Complexity of Matrix Multiplication and Bilinear Problems

[Lecture 1 - Exercises]

Exercise 1

Let q be a positive integer. Consider the following three tensors:

$$
\begin{aligned}
& T_{1}=\sum_{i=1}^{q} x \otimes y_{i} \otimes z_{i}, \\
& T_{2}=\sum_{i=1}^{q} x_{i} \otimes y \otimes z_{i}, \\
& T_{3}=\sum_{i=1}^{q} x_{i} \otimes y_{i} \otimes z .
\end{aligned}
$$

Each of these three tensors is isomorphic to the tensor of some matrix multiplication. For each $i \in$ $\{1,2,3\}$, identity the value of m_{i}, n_{i} and p_{i} such that $T_{i} \cong\left\langle m_{i}, n_{i}, p_{i}\right\rangle$.

Exercise 2

For any positive integer r, let $\langle r\rangle$ denote the tensor

$$
\langle r\rangle=\sum_{i=1}^{r} x_{i} \otimes y_{i} \otimes z_{i} .
$$

What does this tensor represent?

Exercise 3

Let $t \in \mathbb{F}^{u} \otimes \mathbb{F}^{v} \otimes \mathbb{F}^{w}$ and $t^{\prime} \in \mathbb{F}^{u^{\prime}} \otimes \mathbb{F}^{v^{\prime}} \otimes \mathbb{F}^{w^{\prime}}$ be two tensors. We say that t^{\prime} is a restriction of t, and write $t^{\prime} \leq t$, if there exist three linear maps

$$
\begin{array}{r}
\alpha: \mathbb{F}^{u} \rightarrow \mathbb{F}^{u^{\prime}} \\
\beta: \mathbb{F}^{v} \rightarrow \mathbb{F}^{v^{\prime}} \\
\gamma: \mathbb{F}^{w} \rightarrow \mathbb{F}^{w^{\prime}}
\end{array}
$$

such that $(\alpha \otimes \beta \otimes \gamma) t=t^{\prime}$.
(i) Check that for any tensor t the rank of t is the smallest integer r such that $t \leq\langle r\rangle$.
(ii) Check that $R\left(t^{\prime}\right) \leq R(t)$ holds for any two tensors t, t^{\prime} such that $t^{\prime} \leq t$.

Exercise 4

Let $t \in \mathbb{F}^{u} \otimes \mathbb{F}^{v} \otimes \mathbb{F}^{w}$ and $t^{\prime} \in \mathbb{F}^{u^{\prime}} \otimes \mathbb{F}^{v^{\prime}} \otimes \mathbb{F}^{w^{\prime}}$ be two tensors. We say that t^{\prime} is a degeneration of t, and write $t^{\prime} \unlhd t$, if there exist three linear maps

$$
\begin{aligned}
\alpha: \mathbb{F}[\lambda]^{u} & \rightarrow \mathbb{F}[\lambda]^{u^{\prime}} \\
\beta: \mathbb{F}[\lambda]^{v} & \rightarrow \mathbb{F}[\lambda]^{v^{\prime}} \\
\gamma: \mathbb{F}[\lambda]^{w} & \rightarrow \mathbb{F}[\lambda]^{w^{\prime}}
\end{aligned}
$$

and a nonnegative integer c such that such that $(\alpha \otimes \beta \otimes \gamma) t=\lambda^{c} t^{\prime}+\lambda^{c+1} t^{\prime \prime}$ for some tensor $t^{\prime \prime} \in$ $\mathbb{F}[\lambda]^{u^{\prime}} \otimes \mathbb{F}[\lambda]^{u^{\prime}} \otimes \mathbb{F}[\lambda]^{w^{\prime}}$.
(i) Show that $t^{\prime} \leq t$ implies $t^{\prime} \unlhd t$.
(ii) Check that for any tensor t the border rank of t is the smallest integer r such that $t \unlhd\langle r\rangle$.
(iii) Check that $\underline{R}\left(t^{\prime}\right) \leq \underline{R}(t)$ holds for any two tensors t, t^{\prime} such that $t^{\prime} \unlhd t$.

Exercise 5

Consider the computation of the product of two matrices A and B of the following form:

$$
A=\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22} & a_{23}
\end{array}\right), \quad B=\left(\begin{array}{cc}
b_{11} & b_{12} \\
b_{21} & 0 \\
b_{31} & 0
\end{array}\right)
$$

(i) Write the tensor corresponding to this computational task.
(ii) Show that the border rank of this tensor is at most 5.

Hint: you can start by expanding the expression

$$
\begin{aligned}
& \left(a_{11}+\lambda^{2} a_{13}\right) \otimes b_{31} \otimes\left(c_{11}-\lambda c_{12}\right) \\
& +\left(a_{11}+\lambda^{2} a_{22}\right) \otimes\left(b_{21}-\lambda b_{12}\right) \otimes c_{21} \\
& +\left(a_{11}+\lambda^{2} a_{23}\right) \otimes\left(b_{31}+\lambda b_{12}\right) \otimes\left(c_{21}+\lambda c_{12}\right) \\
& -a_{11} \otimes\left(b_{21}+b_{31}\right) \otimes\left(c_{11}+c_{21}\right)
\end{aligned}
$$

and see what you obtain.

Exercise 6

Let $n=2 \ell+1$ be an odd integer.
(i) Verify that the size of the set

$$
\{(i, j, k) \in\{-\ell, \ldots, \ell\} \times\{-\ell, \ldots, \ell\} \times\{-\ell, \ldots, \ell\} \mid i+j+k=0\}
$$

is at least $\frac{3 n^{2}}{4}$.
(ii) Show that

$$
\left\langle\left\lceil\frac{3 n^{2}}{4}\right\rceil\right\rangle \unlhd\langle n, n, n\rangle
$$

Remark: The same results hold for even n as well.

