
ADFOCS 2017

intro & simulations

Amir Yehudayoff (Technion)



we have limited resources

time

space

energy

...

computational complexity studies the achievable



algebraic complexity theory

goal: to compute polynomials

tools: algebraic devices (use +,×,÷)

field F

variables X = {x1, . . . , xn}

polynomial f ∈ F[X ]

what is the complexity of f ?



examples



polynomials

matrix product

(XY )i ,j =
∑
k

xi ,kyk,j

determinant (linear algebra)

det(X ) = detn(X ) =
∑
π∈Sn

sign(π)
∏
i∈[n]

xi ,π(i)

permanent (combinatorics & complexity)

perm(X ) = permn(X ) =
∑
π∈Sn

∏
i∈[n]

xi ,π(i)



determinant

detn has n! monomials

can we compute it efficiently?

[...,Gauss,...]

(i) in O(n3) steps write X = SU

where det(S) = ±1 and U upper triangular

(ii) det(X ) = det(U) =
∏

i Ui ,i

(iii) can avoid divisions [Strassen]
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permanent

permn has n! monomials

can we compute it efficiently?

[Ryser]

permn(X ) = (−1)n
∑
T⊆[n]

(−1)|T |
∏
i∈[n]

∑
j∈T

xi ,j

(best known)
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devices



circuits

straight line programs: f1, f2, . . . , fs

fi ∈ X ∪ F or fi = fj ? fk

with j , k < i and ? ∈ {+,×,÷}

fs is the output

circuits: DAGs representing the SLP

costs:

size - number of gates

depth - length of longest path



ABPs

algebraic branching programs: DAG from a to b

edge e is labelled λe ∈ X ∪ F

f =
∑
γ:a→b

∏
e∈γ

λe

iterated matrix product:
w × w matrices M1, . . . ,M` where (Mi )j ,k ∈ X ∪ F

f = (M1M2 . . .M`)1,1

costs:

size

length - `

width - w



formulas

formulas are circuits where graph is a tree

allowed to use “subcomputations” once

costs:

size

depth

claim log(size) ≤ depth ≤ O(log(size))



complexity



devices have costs

polynomials have complexities

e.g. circuit-size of f is the minimum size of a circuit for f

main question: what are the complexities of f ?



simulations



first simulations

theorem: formulas ≤ ABPs ≤ circuits

formula of size s

→ ABP with w , ` ≤ O(s)

→ circuit of size O(w3 · `)



next simulations

useful ideas

homogeneous devices

partial derivatives



homogeneous circuits

a circuit is homogeneous if all subcomputations are homogeneous

syntactic degrees = semantic degrees

[Strassen]

circuit of size s for f of degree r
→ homogeneous circuit of size O(sr2)

[Raz]

formula of size s for f of degree r
→ homogeneous formula of size poly(s)

(r+O(log s)
r

)
grading polynomials by degree is very useful



partial derivatives

given a homogeneous circuit for f of degree r

definition (∂v f )

let v be so that deg(v) > r/2

substitute a new variable y instead of v

the new output is y · ∂vf + g

properties

? ∂v f and g can be computed by “sub-circuits”

? f = fv · ∂v f + g

? deg(∂v f ) = r − deg(v)



circuits → formulas



Hyafil’s simulation

theorem [Hyafil 79]

circuit of size s and degree r
→ formula of depth O(log(sr) log(r))

poly(n) size and degree → quasi-poly(n) size



Hyafil’s simulation

circuit of size s and degree r
→ formula of depth O(log(sr) log(r))

sketch

1. w.l.o.g. circuit is homogeneous

2. induction:

find v = v1 × v2 so that deg(v1) ≤ deg(v2) ≤ r/2 < deg(v)

write
f = ∂v f · fv + g = ∂v f · fv1 · fv2 + g

degrees of ∂v f , fv1 , fv2 at most r/2

g has smaller circuit



circuits → depth 4 formulas



depth 4 simulations

[Agrawal-Vinay 08, Koiran 12, Tavenas 14]1

a circuit of size s and degree r can be simulated by a homogenous
circuit of depth 4 and size

2O(
√

r log(sr) log(n))

depth 4 is of form
∑∏∑∏

with unbounded fanin

1chasm (noun):
i. a deep fissure in the earth, rock, or another surface
ii. a profound difference between people, viewpoints, feelings, etc.



depth 4 simulations

saw: circuit of size s and degree r
→ formula of product depth O(log(r))

idea: cut in middle → two depth 2 circuits → depth 4

let V be set of v = v1 × v2 with deg(v) > t and deg(vi ) ≤ t

each fvi has degree at most t

if we replace each v by a new variable yv then new output has
degree < r/t in Y
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depth 4 simulations

circuit of size s and degree r → formula → depth 4

let V be set of v = v1 × v2 with deg(v) > t and deg(vi ) ≤ t

“upper part” has ≤ 2O(log(sr) log(r)) variables & degree < r/t

“lower parts” have n variables & degree ≤ t

→ depth 4 circuit of size

2O(log(sr) log(r))·r/t + 2O(log(sr) log(r))+t log(n)

= 2O(
√

r log(sr) log(r) log(n))

(worse than Tavenas (VSBR...))



algebraic P = NC2



depth log2(·) simulations

[Valiant-Skyum-Berkowitz-Rackoff 83]

a circuit of size s and degree r
→ circuit of size O(s3r6) and depth O(log(sr) log(r))



depth log2(·) simulations

sketch (induction - over simplification)

homoegeneous circuit of size s and degree r

for each v recursively compute fv by

fv =
∑
u

fu · ∂ufv

over u so that deg(u) ≈ deg(v)/2

“chain rule”
∂ufv =

∑
w

∂ufw · ∂w fv
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circuits → depth 3 circuits



depth 3 simulations

[Gupta-Kamath-Kayal-Saptharishi 13]

over Q a circuit of size s and degree r can be simulated by circuit
of depth 3 and size

2O(
√

r log(sr) log(n))

comments:

(i) non homogeneous: degree ≈ size

(ii) over fields of large characteristic (necessary)



depth 3 simulations

overview (quantitively inaccurate)

circuit of size s and degree r

→
∑∏(

√
r)∑∏(

√
r) circuit of size 2

√
r

→
∑∧(

√
r)∑∑∧(

√
r)∑ circuit of size 2

√
r

→
∑∏∑

circuit of size 2
√
r

∧
is a powering gate



∑∏∑∏
→
∑∧∑∧∑

[Fischer-Ryser]∏(d) →
∑(2d )∧(d)∑:

d∏
i=1

xi =
(−1)d

d!

∑
T⊆[d ]

(−1)|T |

(∑
i∈T

xi

)d

apply to two
∑∏

circuits and merge

∑ (
√
r)∏∑ (

√
r)∏
→
∑ (

√
r)∧ ∑ (

√
r)∧ ∑
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∑∧∑∧∑
→
∑∏∑

duality trick [Saxena, Shpilka-Wigderson]∧∑
→ ∗: there are uni-variate polynomial gij so that

(x1 + . . .+ xm)d =
md+1∑
i=1

m∏
j=1

gij(xj)

to a
∑∏∑

circuit:∑∧∑∧∑
=
∑
t

∑
i

∏
j

gij(`
d
tij) (apply to left

∧
)

=
∑
t

∑
i

∏
`

(`ti` − αti`) (factor over C)

(to go from C to Q need to pay some more)
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summary



several depth reductions

useful for

I computations

I lower bounds

importance of homogeneous polynomials

importance of grading (degree, ...)


