ADFOCS 2017

intro \& simulations

Amir Yehudayoff (Technion)
we have limited resources
time
space
energy
computational complexity studies the achievable

algebraic complexity theory

goal: to compute polynomials
tools: algebraic devices (use,$+ \times, \div$)
field \mathbb{F}
variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$
polynomial $f \in \mathbb{F}[X]$
what is the complexity of f ?

examples

polynomials

matrix product

$$
(X Y)_{i, j}=\sum_{k} x_{i, k} y_{k, j}
$$

determinant (linear algebra)

$$
\operatorname{det}(X)=\operatorname{det}_{n}(X)=\sum_{\pi \in S_{n}} \operatorname{sign}(\pi) \prod_{i \in[n]} x_{i, \pi(i)}
$$

permanent (combinatorics \& complexity)

$$
\operatorname{perm}(X)=\operatorname{perm}_{n}(X)=\sum_{\pi \in S_{n}} \prod_{i \in[n]} x_{i, \pi(i)}
$$

determinant

det_{n} has $n!$ monomials

can we compute it efficiently?

determinant

det_{n} has $n!$ monomials
can we compute it efficiently?
[...,Gauss,...]
(i) in $O\left(n^{3}\right)$ steps write $X=S U$
where $\operatorname{det}(S)= \pm 1$ and U upper triangular
(ii) $\operatorname{det}(X)=\operatorname{det}(U)=\prod_{i} U_{i, i}$
(iii) can avoid divisions [Strassen]

permanent

perm $_{n}$ has n ! monomials
can we compute it efficiently?

permanent

perm $_{n}$ has n ! monomials
can we compute it efficiently?
[Ryser]

$$
\operatorname{perm}_{n}(X)=(-1)^{n} \sum_{T \subseteq[n]}(-1)^{|T|} \prod_{i \in[n]} \sum_{j \in T} x_{i, j}
$$

(best known)

devices

circuits

straight line programs: $f_{1}, f_{2}, \ldots, f_{s}$

$$
f_{i} \in X \cup \mathbb{F} \text { or } f_{i}=f_{j} \star f_{k}
$$

with $j, k<i$ and $\star \in\{+, \times, \div\}$
f_{s} is the output
circuits: DAGs representing the SLP

costs:

size - number of gates
depth - length of longest path

ABPs

algebraic branching programs: DAG from a to b edge e is labelled $\lambda_{e} \in X \cup \mathbb{F}$

$$
f=\sum_{\gamma: a \rightarrow b} \prod_{e \in \gamma} \lambda_{e}
$$

iterated matrix product:
$w \times w$ matrices M_{1}, \ldots, M_{ℓ} where $\left(M_{i}\right)_{j, k} \in X \cup \mathbb{F}$

$$
f=\left(M_{1} M_{2} \ldots M_{\ell}\right)_{1,1}
$$

costs:
size
length - ℓ
width - w

formulas

formulas are circuits where graph is a tree
allowed to use "subcomputations" once
costs:
size
depth
claim $\log ($ size $) \leq$ depth $\leq O(\log ($ size $))$

complexity

devices have costs
polynomials have complexities
e.g. circuit-size of f is the minimum size of a circuit for f
main question: what are the complexities of f ?

simulations

first simulations

theorem: formulas \leq ABPs \leq circuits
formula of size s
$\rightarrow \mathrm{ABP}$ with $w, \ell \leq O(s)$
\rightarrow circuit of size $O\left(w^{3} \cdot \ell\right)$

next simulations

useful ideas

homogeneous devices
partial derivatives

homogeneous circuits

a circuit is homogeneous if all subcomputations are homogeneous
syntactic degrees $=$ semantic degrees
[Strassen]
circuit of size s for f of degree r
\rightarrow homogeneous circuit of size $O\left(s r^{2}\right)$

[Raz]

formula of size s for f of degree r
\rightarrow homogeneous formula of size poly $(s)\binom{r+O(\log s)}{r}$

grading polynomials by degree is very useful

partial derivatives

given a homogeneous circuit for f of degree r definition ($\partial_{v} f$)
let v be so that $\operatorname{deg}(v)>r / 2$
substitute a new variable y instead of v the new output is $y \cdot \partial_{\mathbf{v}} \mathbf{f}+g$

properties

$\star \partial_{v} f$ and g can be computed by "sub-circuits"
$\star f=f_{v} \cdot \partial_{v} f+g$
$\star \operatorname{deg}\left(\partial_{v} f\right)=r-\operatorname{deg}(v)$

circuits \rightarrow formulas

Hyafil's simulation

theorem [Hyafil 79]

circuit of size s and degree r
\rightarrow formula of depth $O(\log (s r) \log (r))$
poly (n) size and degree \rightarrow quasi-poly (n) size

Hyafil's simulation

circuit of size s and degree r
\rightarrow formula of depth $O(\log (s r) \log (r))$

sketch

1. w.l.o.g. circuit is homogeneous
2. induction:
find $v=v_{1} \times v_{2}$ so that $\operatorname{deg}\left(v_{1}\right) \leq \operatorname{deg}\left(v_{2}\right) \leq r / 2<\operatorname{deg}(v)$
write

$$
f=\partial_{v} f \cdot f_{v}+g=\partial_{v} f \cdot f_{v_{1}} \cdot f_{v_{2}}+g
$$

degrees of $\partial_{v} f, f_{v_{1}}, f_{v_{2}}$ at most $r / 2$
g has smaller circuit
circuits \rightarrow depth 4 formulas

depth 4 simulations

[Agrawal-Vinay 08, Koiran 12, Tavenas 14] ${ }^{1}$

a circuit of size s and degree r can be simulated by a homogenous circuit of depth 4 and size

$$
2^{O(\sqrt{r \log (r r) \log (n)})}
$$

depth 4 is of form $\sum \Pi \sum \Pi$ with unbounded fanin

${ }^{1}$ chasm (noun):
i. a deep fissure in the earth, rock, or another surface
ii. a profound difference between people, viewpoints, feelings, etc.

depth 4 simulations

saw: circuit of size s and degree r
\rightarrow formula of product depth $O(\log (r))$

depth 4 simulations

saw: circuit of size s and degree r
\rightarrow formula of product depth $O(\log (r))$
idea: cut in middle \rightarrow two depth 2 circuits \rightarrow depth 4

depth 4 simulations

saw: circuit of size s and degree r
\rightarrow formula of product depth $O(\log (r))$
idea: cut in middle \rightarrow two depth 2 circuits \rightarrow depth 4
let V be set of $v=v_{1} \times v_{2}$ with $\operatorname{deg}(v)>t$ and $\operatorname{deg}\left(v_{i}\right) \leq t$
each $f_{v_{i}}$ has degree at most t
if we replace each v by a new variable y_{v} then new output has degree $<r / t$ in Y

depth 4 simulations

circuit of size s and degree $r \rightarrow$ formula \rightarrow depth 4
let V be set of $v=v_{1} \times v_{2}$ with $\operatorname{deg}(v)>t$ and $\operatorname{deg}\left(v_{i}\right) \leq t$
"upper part" has $\leq 2^{O(\log (s r) \log (r))}$ variables \& degree $<r / t$
"lower parts" have n variables \& degree $\leq t$
\rightarrow depth 4 circuit of size

$$
\begin{aligned}
2^{O(\log (s r) \log (r)) \cdot r / t} & +2^{O(\log (s r) \log (r))+t \log (n)} \\
& =2^{O(\sqrt{r \log (s r) \log (r) \log (n)})}
\end{aligned}
$$

(worse than Tavenas (VSBR...))

algebraic $\mathrm{P}=\mathrm{NC}_{2}$

depth $\log ^{2}(\cdot)$ simulations

[Valiant-Skyum-Berkowitz-Rackoff 83]
a circuit of size s and degree r
\rightarrow circuit of size $O\left(s^{3} r^{6}\right)$ and depth $O(\log (s r) \log (r))$

depth $\log ^{2}(\cdot)$ simulations

sketch (induction - over simplification)
homoegeneous circuit of size s and degree r
for each v recursively compute f_{v} by

$$
f_{v}=\sum_{u} f_{u} \cdot \partial_{u} f_{v}
$$

over u so that $\operatorname{deg}(u) \approx \operatorname{deg}(v) / 2$

depth $\log ^{2}(\cdot)$ simulations

sketch (induction - over simplification)
homoegeneous circuit of size s and degree r
for each v recursively compute f_{v} by

$$
f_{v}=\sum_{u} f_{u} \cdot \partial_{u} f_{v}
$$

over u so that $\operatorname{deg}(u) \approx \operatorname{deg}(v) / 2$
"chain rule"

$$
\partial_{u} f_{v}=\sum_{w} \partial_{u} f_{w} \cdot \partial_{w} f_{v}
$$

circuits \rightarrow depth 3 circuits

depth 3 simulations

[Gupta-Kamath-Kayal-Saptharishi 13]

over \mathbb{Q} a circuit of size s and degree r can be simulated by circuit of depth 3 and size

$$
2^{O(\sqrt{r \log (s r) \log (n)})}
$$

comments:
(i) non homogeneous: degree \approx size
(ii) over fields of large characteristic (necessary)

depth 3 simulations

overview (quantitively inaccurate)
circuit of size s and degree r
$\rightarrow \sum \prod^{(\sqrt{r})} \sum \prod^{(\sqrt{r})}$ circuit of size $2^{\sqrt{r}}$
$\rightarrow \sum \bigwedge^{(\sqrt{r})} \sum \sum \bigwedge^{(\sqrt{r})} \sum$ circuit of size $2^{\sqrt{r}}$
$\rightarrow \sum \Pi \sum$ circuit of size $2^{\sqrt{r}}$
Λ is a powering gate

$\sum \Pi \sum \Pi \rightarrow \sum \wedge \sum \wedge \Sigma$

[Fischer-Ryser]

$$
\begin{aligned}
\Pi^{(d)} \rightarrow & \sum^{\left(2^{d}\right)} \wedge^{(d)} \sum: \\
& \prod_{i=1}^{d} x_{i}=\frac{(-1)^{d}}{d!} \sum_{T \subseteq[d]}(-1)^{T T}\left(\sum_{i \in T} x_{i}\right)^{d}
\end{aligned}
$$

$\sum \Pi \sum \Pi \rightarrow \sum \wedge \sum \wedge \Sigma$

[Fischer-Ryser]
$\prod^{(d)} \rightarrow \sum^{\left(2^{d}\right)} \bigwedge^{(d)} \sum:$

$$
\prod_{i=1}^{d} x_{i}=\frac{(-1)^{d}}{d!} \sum_{T \subseteq[d]}(-1)^{|T|}\left(\sum_{i \in T} x_{i}\right)^{d}
$$

apply to two $\sum \prod$ circuits and merge

$\sum \wedge \Sigma \wedge \Sigma \rightarrow \Sigma \Pi \Sigma$

duality trick [Saxena, Shpilka-Wigderson]
$\bigwedge \sum \rightarrow *$: there are uni-variate polynomial $g_{i j}$ so that

$$
\left(x_{1}+\ldots+x_{m}\right)^{d}=\sum_{i=1}^{m d+1} \prod_{j=1}^{m} g_{i j}\left(x_{j}\right)
$$

$\sum \wedge \sum \wedge \sum \rightarrow \sum \Pi \sum$

duality trick [Saxena, Shpilka-Wigderson]
$\bigwedge \sum \rightarrow *$: there are uni-variate polynomial $g_{i j}$ so that

$$
\left(x_{1}+\ldots+x_{m}\right)^{d}=\sum_{i=1}^{m d+1} \prod_{j=1}^{m} g_{i j}\left(x_{j}\right)
$$

to a $\sum \prod \sum$ circuit:

$$
\begin{array}{rlr}
\sum \bigwedge \sum \bigwedge \sum & =\sum_{t} \sum_{i} \prod_{j} g_{i j}\left(\ell_{t i j}^{d}\right) & (\text { apply to left } \Lambda) \\
& =\sum_{t} \sum_{i} \prod_{\ell}\left(\ell_{t i \ell}-\alpha_{t i \ell}\right) & (\text { factor over } \mathbb{C})
\end{array}
$$

(to go from \mathbb{C} to \mathbb{Q} need to pay some more)
summary
several depth reductions
useful for

- computations
- lower bounds
importance of homogeneous polynomials
importance of grading (degree, ...)

