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introduction



monotone polynomials

matrix product
XY

convolution
(x ∗ y)g =

∑
h∈G

xhyh−1g

permanent

permn(X ) =
∑
π∈Sn

∏
i∈[n]

Xi ,π(i)

symmetric polynomials

Sn,d(X ) =
∑

T⊆[n]:|T |=d

∏
i∈T

xi



monotone model

monotone polynomials have non-negative coefficients

monotone devices use only positive numbers



other models

monotonicity also appears in other models

? context-free grammars

? algorithms use the semi-ring (+,min)



(tropical) algorithmic example

Bellman-Ford dynamic program (shortest s-t path)

f`+1(v) = min{f`(v)} ∪ {f`(u) + wu,v : u 6= s}

Floyd-Warshall dynamic program (all pairs shortest path)

f`+1(v , u) = min{f`(v , u), f`(v , `+ 1) + f`(`+ 1, u)}

[BF] is incremental and [FW] is not



dynamic programs

[Jukna, Hrubes-Y]

there is an optimization problem over n elements

min
h∈H

∑
v∈V

xv ,h(v)

that can be solved in poly(n) steps using a non-incremental
dynamic program but every incremental dynamic program must
use nΩ(log n) steps to solve



monotone complexities of a monotone polynomial?



[Schnorr]

the monotone circuit complexity of n × n matrix product is Θ(n3)

the monotone circuit complexity of convolution is Θ(n2) over Zn

false for non-monotone [Strassen,...] & FFT



one negation suffices

[Valiant]

every circuit of size s over R can be written as the difference of
two monotone circuits, each of which is of size O(s)



one negation can be powerful

[Valiant]

the perfect matching polynomial

p(x) =
∑
M⊂E

∏
e∈M

xe

where M is perfect matching of the triangle grid of length n

? p is monotone

? p has a circuit of size poly(n) [Kasteleyn]

? every monotone circuit for p has size exp(n)



relations between monotone devices?



as before

all simulations preserve monotonicity, except reduction to depth 3

are they sharp?



formulas versus circuits/ABPs

[Shamir-Snir 79]

a monotone formula for IMMn,n×n has size nΩ(log n)

conclusion

Hyafil’s simulation is sharp; every

ABP →
monotone

formula

must incur super-poly blowup



ABPs versus circuits

[Hrubes-Y 15]

there is an n-variate polynomial with monotone circuit complexity
poly(n) but monotone ABP complexity nΩ(log n)

conclusion

VSBR can not be made more efficient for ABPs, without “violating
monotonicity”

ABPs are much stronger than formulas (IMM)



how to prove lower bounds?



outline of lower bounds proofs

weakness

combinatorics / counting



weakness of circuits

lemma

a monotone circuit of size s and pure degree r can be written as:

f =
s∑

i=1

higi

where for each i

? hi , gi are homogeneous and monotone

? r/3 ≤ deg(hi ) < 2r/3 and deg(gi ) = r − deg(hi )



weakness of circuits

lemma

a monotone circuit of size s and pure degree r can be written as:

f =
s∑

i=1

higi

where each higi is a “balanced” product

comments:

? f is hard if “far from a product set” |mon(hg)|
|mon(f )| � 1

? importance of grading polynomials

? can potentially prove non-monotone lower bounds



monotone LB for permanent

write

permn =
s∑

i=1

higi

with higi balanced

claim

if h, g are homogeneous, mon(hg) ⊂ mon(perm) and r = deg(h)

|mon(hg)|
|mon(f )|

≤ r !(n − r)!

n!

s ≥
( n

n/3

)
= 2Ω(n)
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weakness of formulas

lemma

a monotone formula of size s and pure degree r can be written as:

f =
s∑

i=1

gi ,1gi ,2 · · · gi ,t

with t = Ω(log r) where monotonicity holds and for all i , j < t

(1/3)j r ≤ deg(gi ,j) ≤ (2/3)j r



monotone formula LB for IMM

write

f = (X (1)X (2) · · ·X (r))1,1 =
s∑

i=1

gi

where gi is a product of length t ≈ log r

claim if g = g1 · · · gt as above and mon(g) ⊂ mon(f )

|mon(g)|
|mon(f )|

≤ n−Ω(t)

sketch

i. there is partition of [r ] to {Sj} so that var(gj) ⊂
⋃

i∈Sj X
(i)

ii. x
(1)
1,1 can multiply x

(2)
1,k but not x

(2)
2,k

iii. each product reduces number of monomials by 1/n
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weakness of ABPs

lemma

for all k ≤ r a monotone ABP of size s and degree r can be
written as:

f =
s∑

i=1

higi

where for each i

? hi , gi are homogeneous and monotone

? deg(hi ) = k and deg(gi ) = r − k

comment: weaker than circuits in that k is fixed



monotone circuits versus ABPs

[Hrubes-Y]

there is an n2-variate degree-n polynomial f so that

? has poly(n)-size monotone circuit

(and f =
∑n

i=1 higi with deg(hi ) = n/2)

? for some k if f =
∑s

i=1 higi monotonically with deg(hi ) = k then

s ≥ nΩ(log n)



detour: isoperimetry



definitions

let G = (V ,E ) be an undirected graph

the size of the (edge) boundary of A ⊆ V is

e(A) = |E (A,B)|

where E (A,B) = {{a, b} ∈ E : a ∈ A, b ∈ B} and B = V \ A

the isoperimetric profile is

ip(k) = min{e(A) : |A| = k}



pictorially

ip

n-cycle
expander graph

surface area in R2



sensitive isoperimetric profiles

can ip(k) be very sensitive to k?

[Hrubes,Y] the full binary tree Td of depth d

for each 0 < k < |V (Td)|

drop(k)/2 ≤ ip(k) ≤ 2drop(k)

where
drop(k) = |{i : Bi+1(k) > Bi (k)}|

and B0(k),B1(k), . . . is the binary representation of k

i. ip of infinite binary tree studied by [Bharadwaj, Chandran, Das]

ii. have more accurate estimates on ip but no “explicit” formula
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pictorially

graph of drop(k) ≈ ipT15(k)



summary

for the full binary tree Td

1. ip constantly fluctuates between 1 and Ω(d)

2. for σd that has binary representation (1, 0, 1, 0, 1, 0, . . .)

ip(σd) =
d

2
−Θ(log(d))

σd ≈ 2
3 |V (Td)|



sharpness of

circuits →
monotone

ABPs



theorem:

the n-variate tree polynomial τ = τn has

1. monotone circuit-size ≤ poly(n)

2. monotone ABP-size is ≥ nΩ(log n)



τ

fix d ,m and let V = V (Td)

a function γ : V → Zm is called legal if for every vertex v which is
not a leaf and its two children v1, v2, we have

γ(v) = γ(v1) + γ(v2)

if γ is legal then its value on leaves determines it

the tree polynomial

τ(x) =
∑
γ∈legal

∏
v∈V

xv ,γ(v)
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τ

boundary lemma: if mon(hg) ⊂ mon(τ) and

A = {v : xv ,∗ ∈ h} and B = {v : xv ,∗ ∈ g}

then
A ∩ B = ∅

and
|mon(hg)|
|mon(τ)|

≤ m−|E(A,B)|/4



τ
boundary lemma: if mon(hg) ⊂ mon(τ) and A = {v : xv ,∗ ∈ h}
and B = {v : xv ,∗ ∈ g} then

|mon(hg)|
|mon(τ)|

≤ m−|E(A,B)|/4

intuition: each edge in boundary reduces number of options by
factor of m since γ(v) = γ(v1) + γ(v2)

Td

A

B

v

v1 v2



the tree polynomial

theorem: for m = 2d = n

1. monotone circuit-size of τ is ≤ O(m32d) = poly(n)

2. monotone ABP-size of τ is ≥ mΩ(d) = nΩ(log n)

proof

1. tree ⇒ simple induction

2. structure of ABPs & boundary lemma & ip(σd) = Ω(d)
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summary



monotone computations are naive (?)

still, non-trivial algorithms

appear in various contexts

demonstrate interesting phenomena

combinatorial arguments


