ADFOCS 2017

monotonicity

Amir Yehudayoff (Technion)

introduction

monotone polynomials

matrix product

$$
X Y
$$

convolution

$$
(x * y)_{g}=\sum_{h \in G} x_{h} y_{h^{-1}} g
$$

permanent

$$
\operatorname{perm}_{n}(X)=\sum_{\pi \in S_{n}} \prod_{i \in[n]} X_{i, \pi(i)}
$$

symmetric polynomials

$$
S_{n, d}(X)=\sum_{T \subseteq[n]:|T|=d} \prod_{i \in T} x_{i}
$$

monotone model

monotone polynomials have non-negative coefficients
monotone devices use only positive numbers

other models

monotonicity also appears in other models

* context-free grammars
\star algorithms use the semi-ring $(+, \min)$

(tropical) algorithmic example

Bellman-Ford dynamic program (shortest s-t path)

$$
f_{\ell+1}(v)=\min \left\{f_{\ell}(v)\right\} \cup\left\{f_{\ell}(u)+w_{u, v}: u \neq s\right\}
$$

Floyd-Warshall dynamic program (all pairs shortest path)

$$
f_{\ell+1}(v, u)=\min \left\{f_{\ell}(v, u), f_{\ell}(v, \ell+1)+f_{\ell}(\ell+1, u)\right\}
$$

[BF] is incremental and [FW] is not

dynamic programs

[Jukna, Hrubes-Y]

there is an optimization problem over n elements

$$
\min _{h \in H} \sum_{v \in V} x_{v, h(v)}
$$

that can be solved in poly(n) steps using a non-incremental dynamic program but every incremental dynamic program must use $n^{\Omega(\log n)}$ steps to solve
monotone complexities of a monotone polynomial?

[Schnorr]

the monotone circuit complexity of $n \times n$ matrix product is $\Theta\left(n^{3}\right)$
the monotone circuit complexity of convolution is $\Theta\left(n^{2}\right)$ over \mathbb{Z}_{n}
false for non-monotone [Strassen,...] \& FFT

one negation suffices

[Valiant]

every circuit of size s over \mathbb{R} can be written as the difference of two monotone circuits, each of which is of size $O(s)$

one negation can be powerful

[Valiant]

the perfect matching polynomial

$$
p(x)=\sum_{M \subset E} \prod_{e \in M} x_{e}
$$

where M is perfect matching of the triangle grid of length n
$\star p$ is monotone
$\star p$ has a circuit of size poly(n) [Kasteleyn]
\star every monotone circuit for p has size $\exp (n)$
relations between monotone devices?

as before

all simulations preserve monotonicity, except reduction to depth 3
are they sharp?

formulas versus circuits/ABPs

[Shamir-Snir 79]

a monotone formula for $I M M_{n, n \times n}$ has size $n^{\Omega(\log n)}$

conclusion

Hyafil's simulation is sharp; every

must incur super-poly blowup

ABPs versus circuits

[Hrubes-Y 15]

there is an n-variate polynomial with monotone circuit complexity poly (n) but monotone ABP complexity $n^{\Omega(\log n)}$

conclusion

VSBR can not be made more efficient for ABPs, without "violating monotonicity"

ABPs are much stronger than formulas (IMM)

how to prove lower bounds?

outline of lower bounds proofs

weakness
combinatorics / counting

weakness of circuits

lemma

a monotone circuit of size s and pure degree r can be written as:

$$
f=\sum_{i=1}^{s} h_{i} g_{i}
$$

where for each i
$\star h_{i}, g_{i}$ are homogeneous and monotone
$\star r / 3 \leq \operatorname{deg}\left(h_{i}\right)<2 r / 3$ and $\operatorname{deg}\left(g_{i}\right)=r-\operatorname{deg}\left(h_{i}\right)$

weakness of circuits

lemma

a monotone circuit of size s and pure degree r can be written as:

$$
f=\sum_{i=1}^{s} h_{i} g_{i}
$$

where each $h_{i} g_{i}$ is a "balanced" product

comments:

$\star f$ is hard if "far from a product set" $\frac{|\operatorname{mon}(h g)|}{|\operatorname{mon}(f)|} \ll 1$

* importance of grading polynomials
* can potentially prove non-monotone lower bounds

monotone LB for permanent

write

$$
\operatorname{perm}_{n}=\sum_{i=1}^{s} h_{i} g_{i}
$$

with $h_{i} g_{i}$ balanced

monotone LB for permanent

write

$$
\operatorname{perm}_{n}=\sum_{i=1}^{s} h_{i} g_{i}
$$

with $h_{i} g_{i}$ balanced
claim
if h, g are homogeneous, $\operatorname{mon}(h g) \subset \operatorname{mon}($ perm $)$ and $r=\operatorname{deg}(h)$

$$
\frac{|\operatorname{mon}(h g)|}{|\operatorname{mon}(f)|} \leq \frac{r!(n-r)!}{n!}
$$

monotone LB for permanent

write

$$
\operatorname{perm}_{n}=\sum_{i=1}^{s} h_{i} g_{i}
$$

with $h_{i} g_{i}$ balanced
claim
if h, g are homogeneous, $\operatorname{mon}(h g) \subset \operatorname{mon}($ perm $)$ and $r=\operatorname{deg}(h)$

$$
\frac{|\operatorname{mon}(h g)|}{|\operatorname{mon}(f)|} \leq \frac{r!(n-r)!}{n!}
$$

$$
s \geq\binom{ n}{n / 3}=2^{\Omega(n)}
$$

weakness of formulas

lemma

a monotone formula of size s and pure degree r can be written as:

$$
f=\sum_{i=1}^{s} g_{i, 1} g_{i, 2} \cdots g_{i, t}
$$

with $t=\Omega(\log r)$ where monotonicity holds and for all $i, j<t$

$$
(1 / 3)^{j} r \leq \operatorname{deg}\left(g_{i, j}\right) \leq(2 / 3)^{j} r
$$

monotone formula LB for IMM

write

$$
f=\left(X^{(1)} X^{(2)} \ldots X^{(r)}\right)_{1,1}=\sum_{i=1}^{s} g_{i}
$$

where g_{i} is a product of length $t \approx \log r$
claim if $g=g_{1} \cdots g_{t}$ as above and $\operatorname{mon}(g) \subset \operatorname{mon}(f)$

$$
\frac{|\operatorname{mon}(g)|}{|\operatorname{mon}(f)|} \leq n^{-\Omega(t)}
$$

monotone formula LB for IMM

write

$$
f=\left(X^{(1)} X^{(2)} \ldots X^{(r)}\right)_{1,1}=\sum_{i=1}^{s} g_{i}
$$

where g_{i} is a product of length $t \approx \log r$
claim if $g=g_{1} \cdots g_{t}$ as above and $\operatorname{mon}(g) \subset \operatorname{mon}(f)$

$$
\frac{|\operatorname{mon}(g)|}{|\operatorname{mon}(f)|} \leq n^{-\Omega(t)}
$$

sketch

i. there is partition of $[r]$ to $\left\{S_{j}\right\}$ so that $\operatorname{var}\left(g_{j}\right) \subset \bigcup_{i \in S_{j}} X^{(i)}$
ii. $x_{1,1}^{(1)}$ can multiply $x_{1, k}^{(2)}$ but not $x_{2, k}^{(2)}$
iii. each product reduces number of monomials by $1 / n$

weakness of ABPs

lemma

for all $k \leq r$ a monotone ABP of size s and degree r can be written as:

$$
f=\sum_{i=1}^{s} h_{i} g_{i}
$$

where for each i
$\star h_{i}, g_{i}$ are homogeneous and monotone
$\star \operatorname{deg}\left(h_{i}\right)=k$ and $\operatorname{deg}\left(g_{i}\right)=r-k$
comment: weaker than circuits in that k is fixed

monotone circuits versus ABPs

[Hrubes-Y]

there is an n^{2}-variate degree- n polynomial f so that
\star has poly (n)-size monotone circuit
(and $f=\sum_{i=1}^{n} h_{i} g_{i}$ with $\operatorname{deg}\left(h_{i}\right)=n / 2$)
\star for some k if $f=\sum_{i=1}^{s} h_{i} g_{i}$ monotonically with $\operatorname{deg}\left(h_{i}\right)=k$ then

$$
s \geq n^{\Omega(\log n)}
$$

detour: isoperimetry

definitions

let $G=(V, E)$ be an undirected graph
the size of the (edge) boundary of $A \subseteq V$ is

$$
e(A)=|E(A, B)|
$$

where $E(A, B)=\{\{a, b\} \in E: a \in A, b \in B\}$ and $B=V \backslash A$
the isoperimetric profile is

$$
i p(k)=\min \{e(A):|A|=k\}
$$

pictorially

sensitive isoperimetric profiles

can $i p(k)$ be very sensitive to k ?

sensitive isoperimetric profiles

can $i p(k)$ be very sensitive to k ?
[Hrubes, Y] the full binary tree T_{d} of depth d
for each $0<k<\left|V\left(T_{d}\right)\right|$

$$
\operatorname{drop}(k) / 2 \leq i p(k) \leq 2 \operatorname{drop}(k)
$$

where

$$
\operatorname{drop}(k)=\left|\left\{i: B_{i+1}(k)>B_{i}(k)\right\}\right|
$$

and $B_{0}(k), B_{1}(k), \ldots$ is the binary representation of k

sensitive isoperimetric profiles

can $i p(k)$ be very sensitive to k ?
[Hrubes, Y] the full binary tree T_{d} of depth d
for each $0<k<\left|V\left(T_{d}\right)\right|$

$$
\operatorname{drop}(k) / 2 \leq i p(k) \leq 2 \operatorname{drop}(k)
$$

where

$$
\operatorname{drop}(k)=\left|\left\{i: B_{i+1}(k)>B_{i}(k)\right\}\right|
$$

and $B_{0}(k), B_{1}(k), \ldots$ is the binary representation of k
i. ip of infinite binary tree studied by [Bharadwaj, Chandran, Das]
ii. have more accurate estimates on ip but no "explicit" formula

pictorially

summary

for the full binary tree T_{d}

1. ip constantly fluctuates between 1 and $\Omega(d)$
2. for σ_{d} that has binary representation $(1,0,1,0,1,0, \ldots)$

$$
i p\left(\sigma_{d}\right)=\frac{d}{2}-\Theta(\log (d))
$$

$$
\sigma_{d} \approx \frac{2}{3}\left|V\left(T_{d}\right)\right|
$$

sharpness of

circuits \rightarrow ABPs
 monotone

theorem:
the n-variate tree polynomial $\tau=\tau_{n}$ has

1. monotone circuit-size $\leq \operatorname{poly}(n)$
2. monotone ABP-size is $\geq n^{\Omega(\log n)}$
fix d, m and let $V=V\left(T_{d}\right)$
a function $\gamma: V \rightarrow \mathbb{Z}_{m}$ is called legal if for every vertex v which is not a leaf and its two children v_{1}, v_{2}, we have

$$
\gamma(v)=\gamma\left(v_{1}\right)+\gamma\left(v_{2}\right)
$$

if γ is legal then its value on leaves determines it
fix d, m and let $V=V\left(T_{d}\right)$
a function $\gamma: V \rightarrow \mathbb{Z}_{m}$ is called legal if for every vertex v which is not a leaf and its two children v_{1}, v_{2}, we have

$$
\gamma(v)=\gamma\left(v_{1}\right)+\gamma\left(v_{2}\right)
$$

if γ is legal then its value on leaves determines it
the tree polynomial

$$
\tau(x)=\sum_{\gamma \in \operatorname{legal}} \prod_{v \in V} x_{v, \gamma(v)}
$$

boundary lemma: if $\operatorname{mon}(h g) \subset \operatorname{mon}(\tau)$ and

$$
A=\left\{v: x_{v, *} \in h\right\} \text { and } B=\left\{v: x_{v, *} \in g\right\}
$$

then

$$
A \cap B=\emptyset
$$

and

$$
\frac{|\operatorname{mon}(h g)|}{|\operatorname{mon}(\tau)|} \leq m^{-|E(A, B)| / 4}
$$

boundary lemma: if $\operatorname{mon}(h g) \subset \operatorname{mon}(\tau)$ and $A=\left\{v: x_{v, *} \in h\right\}$ and $B=\left\{v: x_{v, *} \in g\right\}$ then

$$
\frac{|\operatorname{mon}(h g)|}{|\operatorname{mon}(\tau)|} \leq m^{-|E(A, B)| / 4}
$$

intuition: each edge in boundary reduces number of options by factor of m since $\gamma(v)=\gamma\left(v_{1}\right)+\gamma\left(v_{2}\right)$

the tree polynomial

theorem: for $m=2^{d}=n$

1. monotone circuit-size of τ is $\leq O\left(m^{3} 2^{d}\right)=\operatorname{poly}(n)$
2. monotone ABP-size of τ is $\geq m^{\Omega(d)}=n^{\Omega(\log n)}$

the tree polynomial

theorem: for $m=2^{d}=n$

1. monotone circuit-size of τ is $\leq O\left(m^{3} 2^{d}\right)=\operatorname{poly}(n)$
2. monotone ABP-size of τ is $\geq m^{\Omega(d)}=n^{\Omega(\log n)}$

proof

1. tree \Rightarrow simple induction
2. structure of ABPs \& boundary lemma \& ip($\left.\sigma_{d}\right)=\Omega(d)$
summary
monotone computations are naive (?)
still, non-trivial algorithms
appear in various contexts
demonstrate interesting phenomena
combinatorial arguments
