMM-FBM). SIMM-FBM combines measurements from several anatomical studies
[Holzbaur et al. 2005; Delp et al. 2001; Vasavada et al. 1998; de Leva 1996]. It contains
models of 118 bones, 86 joints, and 285 muscles. The measurements represent an
average adult male and must be scaled to the actual subject before simulation. An
example is shown in Figure 1 (right).

The following steps are standard parts of the pipeline. We report the basic idea of
each step with necessary modifications:

1. Mapping : The first step is to find a correspondence between model and pointlights
in the 3D mocap data. A virtual marker set must be defined, associating physical marker
positions with positions in the musculoskeletal model. We follow the standards and
guidelines for marker placements for biomechanical analysis [Kontaxis et al. 2009].

2. Scaling of the musculoskeletal model to a subject’s proportions is then performed.
A measurement set is a set of marker pairs and body parts that are scaled according to
the ratio of distances between virtual and physical markers. The model size and weight
are adjusted on the basis of the measurement set or from manual measurements.

3. Marker adjustment is done by means of Inverse Kinematics (IK) for a calibration
dataset, with adjustment of marker positions to minimize errors between virtual and
physical markers.

4. IK [Delp et al. 2007] calculates generalized coordinates that describe skeletal
movement. The output is angles between bones at joints and translations and rota-
tions of bodies in the human model relative to the ground. IK is calculated by an op-
timizer that minimizes weighted least-squares errors between physical markers and
corresponding virtual markers.

5. Inverse Dynamics [Delp et al. 2007] (ID) calculates forces and moments at
joints produced by movement stored in a generalized-coordinate sequence. External
forces can be added to the simulation at this step (e.g., if recorded by force plate, force
transducers, or dynamometers).

6. Static Optimization [Delp et al. 2007] (SO) resolves the required activations
of muscles by minimizing total muscle activation as its objective function. It uses two

1We currently use a univariate model of pointing because model fit is good enough, but bivariate and
trivariate models can be computed based on these data (e.g., Grossman and Balakrishnan [2004]).
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muscle models as constraints: ideal force generators and muscles constrained by force-
length-velocity properties. Because of computational demands, SO was performed for
a selected set of 1,800 movements. One representative movement was selected for each
target pair (25×24) and size (3) on the basis of accuracy and proximity to mean speed.2

3.4. Validation

Because our analysis is based on a single participant, a trained athlete, we wanted to
confirm that his movements do not differ significantly from those of “regular users.”
The fact that the participant performs balanced training in different sports is very
important here because he trains not only some particular muscle, but all muscles
of his body uniformly. Hence, his muscles are proportionally more powerful than the
muscles of a regular person, but he recruits them in a very similar way. To this end,
we acquired a recently published dataset that used exactly the same experimental
setup and task with 16 participants (9 m, 7 f, mean age 26, mean height 170cm, mean
weight 70kg) [Bachynskyi et al. 2014]. The task is otherwise the same, but a stratified
sample of five targets was used per subject (the athlete dataset has 25 targets).

To compare movement style between the athlete and the 16 participants, we
computed correlations for marker positions, movement velocity, joint angles, and
moments. The obtained correlations show that although the athlete was much faster
at the task, the movement style was very similar: absolute position (r = 0.98), absolute
velocity (r = 0.97), joint angles (r = 0.87), and joint moments (r = 0.75).

4. OVERVIEW OF THE DATASET

The obtained dataset provides a rich description of human movement when pointing
in 3D. It contains more than 400 variables describing complex interrelations between
spatial locations, performance, and ergonomics:

—spatial information: 28 variables including target positions and sizes, trajectories
of the end-effector, velocity, acceleration, directionality in polar coordinates, and
angles of projections on two vertical planes and with origin at the shoulder center;

—performance: 17 variables including accuracy, movement time, effective target
width, index of difficulty, Fitts’s law model parameters and coefficient of determi-
nation, throughput;

—ergonomics: 361 variables including moments and forces for 21 joints, and forces
and activations for 41 muscles per frame, as well as corresponding aggregated values
for complete movements.

We briefly present an overview of the dataset here before proceeding to the clustering
method in the next section. A table with a full dataset description is available as
supplementary material.

Figure 2 shows the nonuniformity of aimed movements in 3D, particularly with
respect to ergonomics. For example, the three parts of the deltoid muscle of the hu-
man shoulder are extensively used when pointing in 3D, but each of them has a distinct
spatial activation pattern. Figure 2(a) shows that the movements with the highest acti-
vation of the anterior deltoid are found in the left half of the movement space, whereas
the lateral and posterior deltoids have different patterns in the right and top-right
corner.

Figure 2(c) shows how different muscle groups are activated when performing in
the upper, middle, and lower parts of the egocentric space. Both examples show that
there is a strong connection between the activation of muscles and the spatial location

2Marginal improvements to prediction accuracy can be obtained with Computer Muscle Control, which is,
however, computationally more expensive.
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Fig. 2. Overview of the nonuniformity in the dataset. The three plots show how aimed movements in 3D
space are non-uniform with respect to the recruitment of muscles for movements with different properties.
Color saturation in (b) and (c) indicates the strength of the muscle activation.

of the performance. Figure 2(b) shows that there is also a strong relation between
performance and ergonomics. We bisected the dataset into movements with high and
low precision by splitting it on mean accuracy, and we visualize the muscle activations
for these two sets. It can clearly be seen that specific muscles are more activated in
order to produce precise aimed movements. Again, this confirms the nonuniformity of
aimed movements in 3D.

5. CLUSTERING

The collected dataset represents aimed movements of all lengths, in all directions, and
in all locations of the reachable space. In this section, we develop a comprehensive clus-
tering that helps in understanding the ergonomic and performance impacts of design
choices. We capture the differences and similarities of muscle activations using the
following approach: we cluster all movements based on the temporal muscle activation
patterns. Section 5.1 explains this in detail. The result is a comprehensive set of 11
clusters, each with distinctive ergonomic and performance costs of aimed movements
in specific regions of the egocentric space (Section 5.2). As we show later in our appli-
cations, these clusters are a great resource to include biomechanical information into
the design process without running a full-blown study with biomechanical simulation.

5.1. Method

Muscle activations are time-dependent functions. Our dataset describes each move-
ment with a family of 41 time-dependent muscle activations: one for each muscle. We
call this the muscle activation pattern of a movement. Figure 3 shows these patterns for
three movements in our dataset. Note how these muscle activations are changing over
time: For example, accelerating the arm recruits different muscles than decelerating.

The goal of clustering is to identify movements that are similar to each other with
respect to their muscle activation patterns. In the dataset, muscle activations are repre-
sented by vectors of varying length, as initially movements have different time lengths
and are sampled uniformly at constant intervals. To allow clustering of activations,
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Fig. 3. Muscle activations of three different movements. A movement is characterized by the time-dependent
activation of muscles (here: 41). The clustering is based on these muscle activations and assigns similar ones
into the same cluster.

Fig. 4. Quality measures for the clustering aid in selecting an appropriate number of clusters.

we normalize them by time and represent each movement with the same number of
samples, namely 40. The samples are computed as mean activations of all muscles
within equal-length segments and are concatenated into a single vector; this is a com-
pact representation of the muscular activity for each movement, which is later used for
clustering. All other analysis steps are performed on the original muscle activations.

We use an agglomerative hierarchical clustering [Hastie et al. 2009], which provides
different levels of abstraction and does not impose assumptions about the distributions.
We use Euclidean distance for the clustering because activations at any time or in any
muscle have the same effect on the measure. Moreover, absolute values are appreciated,
which is important in our setting. In contrast, the Pearson correlation would ignore
absolute values. We use Ward’s minimum variance linkage method [Ward Jr. 1963],
because it creates compact spherical clusters.

In addition, we tried different clustering methods and distance measures (k-means,
hierarchical clustering with Ward, single, complete, average, and centroid linkage meth-
ods, and Euclidean, maximum, and Manhattan distances) and compared their results.
The clusters created across all distance measures contain much overlap, but Manhat-
tan distance preferred more directionality over co-location in the space, and clusters
created with maximum distance were less prominent in 3D space than with other
distances. We conclude that Euclidean distance not only matched our assumptions
best, but also performed better than others in the production of interpretable clusters.
Among linkage methods, differences were more radical. Single and centroid linkage
methods performed the worst: At each level of hierarchy, they add a single movement
to one already existing cluster, and all non-added movements are considered as sep-
arate clusters. Complete and average linkage methods performed slightly better than
single linkage, but still they kept most movements in a single cluster, and all other
clusters contained fewer than 10 movements each. K-means for numbers of clusters
near 20 produced clusters that strongly overlap with the clusters identified by the hi-
erarchical Ward method, but some of them simultaneously span similar locations in
3D space. For smaller numbers of clusters, k-means produced clusters that are hard
to interpret. Among methods we tried, hierarchical clustering with the Ward linkage
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Fig. 5. Dendrogram showing the hierarchical structure of the whole dataset. Red lines cut the dataset into
clusters at the height selected by the goodness-of-clustering criteria, orange dashed lines correspond to the
cuts performed manually.

method and Euclidean distance produced clusters that were most interpretable with
respect to 3D location and direction and of acceptable size.

For the clustering method we chose, Figure 5 shows the hierarchy of the resulting
clusters in the form of a dendrogram. As can be seen, we selected different levels in the
hierarchy for different clusters. This was done in a semiautomatic fashion informed
by three quality measures for hierarchical clustering: Figure 4 shows the Pearson
gamma, the Dunn index, and the inter-to-intra cluster ratio. We have also checked
other cluster quality indices such as average silhouette width, Calinski and Harabasz
index, Goodman and Kruskal’s Gamma coefficient, and G3 coefficient, and they show
similar patterns of bumps or elbows on the plot for the particular cluster number. These
quality measures show that six and nine clusters are good choices. When choosing six
clusters, distinctions between clusters in 3D location and movement directionality are
weaker or even degraded; for example, Cluster 5 and Cluster 6 are combined into
a single cluster although they correspond to movements on opposite parts of space.
When choosing more clusters, they become more compact in 3D space and exhibit even
more similarity in movement direction, but, as a downside, multiple clusters start to
span the same space, which also affects interpretability. We decided in favor of nine
clusters because they were more interpretable for humans—this is important, since
this clustering is supposed to be read and understood by humans when designing
interfaces, rather than by a machine. Finally, we inspected these clusters and split two
clusters one more time (by choosing the next level in the hierarchy for them) in order
to obtain an even more human-interpretable result, as can be observed in Figure 7.
The final number of clusters is 11. We have also analyzed the dendrogram at each split
to extract any semantic interpretation of why the split occurred. We considered the
most prominent differences between mean values of two clusters under the split as a
semantic description of the split (Figure 6), although small differences were present in
the patterns of most muscles.

5.2. Overview of Clustering

Figure 8 shows details about the movements in each cluster: their performance, their
ergonomics, and their location in 3D, as well as the main directions of the movements.
In particular, we show:
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Fig. 6. Semantic representation of the dendrogram. The splits in this hierarchy are named after the muscle
with the highest activation difference between the split sets. See text for details about choosing the levels.

Fig. 7. The clusters are manually split on the next level of the dendrogram to become better interpretable
in 3D space and movement directionality. As can be observed here, it is hard to identify any pattern in the
original clusters, but, after the splits, it is clearly visible that Cluster 3 contains long and middle-length
movements in the central and upper part of the space, directed diagonally closer to horizontal; Cluster 4
contains long, close to vertical movements in the right upper part of the space, smoothly transitioning
through close to diagonal movements in the lower right part of the space, to close to horizontal movements
in the lower left part of the space; Cluster 8 contains long movements between opposite parts of the space;
and Cluster 9 contains medium and long slightly diagonal and close to horizontal movements mostly in the
right and central parts of the space.
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Fig. 8. Each subfigure shows performance (barplots), ergonomics (LED visualization), and spatial infor-
mation (3D trajectories and oriented arrows) for the final 11 clusters. The opacity of each LED is defined
according to the average activation of the corresponding muscle in the current cluster. See Figure 9 for the
legend.

—performance: two groups of bar plots representing the average movement time and
offset. We used black for the overall value and colors for the values of the respective
clusters;

—ergonomics: activation of the four main areas of the upper part of the human body:
shoulder, chest, back, and arm;

—spatial information: 3D trajectories of the involved movements and arrows ori-
ented according to their main directions.

This overview shows, on the one hand, the nonuniformity of the movement space, yet,
on the other hand, each cluster contains movements that share similarities regarding
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Fig. 9. Legend for the cluster representation in Figure 8. The muscles represented in the LED visualization
are: 1–3 Pectoralis major, 4–6 Pectoralis minor, 7 Coracobrachialis, 8 Supinator brevis, 9 Triceps longhead,
10 Brachialis, 11 Biceps longhead, 12 Triceps lateralis, 13 Pronator teres, 14 Biceps shorthead, 15 Triceps
medialis, 16 Brachioradialis, 17 Anconeus, 18–21 Trapezius, 22–23 Rhomboid major, 24–26 Latissimus dorsi,
27–32 Serratus anterior, 33–35 Deltoid, 36 Supraspinatus, 37 Teres minor, 38 Infraspinatus, 39 Teres major,
40 Subscapularis.

Fig. 10. Total normalized muscle activations for each cluster.

its spatial information and other attributes. This is important for their interpretation
and their later use for guiding User Interface (UI) design.

This clustering confirms our results from the previous section. For example, we
looked at the spatial distribution of the movements for the three deltoid muscles on
the shoulder (Figure 2(a)). These movements are contained in Clusters 6, 10, 11 and 7,
which have a high shoulder activation. Furthermore, we examined the muscle activa-
tions for precise and nonprecise movements (Figure 2(b)). We saw that, in general, the
chest and shoulder muscles are more activated in the case of precise movements. This
trend is also shown in Figure 8, where clusters with the highest precision (Clusters 4,
9, 10, and 11) present a high activation in the same areas.

The total normalized muscle activations for each cluster are reported in Figure 10.
Note the clear differences between the clusters, which serves as another indicator for
a good clustering.

5.3. Description of Clusters

We make the following observations about each cluster:
Cluster 1 covers short and middle-length movements in the central and left upper

parts of the space, directed diagonally closer to vertical. This cluster exhibits lower
than average throughput of movements; in particular, a small advantage in speed is
counterbalanced with a two times greater drawback in accuracy. Muscle activations are
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high for the infraspinatus and anterior deltoid; medium for medial deltoid, brachialis,
and biceps; and low for all other muscles. Movements in this cluster are suitable for
short-term interaction, for alternation with other clusters, or in exergaming to train
the anterior deltoid.

Cluster 2 covers short and middle-length movements in the lower right and central
parts of the space in all directions and some long vertical movements in the middle part
of the space. This cluster has slightly higher than average throughput of movements;
improvements are present in both accuracy and speed. Muscle activations are high
only for the medial deltoid; medium for anterior deltoid, brachialis, pronator teres and
infraspinatus; and low for all other muscles. This cluster exhibits better than average
performance and optimal energy expenditure, which makes it suitable for the majority
of interfaces that need long-term interaction. Exergames within this cluster would not
be effective.

Cluster 3 covers long and middle-length movements in the central and upper part
of the space, directed diagonally closer to horizontal. This cluster exhibits lower than
average throughput of movements; in particular, a slight advantage in accuracy is
counterbalanced by a twice greater drawback in speed. Muscle activations are high
for the infraspinatus and anterior deltoid; medium for medial deltoid, supraspinatus,
serratus anterior, brachialis, pronator teres, upper trapezius, and romboid major; and
low for all other muscles. Movements within this cluster can be used for short-term
interaction with huge public displays, where large movements are necessary, or for
sports exergames (e.g., tennis).

Cluster 4 covers long, close to vertical movements in the right upper part of the
space, smoothly transitioning through close to diagonal movements in the lower right
part of the space, to close to horizontal movements in the lower left part of the space.
This cluster has slightly lower than average throughput; in particular, an increase in
accuracy is strongly counterbalanced by a decrease in speed. Muscle activations are
high for the anterior and medial deltoids, infraspinatus, and brachialis; medium for
posterior deltoid, supraspinatus, triceps, pronator teres, and part of the trapezius; and
low for all other muscles. Movements within this cluster are close to the movements
performed in sports, as in tennis or golf. It can be used for exergames and for training.

Cluster 5 covers short and middle-length horizontal movements in the left and
central part of the space. This cluster has lower than average performance; the accuracy
is 1.5 times lower than the speed is higher. Muscle activations are high for the anterior
deltoid and infraspinatus; medium for brachialis, pronator teres, and trapezius; and
low for all other muscles. Movements in this cluster are suitable for low-accuracy
interaction, for exergames, or primitive interactions with smartwatches.

Cluster 6 covers short and medium diagonal close to horizontal movements in the
topmost part of the space. The performance is slightly higher than average; a small de-
crease in accuracy is compensated for by a twofold increase in speed. Muscle activations
are high for all deltoids, supraspinatus, brachialis, trapezius, and serratus anterior;
medium for triceps, pronator teres, brachioradialis, romboid major, and infraspinatus;
low for the rest of the muscles. Movements within this cluster can be used for training
of multiple shoulder muscles.

Cluster 7 covers medium-length and long movements between the leftmost low-
est point and other parts of the space. This cluster has slightly higher than average
performance, with better accuracy and lower speed. Muscle activations are high for
the anterior deltoid; medium for other deltoids, teres minor, triceps, brachialis, bra-
chioradialis, pronator teres, pectoralis major, serratus anterior, trapezius, rhomboid,
infraspinatus, and teres major; low for a few other muscles. Movements within this
cluster are the least convenient compared to other clusters, and their usage should be
avoided.
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Cluster 8 covers long movements between opposite parts of the space. This clus-
ter has 20% lower performance, resulting in both lower accuracy and much lower
speed. Muscle activations are high for anterior deltoid and infraspinatus; medium for
brachialis and pronator teres; and low for all other muscles. Movements within this
cluster can be used for short interaction, alternation between types of load, or for
exergames.

Cluster 9 covers medium and long diagonal and close to horizontal movements
mostly in the right and central parts of the space. This cluster has lower than average
performance; in particular, accuracy is slightly higher and speed is almost twice as
low. Muscle activations are high for the medial deltoid; medium for other deltoids,
supraspinatus, infraspinatus, and brachialis; and low for all other muscles. Movements
within this cluster are suitable for short-term interaction or for alternation between
loaded muscles.

Cluster 10 covers short and medium movements in the upper right part of the
space in diagonal and mostly very close to vertical directions. This cluster has higher
than average performance; both accuracy and speed are approximately 6% higher.
Muscle activations are high for the posterior and medial deltoids, infraspinatus, upper
trapezius, and serratus anterior; medium for anterior deltoid; and low for all other
muscles. This cluster can be used for short-term interaction, for alternation, and for
interactions where high throughput is necessary.

Cluster 11 covers short and medium mostly vertical movements in the right part of
the space. This cluster exhibits higher than average performance; both accuracy and
speed are 6% higher. Muscle activations are high for the medial deltoid, supraspinatus,
upper trapezius, and subscapularis; medium for serratus anterior, anterior and poste-
rior deltoids, and brachialis; and low for all other muscles. This cluster can be used for
medium-term interaction or for alternation between muscle loads.

5.4. Performance Analysis

We computed Fitts’s law models [MacKenzie 1992] for each cluster separately and
compared fitness for a model computed for the whole dataset. We used the standard
model introduced earlier, with a and b fit to subsets of movements defined by the
clusters. As Figure 11 shows, the model fit per cluster is higher than for the whole
dataset. The average model fit per cluster was R2 = .97, whereas the fit for the whole
dataset was R2 = .95. This corroborates the plausibility of the clustering. The models
show up to 28% difference in throughput between the clusters. Details of performance
analysis of each particular cluster are given in Figure 11, as well as in the context of
each cluster in Section 5.3.

6. APPLICATIONS

The typical approach to assessing the efficiency of input methods employs empirical
studies. The proposed clustering allows any given input region to be examined for
muscle load and user performance prior to such studies, or even instead of such studies.
The clustering can be applied in many scenarios by following this scheme:

(1) Identify characteristic properties of the involved movements: their length, their
directions, and the 3D volume in which the movements are to be sensed.

(2) Use Figure 8 and the corresponding descriptions from Section 5 to identify the
clusters that strongly intersect that input volume.

(3) Among these candidate clusters, find those that contain movements with the de-
sired length and directions.

(4) Finally, examine the performance and ergonomic properties of these clusters and
choose the one that is most suitable for the application.
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Fig. 11. Fitts’s law models for the clusters show that improvements to fitness can be obtained by knowing
the clusters.

To illustrate some applications and evaluate our clustering, we consider four cases
of UI design: (1) in-air keyboard placement, (2) public display interaction, (3) tabletop
interaction, and (4) in-air input for a smartwatch.

As argued earlier, the clusters represent an upper bound on performance. The prop-
erties of the particular input method and the skills of the user are further aspects of
the performance.

6.1. Case 1: In-Air Keyboard Placement

Here, we describe an exercise to inform the design of virtual keyboards operated by
gesturing or pointing with the arm in mid-air [Ni et al. 2011; Shoemaker et al. 2009;
Jones et al. 2010]. Such a keyboard can be implemented with multiple sensors (e.g.,
accelerometers and computer vision) and interaction techniques (e.g., selection- or
gesture-based) and are already used in console games (e.g., for the Nintendo Wii and
in Microsoft Kinect). One outstanding question is the placement of the input region:
how to position the movements required for typing in the space within reach of a user’s
arm. Previous empirical studies have compared in-air keyboards of different sizes and
at different distances [Shoemaker et al. 2009; Jones et al. 2010]. These parameters
affect the angle and extension of the arm in the reachable space. An ideal area would
allow the maximum number of words per minute (wpm) to be typed with a low level of
muscle fatigue that warrants sustained typing.

We now examine our clustering. We have two main physical constraints:

—the cluster needs to cover a space large enough for a keyboard,
—and the movements in this cluster need to be short enough to support typing on

reasonably sized virtual keys.
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Fig. 12. The optimal input region for a virtual keyboard lies within Cluster 2 (see also Figure 8). This cluster
has a good accuracy for aiming movements in a space that is large enough to host a virtual keyboard. Fur-
thermore, the ergonomics in this cluster are very good: It has the lowest total normalized muscle activation
(see also Figure 10).

Four clusters fulfill these constraints: 1, 2, 9, and 11. As we know from Figure 8, the
offset (inaccuracy) in Cluster 1 is rather high, so we exclude it. Among the remaining
clusters, Cluster 2 has the lowest total normalized muscle activation (Figure 10). Hence,
this cluster is a good place for the keyboard.

To evaluate this finding, we employ the following computational approach on the orig-
inal (unclustered) dataset: The goal is to find input regions for a keyboard with the best
pointing performance and a low level of muscle activation. As the performance mea-
sure, we use throughput calculated from the effective index of difficulty: TP = IDe/MT .
For the ergonomics index, we use total muscle activation integrated over time per unit
length, which allows the comparison of movements with different amplitude.

We chose a 10×3 button arrangement for the keyboard, which allows us to implement
a Qwerty layout. The choice of a button size of 7cm is based on the distribution of
the pointing inaccuracy observed in the data. This leads to an overall keyboard size of
70cm×21cm for width and height, respectively. We computationally move this keyboard
design in the reachable space to find its best placement. To do so, we divide the 3D
space into a regular grid of equidistant points and calculate the average throughput
for movements within the associated volumes.

The best volumes for placement of such a keyboard are shown in Figure 12. We ob-
serve that the best placements are generally in the central-lower part of the egocentric
space. Two alternatives are provided: The dominant arm is extended and operates on
either the contralateral (left) or lateral (right) side.

Most importantly, the computational placement coincides with Cluster 2. This con-
firms the utility of the clustering.

6.2. Case 2: Public Display

If designing user interfaces was simply about their ergonomics, then we would just
select the regions where movements require a low average muscle activation. However,
designing good user interfaces is not that simple. Many constraints need to be met:
Movements may be restricted to a certain region, direction, and/or length, and so on.

Take a public display, for example, as shown in Figure 13: It is mounted to the wall
at a certain height, and the user has to maintain a certain distance from the display to
read it properly. Furthermore, the movements are only two-dimensional on the surface
of the display. These constraints are shown in Figure 13(b).
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Fig. 13. We examined muscle load and user performance for the region on a vertical public display containing
an interactive menu. Starting from a real life example (a), we extracted its spatial setup and the main
directions of its movements (b). Using Figure 8, we identified the clusters that contain the desired movements:
1 and 9. Because these two clusters are not suitable for long-term interactions, we lowered the region to bring
all movements to Cluster 2 (d). As a result, the movements have better performance and lower ergonomic
costs. More accurate cluster intersecting percentages and average performance and ergonomics values are
shown in (c) and (e).

In our example, a region containing an interactive menu is placed in the upper part
of the device, as shown in Figure 13(b). As we can see from Figure 8, the interaction
with this display falls mostly into Clusters 1 and 9. This is also confirmed by a compu-
tational analysis using the original dataset: The precise percentages of the intersection
and additional information about the user’s performance and muscle load are given in
Figure 13(c). Such computational analysis was performed by specifying a 3D repre-
sentation of the interaction area and immersing it in the virtual space of the recorded
trajectories.

As we know from our cluster analysis in Section 5.3, Clusters 1 and 9 are good for
short-term interactions, but they should not be used for long-term, sustained interac-
tions. Hence, this may not be the best location for a menu with involved interactions
since users will fatigue too quickly.
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Fig. 14. We examined user’s performance and muscle load for a tabletop. Taking a real example of the
device (a), we defined the setup of its volume, its position in space. and the main directions of its movements
(b). By examining Figure 8, we identified the involved clusters: 2 and 4. More accurate cluster intersecting
percentages and average performance and ergonomic values are shown in (c).

To address this issue, we lowered the position of the interaction area to make it
intersect Cluster 2. From Section 5.3, we know that this cluster is suitable for long-
term interactions. The resulting area is represented in blue in Figure 13(d). Figure 13(e)
shows clearly both the improvement of the user’s performance and the decrease of the
ergonomic costs.

6.3. Case 3: Tabletop

In Figure 14. we analyzed an interaction scenario with a horizontal tabletop. In this
setup, the involved movements are mostly horizontal and from front to back. Figure 8
informs us that the involved movements are mostly contained in Clusters 2 and 4.
More precise percentages of the intersection and additional information about the
user’s performance and muscle load are given in Figure 14(c).

This scenario is significantly better suited for text entry than the public display
from the previous case: Movements in Cluster 2 are accurate and have a low muscle
activation.

6.4. Case 4: Smartwatch Input

Our fourth case concerns the design of input for smartwatches [Narayanaswami and
Raghunath 2000]. The largest drawback of these devices is the very limited input space
due to the small form-factor. The number of buttons on such a device is very small.
Multitouch interfaces are not suitable due to the tiny screen and the occlusions that
would be caused by the hand. One of the alternatives for increasing the input space is
to capture mid-air gestures using an integrated camera.

We analyze here two options of camera placement for gestural interaction: The first
option (Figure 15(a)) is used in the recently released Samsung Gear. The second option
(Figure 15(d)) is our alternative to it, informed by our dataset and clustering.

The camera placement in Figure 15(a) requires the user to enter gestures with the
right arm in the left contralateral part, namely in Clusters 1 and 9. Our alternative
design, on the other hand, features a camera facing to the right of the smartwatch, as
demonstrated in Figure 15(d). This would allow interaction in Cluster 2, which is two
times less fatiguing and provides higher accuracy and performance.
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Fig. 15. We examined the muscle load and user performance for gestural input to a smartwatch. We con-
sidered two alternative interaction volumes depending on camera placement and direction (upper, Samsung
Gear case; lower, alternative case). Starting from real-life examples (a, d), we extracted the spatial setup of
the corresponding interaction volumes and the main directions of their movements (b, e). Using Figure 8,
we identified the clusters that contain the desired movements: Clusters 1 and 9 for the first case, and Clus-
ter 2 for the alternative case. More accurate cluster intersecting percentages and average performance and
ergonomic values are shown in (c, f).

7. SUMMARY AND DISCUSSION

The long-term goal of our work is to facilitate the use of biomechanical simulation data
in user interface design. Biomechanical simulation yields a rich description of observed
movement, including time-dependent angles, forces, and torques at joints, as well as
activations and loads for muscles. Combined with performance modeling, it could play
a major role in the design of novel UIs. Indeed, although the ergonomics of desktop-
based interfaces have been heavily studied, interactions “beyond the desktop” clearly
need more attention.

The approach presented here could accelerate design by allowing first estimates
without expensive empirical investigations. It bypasses the numerous steps of the
standard pipeline of motion capture-based biomechanical simulation. The clusters can
inform UI design in two ways: First, given movement parameters (location, direction,
amplitude) assumed by a design, the clusters can estimate the muscle loads and user
performance (speed, accuracy, throughput). Second, given target values for muscle
loads or performance, the clusters will give information on which location, direction,
and amplitude are feasible as input. We have shown four examples for interface design.

The clustering was made possible by extending the data-driven approach [Flanders
1991; Micera et al. 1999, 2000] to biomechanical simulation of pointing movements
covering the whole reachable space of the arm and associated with performance metrics.
The resulting clustering is a summarization of the main muscle activation patterns that
describe pointing tasks with the arm. It is striking that the very complex coordinated
action of tens of muscles and joints can be described in as few as 11 clusters. The clusters
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capture some major effects of nonuniformity and expose significant differences among
seemingly similar movements.

Although the results are already applicable for in-air interfaces, the approach per-
mits extensions to other UIs. We are working on two technical issues that need to be
resolved to expand applicability: (1) dynamic contact forces in touch-based interactions
and (2) simulation of the fine motor movements of fingers [Bachynskyi et al. 2014].
For example, in our application Cases 2 and 3, our cluster-based analysis did not take
into account the effect of friction (finger pulp contacting the surface). In principle, the
approach will be suitable for design problems that involve (1) aimed movements, (2) a
large movement space, and (3) a nontrivial ergonomics issue. For example, a recent pa-
per on multitouch rotations concluded that rotations on a tabletop are biomechanically
very heterogeneous, and more research is needed to find a link to performance and
physical ergonomics [Hoggan et al. 2013]. Another recent example is interaction with
a thumb on a touchscreen display [Trudeau et al. 2012a, 2012b]. The present approach
could be used to segment the input space according to performance and the amount of
extension/flexion required.

To allow other groups to benefit from the large amount of valuable data gath-
ered in this work, we release our data to the community under the following link:
http://resources.mpi-inf.mpg.de/coactivationclustering.
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