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introduction



monotone polynomials

matrix product
XY

convolution

(x*y)g = Z XhYh-1g

heG

permp(X) = Z H Xi (i)

wESy i€[n]

permanent

symmetric polynomials

Sn,d(X) = Z H Xj

TC[n]:|T|=d ieT



monotone model

monotone polynomials have non-negative coefficients

monotone devices use only positive numbers



other models

monotonicity also appears in other models
* context-free grammars

* algorithms use the semi-ring (4, min)



(tropical) algorithmic example

Bellman-Ford dynamic program (shortest s-t path)

frra(v) = min{fo(v)} U {fe(u) + wuy < u # 5}

Floyd-Warshall dynamic program (all pairs shortest path)

fri1(v, u) = min{fy(v, v), f(v, £+ 1)+ (£ + 1, u)}

[BF] is incremental and [FW] is not



dynamic programs

[Jukna, Hrubes-Y]

there is an optimization problem over n elements

min X
heH v:h(v)
veV
that can be solved in poly(n) steps using a non-incremental
dynamic program but every incremental dynamic program must
use nf2(°g") steps to solve



monotone complexities of a monotone polynomial?



[Schnorr]
the monotone circuit complexity of n x n matrix product is ©(n?)

the monotone circuit complexity of convolution is ©(n?) over Z,

false for non-monotone [Strassen,...] & FFT



one negation suffices

[Valiant]

every circuit of size s over R can be written as the difference of
two monotone circuits, each of which is of size O(s)



one negation can be powerful

[Valiant]

the perfect matching polynomial

p(X): Z er

MCE eeM

where M is perfect matching of the triangle grid of length n

* p IS monotone
* p has a circuit of size poly(n) [Kasteleyn]

* every monotone circuit for p has size exp(n)



relations between monotone devices?



as before

all simulations preserve monotonicity, except reduction to depth 3

are they sharp?



formulas versus circuits/ABPs

[Shamir-Snir 79]

a monotone formula for IMM,, ., has size nf¥(log n)

conclusion

Hyafil's simulation is sharp; every

ABP —  formula

monotone

must incur super-poly blowup



ABPs versus circuits

[Hrubes-Y 15]

there is an n-variate polynomial with monotone circuit complexity
poly(n) but monotone ABP complexity n2(l°g")

conclusion

VSBR can not be made more efficient for ABPs, without “violating
monotonicity”



how to prove lower bounds?



outline of lower bounds proofs
weakness

combinatorics / counting



weakness of circuits

lemma

a monotone circuit of size s and pure degree r can be written as:

f= 25: higi
i—1

where for each i
* hj, g are homogeneous and monotone

* r/3 < deg(h;) < 2r/3 and deg(g;) = r — deg(hj)



weakness of circuits

lemma

a monotone circuit of size s and pure degree r can be written as:

f= zs: higi
i—1

where each h;g; is a “balanced” product

comments:
x f is hard if “far from a product set” % <1
* importance of grading polynomials

* can potentially prove non-monotone lower bounds



monotone LB for permanent

write
S
perma = 3" hig
i=1

with h;g; balanced



monotone LB for permanent

write

s
perma = 3" hig
i=1

with h;g; balanced
claim

if h, g are homogeneous, mon(hg) C mon(perm) and r = deg(h)

|mon(hg)| _ ri(n—r)!
mon(F)| =l




monotone LB for permanent

write

s
perma = 3" hig
i=1

with h;g; balanced
claim

if h, g are homogeneous, mon(hg) C mon(perm) and r = deg(h)

|mon(hg)| _ ri(n—r)!
mon(F)| =l

s> (nr/l3) = 29()




weakness of formulas

lemma

a monotone formula of size s and pure degree r can be written as:
S
F=> g8z &t
i=1

with t = Q(log r) where monotonicity holds and for all i,j < t

(1/3Yr < deg(gi,) < (2/3)r



monotone formula LB for IMM

write

S
i=1
where g; is a product of length t =~ log r

claim if g = g1 - - - g+ as above and mon(g) C mon(f)

imon(g)| _ e
e
imon(f)] ="



monotone formula LB for IMM

write
f=(xMx@. X(f) Zg’

where g; is a product of length t =~ log r

claim if g = g1 - - - g+ as above and mon(g) C mon(f)

[mon(g)l _ _a)
[mon(f)| —
sketch
i. there is partition of [r] to {S;} so that var(gj) C Uiesj X
(1) (2) (2)

ii. X777 can multiply X1k but not X3 k

iii. each product reduces number of monomials by 1/n



weakness of ABPs

lemma

for all k < r a monotone ABP of size s and degree r can be

written as: .
f=Y ha
i=1

where for each i
* h;, gi are homogeneous and monotone

* deg(h;j) = k and deg(gi) =r — k



monotone circuits versus ABPs

[Hrubes-Y]

there is an n’-variate degree-n polynomial f so that

* has poly(n)-size monotone circuit

* for some k if f =7 _; higi monotonically with deg(h;) = k then

s> nQ(Iog n)



detour: isoperimetry



definitions

let G = (V, E) be an undirected graph
the size of the (edge) boundary of AC V' is
e(A) = [E(A, B)|
where E(A,B) = {{a,b} e E:ac Abc B} and B=V \ A
the isoperimetric profile is

ip(k) = min{e(A) : |A| = k}



pictorially

surface area in R2

expander graph
n-cycle




sensitive isoperimetric profiles

can ip(k) be very sensitive to k?



sensitive isoperimetric profiles

can ip(k) be very sensitive to k?
[Hrubes,Y] the full binary tree T4 of depth d

for each 0 < k < |V(Ty)|
drop(k)/2 < ip(k) < 2drop(k)

where
drop(k) = |{i : Bix1(k) > Bj(k)}|
and By(k), Bi(k), ... is the binary representation of k



sensitive isoperimetric profiles

can ip(k) be very sensitive to k?
[Hrubes,Y] the full binary tree T4 of depth d

for each 0 < k < |V(Ty)|
drop(k)/2 < ip(k) < 2drop(k)

where
drop(k) = |{i : Biy1(k) > Bi(k)}|
and By(k), Bi(k), ... is the binary representation of k

i. ip of infinite binary tree studied by [Bharadwaj, Chandran, Das]

ii. have more accurate estimates on ip but no “explicit” formula



pictorially

2 U U —

0.5 1 1.5 2 2.5 3
= 10%

graph of drop(k) ~ ip1y,(k)



summary

for the full binary tree T4
1. ip constantly fluctuates between 1 and Q(d)

2. for o4 that has binary representation (1,0,1,0,1,0,...)

ip(7) = & ~ O(log(d)

o4 ~ %|V(Td)|



sharpness of

circuits — ABPs

monotone



theorem:
the n-variate tree polynomial 7 = 7, has
1. monotone circuit-size < poly(n)

2. monotone ABP-size is > nS(log n)



fix d,mand let V = V(Ty)

a function v : V — Z,, is called legal if for every vertex v which is
not a leaf and its two children vq, v, we have

Y(v) =v(v1) +7(v2)

if v is legal then its value on leaves determines it



fix d,mand let V = V(Ty)

a function v : V — Z,, is called legal if for every vertex v which is
not a leaf and its two children vq, v, we have

Y(v) =v(v1) +7(v2)

if v is legal then its value on leaves determines it

the tree polynomial

T(X) = Z HXV,'y(v)

vyElegal veV



boundary lemma: if mon(hg) C mon(7) and
A={vix,«€hland B={v:x . € g}

then
ANB =10

and
[mon(hg)l __|e(aB)/4
|mon(T)| —



boundary lemma: if mon(hg) C mon(7) and A= {v: x, . € h}
and B={v:x,. € g} then

Imon(hg)| _ _|g(aB))/a
|mon(r )|

intuition: each edge in boundary reduces number of options by
factor of m since y(v) = v(v1) + v(v2)




the tree polynomial

theorem: for m=29 = n

1. monotone circuit-size of 7 is < O(m329) = poly(n)

2. monotone ABP-size of 7 is > md) = pf¥(logn)



the tree polynomial

theorem: for m =29 = n
1. monotone circuit-size of 7 is < O(m329) = poly(n)

2. monotone ABP-size of 7 is > md) = pf¥(logn)

proof
1. tree = simple induction

2. structure of ABPs & boundary lemma & ip(cy4) = Q(d)



summary



monotone computations are naive (?)
still, non-trivial algorithms

appear in various contexts
demonstrate interesting phenomena

combinatorial arguments



