ADFOCS 2017

multilinear world

Amir Yehudayoff (Technion)

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

introduction

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

multilinear polynomials

determinant

$$det_n(X) = \sum_{\pi \in S_n} sign(\pi) \prod_{i \in [n]} X_{i,\pi(i)}$$

permanent

$$perm_n(X) = \sum_{\pi \in S_n} \prod_{i \in [n]} X_{i,\pi(i)}$$

symmetric polynomials

$$S_{n,d}(X) = \sum_{T \subseteq [n]: |T| = d} \prod_{i \in T} x_i$$

multilinear complexity [Nisan-Wigderson]

a polynomial is multilinear if individual degrees are at most 1 multilinear circuit¹

$$v = v_1 imes v_2 \Rightarrow var(v_1) \cap var(v_2) = \emptyset$$

multilinear ABP: no variable appears twice on $a \rightarrow b$ paths

a monotone device for multilinear polynomial is multilinear

what are multilinear complexities of multilinear polynomials?

all simulations preserve multilinearity, except depth 3

all simulations preserve multilinearity, except depth 3

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

[Raz, Raz-Y]

circuits are super-poly stronger than formulas

all simulations preserve multilinearity, except depth 3

[Raz, Raz-Y]

circuits are super-poly stronger than formulas

[Dvir-Malod-Perifel-Y]

ABPs are super-poly stronger than formulas

all simulations preserve multilinearity, except depth 3

[Raz, Raz-Y]

circuits are super-poly stronger than formulas

[Dvir-Malod-Perifel-Y]

ABPs are super-poly stronger than formulas

[Raz-Y]

circuits of depth* d + 1 are super-poly stronger than depth d

lower bounds

[Raz]

multilinear formulas for det_n or $perm_n$ are of size $n^{\Omega(\log n)}$

[Shpilka-Raz-Y]

 $\tilde{\Omega}(n^{4/3})$ multilinear circuit-size lower bound

[Raz-Y]

depth *d* multilinear circuits for det_n or $perm_n$ are of size $2^{n^{\Omega(1/d)}}$

lower bounds

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

I. identify a weakness of multilinear formulas

II. exploit it, preferably combinatorially

wish: avoid algebra and argue combinatorially

weakness different grading

lemma

if f is n-variate multilinear formula-size s then

$$f=\sum_{i=1}^{s}g_{i}$$

where each g_i is log-product:

$$g_i = g_{i,1}g_{i,2}\cdots g_{i,t}$$

with $t = \Omega(\log n)$ and there is a partition of X to $X_{i,1}, \ldots, X_{i,t}$ so that

$$|X_{i,j}| \ge n^{1/2}$$

and

$$var(g_{i,j}) \subseteq X_{i,j}$$

exploiting weakness

to exploit weakness find a "measure" that is

- small on log-product
- sub-additive
- large for some polynomial of interest

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

exploiting weakness

to exploit weakness find a "measure" that is

- small on log-product
- sub-additive
- large for some polynomial of interest

[Nisan] the partial derivative matrix

[Raz] random partitions

partial derivative matrix

given $f \in \mathbb{F}[Y, Z]$ define a matrix $M = M_f$ by $M_{p,q} = ext{coefficient of } pq$ in f

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where p, q are monomials in Y, Z

partitions

a polynomial $f \in \mathbb{F}[X]$ is a vector not a matrix

partitions

a polynomial $f \in \mathbb{F}[X]$ is a vector not a matrix

given $\pi: X \to Y \cup Z$ the polynomial

$$f_{\pi}(Y,Z) = f(\pi(X))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

comes with the matrix $M_{\pi}=M_{f_{\pi}}$

partitions

a polynomial $f \in \mathbb{F}[X]$ is a vector not a matrix

given $\pi: X \to Y \cup Z$ the polynomial

$$f_{\pi}(Y,Z) = f(\pi(X))$$

comes with the matrix $M_{\pi}=M_{f_{\pi}}$

there are many such matrices for f

can choose one after seeing the alleged formula

criterion

f has **full-rank** if for every partition π of X to two parts of equal size the partial derivative matrix M_{π} has full rank

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

criterion

f has **full-rank** if for every partition π of X to two parts of equal size the partial derivative matrix M_{π} has full rank

theorem [Raz]

if f has full-rank then every multilinear formula for f has size at least $n^{\Omega(\log n)}$

properties of rank

let $f \in \mathbb{F}[Y, Z]$ be multilinear with |Y| + |Z| = n

1. if f = gh then $M_f = M_g \otimes M_h$ and $rank(M_f) = rank(M_g)rank(M_h)$ 2. if f = g + h then $M_f = M_g + M_h$ and $rank(M_f) \le rank(M_g) + rank(M_h)$ 3.

$$rank(M_f) \le 2^{\min\{|Y|,|Z|\}} \le 2^{(n-\Delta)/2}$$

where

$$\Delta = \left| |Y| - |Z| \right|$$

lemma (random partitions)

X is partitioned to X_1, \ldots, X_t each of size $n_j \ge n^{1/2}$ choose uniformly at random a bijection

 $\pi: X \to Y \cup Z$

where |X| = n and |Y| = |Z| = n/2

then

$$\Pr\left[\Delta_j < n^{1/100} ext{ for all } ext{j}
ight] < n^{-t/1000}$$

where

$$\Delta_j = \left| |Y_j| - |Z_j| \right|$$

and Y_j, Z_j come from $\pi(X_j)$

intuition

X is partitioned to X_1, \ldots, X_t each of size $n_j \ge n^{1/2}$ $\pi : X \to Y \cup Z$ is random $\Delta_j = ||Y_j| - |Z_j||$

idea

1. "independence"

$$\mathsf{Pr}\left[\Delta_j < n^{1/100} ext{ for all } \mathsf{j}
ight] pprox \prod_j \mathsf{Pr}\left[\Delta_j < n^{1/100}
ight]$$

2. "anti-concentration"

$$\Pr\left[\Delta_j < n^{1/100}\right] \lesssim \frac{2n^{1/100}}{n_j^{1/2}} \le n^{-1/1000}$$

LB: the calculation

write $f = \sum_{i=1}^{s} g_i$ where g_i is log-product with $s < n^{\log(n)/1000}$ choose a partition π at random and set $M = M_{\pi}$

LB: the calculation

write $f = \sum_{i=1}^{s} g_i$ where g_i is log-product with $s < n^{\log(n)/1000}$ choose a partition π at random and set $M = M_{\pi}$

$$1 = \Pr\left[rank(M) = 2^{n/2}\right] = \Pr\left[rank\left(\sum_{i} M_{i}\right) = 2^{n/2}\right]$$
$$\leq \Pr\left[\sum_{i} rank(M_{i}) \ge 2^{n/2}\right] \le \Pr\left[\exists i rank(M_{i}) \ge 2^{n/2 - \log s}\right]$$
$$\leq \sum_{i} \Pr\left[rank(M_{i}) \ge 2^{n/2 - \log s}\right]$$
$$= \sum_{i} \Pr\left[\prod_{j} rank(M_{i,j}) \ge 2^{n/2 - \log s}\right]$$
$$\leq \sum_{i} \Pr\left[|\Delta_{i,j}| < n^{1/100} \text{ for all } j\right] \le s \cdot n^{-\Omega(\log n)}$$

if f has multilinear formula of size s

weakness: write f as a sum of s log-product polynomials

randomness: if *s* is small then there is a partition that makes all log-products of "low rank"

full rank: f has full-rank so s is large

full-rank polynomials

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

[Raz]

both det_n and $perm_n$ are full-rank with respect to some "rich enough" family of partitions

(ロ)、(型)、(E)、(E)、 E) の(の)

separating circuits and formulas [Raz-Y]

let
$$X = \{x_1, \ldots, x_n\}$$
 and Y be extra variables

for b - a = 1 define

$$p_{a,b} = x_a + x_b$$

and for b - a odd inductively define

$$p_{a,b} = y_{a,b}(x_a + x_b)p_{a+1,b-1} + \sum_{k:k-a \text{ odd}} y_{a,b,k}p_{a,k}p_{k+1,b}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

separating circuits and formulas [Raz-Y]

let
$$X = \{x_1, \ldots, x_n\}$$
 and Y be extra variables

for b - a = 1 define

$$p_{a,b} = x_a + x_b$$

and for b - a odd inductively define

$$p_{a,b} = y_{a,b}(x_a + x_b)p_{a+1,b-1} + \sum_{k:k-a \text{ odd}} y_{a,b,k}p_{a,k}p_{k+1,b}$$

properties

1. $p_{a,b}$ has a multilinear circuit of size poly(n)

2. $p_{a,b}$ is full-rank with respect to $X_{a,b}$ over $\mathbb{F}(Y)$

separating ABPs and formulas [Dvir-Malod-Perifel-Y]

for b - a = 1 define

$$p_{a,b} = x_a + x_b$$

and for b - a odd inductively define

$$p_{a,b} = y_{1,a,b}p_{a+1,b-1}(x_a + x_b) + y_{2,a,b}p_{a+2,b}(x_a + x_{a+1}) + y_{3,a,b}p_{a,b-2}(x_{b-1} + x_b)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

where addition is modulo n

separating ABPs and formulas [Dvir-Malod-Perifel-Y]

for b - a = 1 define

$$p_{a,b} = x_a + x_b$$

and for b - a odd inductively define

$$p_{a,b} = y_{1,a,b}p_{a+1,b-1}(x_a + x_b) + y_{2,a,b}p_{a+2,b}(x_a + x_{a+1}) + y_{3,a,b}p_{a,b-2}(x_{b-1} + x_b)$$

where addition is modulo n

properties

- 1. $p_{a,b}$ has a multilinear ABP of size poly(n)
- 2. $p_{a,b}$ is **not** full-rank with respect to $X_{a,b}$ over $\mathbb{F}(Y)$
- 3. formula lower bound can still be proved

lower bounds for ABPs?

no strong lower bound for multilinear ABPs

conjecture

if f has full-rank then any multilinear ABP for f has super-poly size

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

summary

many natural multilinear polynomials

multilinear devices are a natural way to compute them know how to prove strong lower bounds for multilinear formulas

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

grading multilinear polynomials by number of variables

what about ABPs or circuits?