ADFOCS 2017

multilinear world

Amir Yehudayoff (Technion)

introduction

multilinear polynomials

determinant

$$
\operatorname{det}_{n}(X)=\sum_{\pi \in S_{n}} \operatorname{sign}(\pi) \prod_{i \in[n]} X_{i, \pi(i)}
$$

permanent

$$
\operatorname{perm}_{n}(X)=\sum_{\pi \in S_{n}} \prod_{i \in[n]} X_{i, \pi(i)}
$$

symmetric polynomials

$$
S_{n, d}(X)=\sum_{T \subseteq[n]:|T|=d} \prod_{i \in T} x_{i}
$$

multilinear complexity [Nisan-Wigderson]

a polynomial is multilinear if individual degrees are at most 1
multilinear circuit ${ }^{1}$

$$
v=v_{1} \times v_{2} \Rightarrow \operatorname{var}\left(v_{1}\right) \cap \operatorname{var}\left(v_{2}\right)=\emptyset
$$

multilinear ABP: no variable appears twice on $a \rightarrow b$ paths
a monotone device for multilinear polynomial is multilinear
what are multilinear complexities of multilinear polynomials?

multilinear world

all simulations preserve multilinearity, except depth 3

multilinear world

all simulations preserve multilinearity, except depth 3
[Raz, Raz-Y]
circuits are super-poly stronger than formulas

multilinear world

all simulations preserve multilinearity, except depth 3
[Raz, Raz-Y]
circuits are super-poly stronger than formulas
[Dvir-Malod-Perifel-Y]
ABPs are super-poly stronger than formulas

multilinear world

all simulations preserve multilinearity, except depth 3
[Raz, Raz-Y]
circuits are super-poly stronger than formulas
[Dvir-Malod-Perifel-Y]
ABPs are super-poly stronger than formulas
[Raz-Y]
circuits of depth* $d+1$ are super-poly stronger than depth d

lower bounds

[Raz]
multilinear formulas for det_{n} or perm $_{n}$ are of size $n^{\Omega(\log n)}$
[Shpilka-Raz-Y]
$\tilde{\Omega}\left(n^{4 / 3}\right)$ multilinear circuit-size lower bound
[Raz-Y]
depth d multilinear circuits for det $_{n}$ or perm ${ }_{n}$ are of size $2^{n^{(1 / d)}}$

lower bounds

outline

I. identify a weakness of multilinear formulas
II. exploit it, preferably combinatorially

wish: avoid algebra and argue combinatorially

weakness different grading

lemma

if f is n-variate multilinear formula-size s then

$$
f=\sum_{i=1}^{s} g_{i}
$$

where each g_{i} is log-product:

$$
g_{i}=g_{i, 1} g_{i, 2} \cdots g_{i, t}
$$

with $t=\Omega(\log n)$ and there is a partition of X to $X_{i, 1}, \ldots, X_{i, t}$ so that

$$
\left|X_{i, j}\right| \geq n^{1 / 2}
$$

and

$$
\operatorname{var}\left(g_{i, j}\right) \subseteq X_{i, j}
$$

exploiting weakness

to exploit weakness find a "measure" that is

- small on log-product
- sub-additive
- large for some polynomial of interest

exploiting weakness

to exploit weakness find a "measure" that is

- small on log-product
- sub-additive
- large for some polynomial of interest
[Nisan] the partial derivative matrix
[Raz] random partitions

partial derivative matrix

given $f \in \mathbb{F}[Y, Z]$ define a matrix $M=M_{f}$ by

$$
M_{p, q}=\text { coefficient of } p q \text { in } f
$$

where p, q are monomials in Y, Z

partitions

a polynomial $f \in \mathbb{F}[X]$ is a vector not a matrix

partitions

a polynomial $f \in \mathbb{F}[X]$ is a vector not a matrix
given $\pi: X \rightarrow Y \cup Z$ the polynomial

$$
f_{\pi}(Y, Z)=f(\pi(X))
$$

comes with the matrix $M_{\pi}=M_{f_{\pi}}$

partitions

a polynomial $f \in \mathbb{F}[X]$ is a vector not a matrix
given $\pi: X \rightarrow Y \cup Z$ the polynomial

$$
f_{\pi}(Y, Z)=f(\pi(X))
$$

comes with the matrix $M_{\pi}=M_{f_{\pi}}$
there are many such matrices for f
can choose one after seeing the alleged formula

criterion

f has full-rank if for every partition π of X to two parts of equal size the partial derivative matrix M_{π} has full rank

criterion

f has full-rank if for every partition π of X to two parts of equal size the partial derivative matrix M_{π} has full rank
theorem [Raz]
if f has full-rank then every multilinear formula for f has size at least $n^{\Omega(\log n)}$

properties of rank

let $f \in \mathbb{F}[Y, Z]$ be multilinear with $|Y|+|Z|=n$

1. if $f=g h$ then $M_{f}=M_{g} \otimes M_{h}$ and

$$
\operatorname{rank}\left(M_{f}\right)=\operatorname{rank}\left(M_{g}\right) \operatorname{rank}\left(M_{h}\right)
$$

2. if $f=g+h$ then $M_{f}=M_{g}+M_{h}$ and

$$
\operatorname{rank}\left(M_{f}\right) \leq \operatorname{rank}\left(M_{g}\right)+\operatorname{rank}\left(M_{h}\right)
$$

3.

$$
\operatorname{rank}\left(M_{f}\right) \leq 2^{\min \{|Y|,|Z|\}} \leq 2^{(n-\Delta) / 2}
$$

where

$$
\Delta=||Y|-|Z||
$$

lemma (random partitions)

X is partitioned to X_{1}, \ldots, X_{t} each of size $n_{j} \geq n^{1 / 2}$
choose uniformly at random a bijection

$$
\pi: X \rightarrow Y \cup Z
$$

where $|X|=n$ and $|Y|=|Z|=n / 2$
then

$$
\operatorname{Pr}\left[\Delta_{j}<n^{1 / 100} \text { for all } j\right]<n^{-t / 1000}
$$

where

$$
\Delta_{j}=\left|\left|Y_{j}\right|-\left|Z_{j}\right|\right|
$$

and Y_{j}, Z_{j} come from $\pi\left(X_{j}\right)$

intuition

X is partitioned to X_{1}, \ldots, X_{t} each of size $n_{j} \geq n^{1 / 2}$
$\pi: X \rightarrow Y \cup Z$ is random
$\Delta_{j}=\left|\left|Y_{j}\right|-\left|Z_{j}\right|\right|$
idea

1. "independence"

$$
\operatorname{Pr}\left[\Delta_{j}<n^{1 / 100} \text { for all } j\right] \approx \prod_{j} \operatorname{Pr}\left[\Delta_{j}<n^{1 / 100}\right]
$$

2. "anti-concentration"

$$
\operatorname{Pr}\left[\Delta_{j}<n^{1 / 100}\right] \lesssim \frac{2 n^{1 / 100}}{n_{j}^{1 / 2}} \leq n^{-1 / 1000}
$$

LB: the calculation

write $f=\sum_{i=1}^{s} g_{i}$ where g_{i} is log-product with $s<n^{\log (n) / 1000}$ choose a partition π at random and set $M=M_{\pi}$

LB: the calculation

write $f=\sum_{i=1}^{s} g_{i}$ where g_{i} is log-product with $s<n^{\log (n) / 1000}$ choose a partition π at random and set $M=M_{\pi}$

$$
\begin{aligned}
1 & =\operatorname{Pr}\left[\operatorname{rank}(M)=2^{n / 2}\right]=\operatorname{Pr}\left[\operatorname{rank}\left(\sum_{i} M_{i}\right)=2^{n / 2}\right] \\
& \leq \operatorname{Pr}\left[\sum_{i} \operatorname{rank}\left(M_{i}\right) \geq 2^{n / 2}\right] \leq \operatorname{Pr}\left[\exists i \operatorname{rank}\left(M_{i}\right) \geq 2^{n / 2-\log s}\right] \\
& \leq \sum_{i} \operatorname{Pr}\left[\operatorname{rank}\left(M_{i}\right) \geq 2^{n / 2-\log s}\right] \\
& =\sum_{i} \operatorname{Pr}\left[\prod_{j} \operatorname{rank}\left(M_{i, j}\right) \geq 2^{n / 2-\log s}\right] \\
& \leq \sum_{i} \operatorname{Pr}\left[\left|\Delta_{i, j}\right|<n^{1 / 100} \text { for all } j\right] \leq s \cdot n^{-\Omega(\log n)}
\end{aligned}
$$

again

if f has multilinear formula of size s
weakness: write f as a sum of s log-product polynomials
randomness: if s is small then there is a partition that makes all log-products of "low rank"
full rank: f has full-rank so s is large
full-rank polynomials
[Raz]
both det $_{n}$ and perm $_{n}$ are full-rank with respect to some "rich enough" family of partitions

separating circuits and formulas [Raz-Y]

let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and Y be extra variables
for $b-a=1$ define

$$
p_{a, b}=x_{a}+x_{b}
$$

and for $b-a$ odd inductively define

$$
p_{a, b}=y_{a, b}\left(x_{a}+x_{b}\right) p_{a+1, b-1}+\sum_{k: k-a \text { odd }} y_{a, b, k} p_{a, k} p_{k+1, b}
$$

separating circuits and formulas [Raz-Y]

let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and Y be extra variables
for $b-a=1$ define

$$
p_{a, b}=x_{a}+x_{b}
$$

and for $b-a$ odd inductively define

$$
p_{a, b}=y_{a, b}\left(x_{a}+x_{b}\right) p_{a+1, b-1}+\sum_{k: k-a \text { odd }} y_{a, b, k} p_{a, k} p_{k+1, b}
$$

properties

1. $p_{a, b}$ has a multilinear circuit of size poly (n)
2. $p_{a, b}$ is full-rank with respect to $X_{a, b}$ over $\mathbb{F}(Y)$

separating ABPs and formulas [Dvir-Malod-Perifel-Y]

for $b-a=1$ define

$$
p_{a, b}=x_{a}+x_{b}
$$

and for b - a odd inductively define

$$
\begin{aligned}
p_{a, b} & =y_{1, a, b} p_{a+1, b-1}\left(x_{a}+x_{b}\right) \\
& +y_{2, a, b} p_{a+2, b}\left(x_{a}+x_{a+1}\right) \\
& +y_{3, a, b} p_{a, b-2}\left(x_{b-1}+x_{b}\right)
\end{aligned}
$$

where addition is modulo n

separating ABPs and formulas [Dvir-Malod-Perifel-Y]

for $b-a=1$ define

$$
p_{a, b}=x_{a}+x_{b}
$$

and for b - a odd inductively define

$$
\begin{aligned}
p_{a, b} & =y_{1, a, b} p_{a+1, b-1}\left(x_{a}+x_{b}\right) \\
& +y_{2, a, b} p_{a+2, b}\left(x_{a}+x_{a+1}\right) \\
& +y_{3, a, b} p_{a, b-2}\left(x_{b-1}+x_{b}\right)
\end{aligned}
$$

where addition is modulo n

properties

1. $p_{a, b}$ has a multilinear ABP of size poly (n)
2. $p_{a, b}$ is not full-rank with respect to $X_{a, b}$ over $\mathbb{F}(Y)$
3. formula lower bound can still be proved

lower bounds for ABPs?

no strong lower bound for multilinear ABPs

conjecture

if f has full-rank then any multilinear ABP for f has super-poly size
summary
many natural multilinear polynomials
multilinear devices are a natural way to compute them
know how to prove strong lower bounds for multilinear formulas
grading multilinear polynomials by number of variables
what about ABPs or circuits?

