ADFOCS 2017

intro & simulations

Amir Yehudayoff (Technion)

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

we have limited resources

time

space

energy

. . .

computational complexity studies the achievable

(ロ)、

algebraic complexity theory

goal: to compute polynomials

tools: algebraic devices (use $+, \times, \div$)

field \mathbb{F} variables $X = \{x_1, \dots, x_n\}$ polynomial $f \in \mathbb{F}[X]$

what is the complexity of f?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

examples

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

polynomials

matrix product

$$(XY)_{i,j} = \sum_k x_{i,k} y_{k,j}$$

determinant (linear algebra)

$$det(X) = det_n(X) = \sum_{\pi \in S_n} sign(\pi) \prod_{i \in [n]} x_{i,\pi(i)}$$

permanent (combinatorics & complexity)

$$perm(X) = perm_n(X) = \sum_{\pi \in S_n} \prod_{i \in [n]} x_{i,\pi(i)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

determinant

det_n has n! monomials

can we compute it efficiently?

determinant

det_n has n! monomials

```
can we compute it efficiently?
```

```
[...,Gauss,...]
```

(i) in $O(n^3)$ steps write X = SUwhere $det(S) = \pm 1$ and U upper triangular

(ii) $det(X) = det(U) = \prod_i U_{i,i}$

(iii) can avoid divisions [Strassen]

permanent

perm_n has n! monomials

can we compute it efficiently?

permanent

perm_n has n! monomials

can we compute it efficiently?

[Ryser]

$$perm_n(X) = (-1)^n \sum_{T \subseteq [n]} (-1)^{|T|} \prod_{i \in [n]} \sum_{j \in T} x_{i,j}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

(best known)

devices

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

circuits

straight line programs: f_1, f_2, \ldots, f_s

$$f_i \in X \cup \mathbb{F}$$
 or $f_i = f_j \star f_k$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

with j, k < i and $\star \in \{+, \times, \div\}$

 f_s is the output

circuits: DAGs representing the SLP

costs:

size - number of gates

depth - length of longest path

ABPs

algebraic branching programs: DAG from a to b

edge *e* is labelled $\lambda_e \in X \cup \mathbb{F}$

$$f = \sum_{\gamma: \mathbf{a} \to \mathbf{b}} \prod_{\mathbf{e} \in \gamma} \lambda_{\mathbf{e}}$$

iterated matrix product:

 $w \times w$ matrices M_1, \ldots, M_ℓ where $(M_i)_{j,k} \in X \cup \mathbb{F}$

$$f = (M_1 M_2 \dots M_\ell)_{1,1}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

costs:

size

length - ℓ

width - w

formulas

formulas are circuits where graph is a tree

allowed to use "subcomputations" once

costs:

size

depth

claim $\log(size) \leq depth \leq O(\log(size))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

complexity

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

devices have costs

polynomials have complexities

e.g. circuit-size of f is the minimum size of a circuit for f

main question: what are the complexities of *f*?

simulations

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

theorem: formulas \leq ABPs \leq circuits

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

formula of size s

- \rightarrow ABP with $w, \ell \leq O(s)$
- \rightarrow circuit of size $O(w^3 \cdot \ell)$

next simulations

useful ideas

homogeneous devices

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

partial derivatives

homogeneous circuits

a circuit is homogeneous if all subcomputations are homogeneous

syntactic degrees = semantic degrees

[Strassen]

circuit of size *s* for *f* of degree *r* \rightarrow homogeneous circuit of size $O(sr^2)$

[Raz]

formula of size *s* for *f* of degree *r* \rightarrow homogeneous formula of size $poly(s)\binom{r+O(\log s)}{r}$

grading polynomials by degree is very useful

partial derivatives

given a homogeneous circuit for f of degree r

definition $(\partial_v f)$

let v be so that deg(v) > r/2

substitute a new variable y instead of v

the new output is $y \cdot \partial_{\mathbf{v}} \mathbf{f} + g$

properties

 $\star \partial_v f$ and g can be computed by "sub-circuits"

- $\star f = f_{v} \cdot \partial_{v} f + g$
- $\star \deg(\partial_v f) = r \deg(v)$

$\mathsf{circuits} \to \mathsf{formulas}$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

theorem [Hyafil 79]

circuit of size s and degree r \rightarrow formula of depth $O(\log(sr)\log(r))$

poly(n) size and degree $\rightarrow quasi-poly(n)$ size

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Hyafil's simulation

circuit of size s and degree r \rightarrow formula of depth $O(\log(sr)\log(r))$

sketch

1. w.l.o.g. circuit is homogeneous

2. induction:

find $v = v_1 \times v_2$ so that $deg(v_1) \le deg(v_2) \le r/2 < deg(v)$ write

$$f = \partial_{v} f \cdot f_{v} + g = \partial_{v} f \cdot f_{v_{1}} \cdot f_{v_{2}} + g$$

degrees of $\partial_{v}f, f_{v_{1}}, f_{v_{2}}$ at most r/2

g has smaller circuit

circuits \rightarrow depth 4 formulas

<□ > < @ > < E > < E > E のQ @

[Agrawal-Vinay 08, Koiran 12, Tavenas 14]¹

a circuit of size s and degree r can be simulated by a homogenous circuit of depth 4 and size

 $2^{O(\sqrt{r \log(sr) \log(n)})}$

depth 4 is of form $\sum \prod \sum \prod$ with unbounded fanin

ii. a profound difference between people, viewpoints, feelings, etc.

¹chasm (noun):

i. a deep fissure in the earth, rock, or another surface

saw: circuit of size *s* and degree *r* \rightarrow formula of product depth $O(\log(r))$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

saw: circuit of size *s* and degree *r* \rightarrow formula of product depth $O(\log(r))$

idea: cut in middle \rightarrow two depth 2 circuits \rightarrow depth 4

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

saw: circuit of size *s* and degree *r* \rightarrow formula of product depth $O(\log(r))$

idea: cut in middle \rightarrow two depth 2 circuits \rightarrow depth 4

let V be set of $v = v_1 \times v_2$ with deg(v) > t and $deg(v_i) \le t$

each f_{v_i} has degree at most t

if we replace each v by a new variable y_v then new output has degree < r/t in $\,Y$

circuit of size s and degree $r \rightarrow$ formula \rightarrow depth 4

let V be set of $v = v_1 \times v_2$ with deg(v) > t and $deg(v_i) \le t$

"upper part" has $\leq 2^{O(\log(sr)\log(r))}$ variables & degree < r/t

"lower parts" have *n* variables & degree $\leq t$

 \rightarrow depth 4 circuit of size

$$2^{O(\log(sr)\log(r))\cdot r/t} + 2^{O(\log(sr)\log(r))+t\log(n)}$$
$$= 2^{O(\sqrt{r\log(sr)\log(r)\log(n)})}$$

(worse than Tavenas (VSBR...))

algebraic $P = NC_2$

depth $\log^2(\cdot)$ simulations

[Valiant-Skyum-Berkowitz-Rackoff 83]

a circuit of size s and degree r \rightarrow circuit of size $O(s^3r^6)$ and depth $O(\log(sr)\log(r))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

depth $\log^2(\cdot)$ simulations

sketch (induction - over simplification)

homoegeneous circuit of size s and degree r

for each v recursively compute f_v by

$$f_{\rm v} = \sum_{u} f_{u} \cdot \partial_{u} f_{\rm v}$$

over u so that $deg(u) \approx deg(v)/2$

depth $\log^2(\cdot)$ simulations

sketch (induction - over simplification)

homoegeneous circuit of size s and degree r

for each v recursively compute f_v by

$$f_{\mathsf{v}} = \sum_{u} f_{u} \cdot \partial_{u} f_{\mathsf{v}}$$

over u so that $deg(u) \approx deg(v)/2$

"chain rule"

$$\partial_u f_v = \sum_w \partial_u f_w \cdot \partial_w f_v$$

circuits \rightarrow depth 3 circuits

<□ > < @ > < E > < E > E のQ @

[Gupta-Kamath-Kayal-Saptharishi 13]

over $\mathbb Q$ a circuit of size s and degree r can be simulated by circuit of depth 3 and size

 $2^{O(\sqrt{r \log(sr) \log(n)})}$

comments:

(i) non homogeneous: degree pprox size

(ii) over fields of large characteristic (necessary)

overview (quantitively inaccurate)

circuit of size s and degree r

$$\rightarrow \sum \prod^{(\sqrt{r})} \sum \prod^{(\sqrt{r})} \text{ circuit of size } 2^{\sqrt{r}}$$

$$\rightarrow \sum \bigwedge^{(\sqrt{r})} \sum \sum \bigwedge^{(\sqrt{r})} \sum \text{ circuit of size } 2^{\sqrt{r}}$$

$$\rightarrow \sum \prod \sum \text{ circuit of size } 2^{\sqrt{r}}$$

 \bigwedge is a powering gate

 $\Sigma \prod \Sigma \prod \rightarrow \Sigma \land \Sigma \land \Sigma$

[Fischer-Ryser]

 $\Pi^{(d)} \to \sum^{(2^d)} \bigwedge^{(d)} \sum :$ $\prod_{i=1}^d x_i = \frac{(-1)^d}{d!} \sum_{T \subseteq [d]} (-1)^{|T|} \left(\sum_{i \in T} x_i \right)^d$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 $\Sigma \prod \Sigma \prod \to \Sigma \land \Sigma \land \Sigma$

[Fischer-Ryser]

$$\Pi^{(d)} \to \sum^{(2^d)} \bigwedge^{(d)} \sum :$$
$$\prod_{i=1}^d x_i = \frac{(-1)^d}{d!} \sum_{T \subset [d]} (-1)^{|T|} \left(\sum_{i \in T} x_i \right)^d$$

apply to two $\sum \prod$ circuits and merge

$$\sum \prod_{i=1}^{(\sqrt{r})} \sum \prod_{i=1}^{(\sqrt{r})} \to \sum \bigwedge_{i=1}^{(\sqrt{r})} \sum \bigwedge_{i=1}^{(\sqrt{r})} \sum \prod_{i=1}^{(\sqrt{r})} \sum_{i=1}^{(\sqrt{r})} \sum_{i=1}^{$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$\sum \bigvee \sum \bigvee \sum \bigvee \sum \rightarrow \sum \coprod \sum$

duality trick [Saxena, Shpilka-Wigderson] $\bigwedge \sum \rightarrow *:$ there are uni-variate polynomial g_{ij} so that

$$(x_1 + \ldots + x_m)^d = \sum_{i=1}^{md+1} \prod_{j=1}^m g_{ij}(x_j)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$\sum \bigvee \sum \bigvee \sum \bigvee \sum \rightarrow \sum \coprod \sum$

duality trick [Saxena, Shpilka-Wigderson] $\bigwedge \sum \rightarrow *:$ there are uni-variate polynomial g_{ij} so that

$$(x_1 + \ldots + x_m)^d = \sum_{i=1}^{md+1} \prod_{j=1}^m g_{ij}(x_j)$$

to a $\sum \prod \sum$ circuit:

$$\sum \bigwedge \sum \bigwedge \sum_{t} \sum_{i} \sum_{j} \prod_{j} g_{ij}(\ell_{tij}^{d}) \qquad \text{(apply to left } \bigwedge)$$
$$= \sum_{t} \sum_{i} \prod_{\ell} (\ell_{ti\ell} - \alpha_{ti\ell}) \qquad \text{(factor over } \mathbb{C})$$

(to go from $\mathbb C$ to $\mathbb Q$ need to pay some more)

summary

several depth reductions

useful for

- computations
- Iower bounds

importance of homogeneous polynomials

importance of grading (degree, ...)