
Complexity of Matrix Multiplication and Bilinear Problems
[Handout for the first two lectures]

François Le Gall
Graduate School of Informatics

Kyoto University
legall@i.kyoto-u.ac.jp

1 Introduction

Algebraic complexity theory is the study of computation using algebraic models. One of the main
achievements of this field has been the introduction of methods to prove lower bounds on the computa-
tional complexity, in algebraic models of computation, of concrete problems. Another major achieve-
ment has been the development of powerful techniques to construct fast algorithms for computational
problems with an algebraic structure.

The two first lectures will give an overview of some of the main algorithmic applications of alge-
braic complexity theory, focusing on the construction of bilinear algorithms for computational problems
from linear algebra. Our presentation will be systematically illustrated by showing how these ideas from
algebraic complexity theory have been used to design asymptotically fast (although not necessarily prac-
tical) algorithms for matrix multiplication, as summarized in Table 1. We will show in particular how
the techniques described can be applied to construct algorithms that multiply two n × n matrices over
a field using O(n2.38) arithmetic operations, which is the best known upper bound on the asymptotic
complexity of square matrix multiplication and was first obtained by Coppersmith and Winograd [3].

Table 1: History of the main improvements on the exponent of square matrix multiplication.

Upper bound Year Reference Notes
ω ≤ 3 Trivial algorithm
ω < 2.81 1969 Strassen [11]
ω < 2.79 1979 Pan [6]
ω < 2.78 1979 Bini et al. [1]
ω < 2.55 1981 Schönhage [9]
ω < 2.53 1981 Pan [7] Not discussed in the lectures
ω < 2.52 1982 Romani [8] Not discussed in the lectures
ω < 2.50 1982 Coppersmith and Winograd [2] Not discussed in the lectures
ω < 2.48 1986 Strassen [12] Not discussed in the lectures
ω < 2.376 1987 Coppersmith and Winograd [3]
ω < 2.374 2010 Stothers [10] (see also [4])
ω < 2.3729 2012 Vassilevska Williams [13]
ω < 2.3728639 2014 Le Gall [5]

1

2 Basics of Bilinear Complexity Theory

2.1 Algebraic complexity and the exponent of matrix multiplication

The computation model considered in algebraic complexity theory corresponds to algebraic circuits
where each gate represents an elementary algebraic operation over a given field F: addition, subtrac-
tion, multiplication, division of two terms, and multiplication of one term by a constant in the field. The
algebraic complexity of a problem is the size (i.e., the number of gates) of the smallest algebraic circuit
needed to solve the problem.

For instance, for the task of computing the matrix product of two n × n matrices A = (aij)1≤i,j≤n
and B = (bij)1≤i,j≤n with entries in F, we assume that the 2n2 entries aij and bij are given as input, and
want to compute the value

cij =
n∑
k=1

aikbkj , (2.1)

corresponding to the entry in the i-th row and the j-th column of the product AB, for all (i, j) ∈
{1, . . . , n} × {1, . . . , n}. We will call C(n) the algebraic complexity of this problem. The exponent of
matrix multiplication is denoted ω and defined as

ω = inf
{
α | C(n) ≤ nα for all large enough n

}
.

Obviously, 2 ≤ ω ≤ 3.

2.2 Strassen algorithm

Consider the matrix product of two 2 × 2 matrices. It is easy to see from the definition (Eq. (2.1)) that
this product can be computed using 8 multiplications and 4 additions, which implies C(2) ≤ 12. In 1969,
Strassen [11] showed how to compute this product using only seven multiplications:

1. Compute the following seven terms:

m1 = a11 ∗ (b12 − b22),
m2 = (a11 + a12) ∗ b22,
m3 = (a21 + a22) ∗ b11,
m4 = a22 ∗ (b21 − b11),
m5 = (a11 + a22) ∗ (b11 + b22),

m6 = (a12 − a22) ∗ (b21 + b22),

m7 = (a11 − a21) ∗ (b11 + b12).

2. Output

−m2 +m4 +m5 +m6 = c11,

m1 +m2 = c12,

m3 +m4 = c21,

m1 −m3 +m5 −m7 = c22.

While the number of multiplication is decreased to seven, the number of additions increases, which
does not lead to any improvement for C(2). The key point is that Strassen’s approach can be used
recursively to compute the product of two 2k × 2k matrices, for any k ≥ 1. By analyzing the complexity
of this recursion, we obtain C(2k) = O(7k), which implies that

ω ≤ log2(7) = 2.80735...,

which was the upper bound obtained in [11].

2

2.3 Bilinear algorithms

A bilinear algorithm for matrix multiplication is an algebraic algorithm that proceeds in two steps. First, t
products of the form

m1 = (linear combination of the aij’s) ∗ (linear combination of the bij’s)
...

mt = (linear combination of the aij’s) ∗ (linear combination of the bij’s)

are computed. Then, each entry cij is computed by taking a linear combination of m1, . . . ,mt. The
integer t is called the bilinear complexity of this algorithm. Strassen’s algorithm is an example of bilinear
algorithm that computes the product of two 2× 2 matrices with bilinear complexity t = 7.

Strassen’s recursive approach can actually be generalized to any bilinear algorithm for matrix multi-
plication, as stated in the following proposition.

Proposition 1. Let m be a positive integer. Suppose that there exists a bilinear algorithm that computes
the product of two m×m matrices with bilinear complexity t. Then

ω ≤ logm(t).

3 First Techniques

We introduce the concepts of tensor and rank. We then use these concepts to obtain Theorem 1 below,
which generalizes Proposition 1.

3.1 Tensors

Consider three finite-dimensional vector spaces U , V and W over the field F. Take a basis {x1, . . . ,
xdim(U)} of U , a basis {y1, . . . , ydim(V)} of V , and a basis {z1, . . . , zdim(W)} of W . A tensor over
(U, V,W) is an element of U ⊗ V ⊗W or, equivalently, a formal sum

T =
dimU∑
u=1

dimV∑
v=1

dimW∑
w=1

duvw xu ⊗ yv ⊗ zw

with coefficient duvw ∈ F for each (u, v, w) ∈ {1, . . . ,dim(U)}×{1, . . . ,dim(V)}×{1, . . . ,dim(W)}.
The tensor corresponding to the multiplication of an m× n matrix by an n× p matrix is defined as

follows. First take dim(U) = mn, dim(V) = np and dim(W) = mp. It is convenient to change the
notation for the bases and denote {aij}1≤i≤m,1≤j≤n the basis of U , {bij}1≤i≤n,1≤j≤p the basis of V and
{cij}1≤i≤m,1≤j≤p the basis of W . In this case, an arbitrary tensor a over (U, V,W) is a formal sum

T =

m∑
i,i′=1

n∑
k,k′=1

p∑
j,j′=1

dii′jj′kk′ aik ⊗ bk′j ⊗ ci′j′ .

The tensor corresponding to the multiplication of an m× n matrix by an n× p matrix is the tensor with

dii′jj′kk′ =

{
1 if i = i′ and j = j′ and k = k′,
0 otherwise .

We summarize this definition as follows.

3

Definition 1. The tensor corresponding to the multiplication of an m× n matrix by an n× p matrix is
m∑
i=1

p∑
j=1

n∑
k=1

aik ⊗ bkj ⊗ cij . (3.1)

This tensor is denoted 〈m,n, p〉.

One can define in a natural way the tensor product of two tensors. In particular, for matrix multipli-
cation tensors, we obtain the following identity: for any positive integers m,m′, n, n′, p, p′,

〈m,n, p〉 ⊗ 〈m′, n′, p′〉 ∼= 〈mm′, nn′, pp′〉. (3.2)

3.2 The rank of a tensor

We now define the rank of tensor.

Definition 2. Let T be a tensor over (U, V,W). The rank of T , denoted R(T), is the minimal integer t
for which T can be written as

T =
t∑

s=1

dim(U)∑
u=1

αsuxu

⊗
dim(V)∑

v=1

βsvyv

⊗
dim(W)∑

w=1

γswzw

 ,
for some constants αsu, βsv, γsw in F.

As an illustration of this definition, consider the rank of the matrix multiplication tensor. Obviously,
R(〈m,n, p〉) ≤ mnp, from the definition (Eq. (3.1)). In particular, R(2, 2, 2) ≤ 8. Strassen’s algorithm
corresponds to the equality

〈2, 2, 2〉 =a11 ⊗ (b12 − b22)⊗ (c12 + c22)

+ (a11 + a12)⊗ b22 ⊗ (−c11 + c12)

+ (a21 + a22)⊗ b11 ⊗ (c21 − c22)
+ a22 ⊗ (b21 − b11)⊗ (c11 + c21)

+ (a11 + a22)⊗ (b11 + b22)⊗ (c11 + c22)

+ (a12 − a22)⊗ (b21 + b22)⊗ c11
+ (a11 − a21)⊗ (b11 + b12)⊗ (−c22),

which shows that actually R(2, 2, 2) ≤ 7. More generally, it is easy to see that the rank of a matrix mul-
tiplication tensor corresponds to the bilinear complexity of the best bilinear algorithm that computes this
matrix multiplication. This observation directly implies the following reinterpretation of Proposition 1:
if R(m,m,m) ≤ t then ω ≤ logm(t). This argument can be generalized as follows.

Theorem 1. Let m,n, p and t be four positive integers. If R(〈m,n, p〉) ≤ t, then

(mnp)ω/3 ≤ t.

This theorem can be proved using the following two properties of the rank. First, for any tensors T
and T ′,

R(T ⊗ T ′) ≤ R(T)×R(T ′). (3.3)

Secondly, for any positive integers m,n and p,

R(〈m,n, p〉) = R(〈m, p, n〉) = R(〈n,m, p〉) = R(〈n, p,m〉) = R(〈p,m, n〉) = R(〈p, n,m〉). (3.4)

Note that this second property has interesting consequences. It implies, for instance, that the bilinear
complexity of computing the product of an n× n matrix by an n× n2 matrix is the same as the bilinear
complexity of computing the product of an n× n2 matrix by an n2 × n.

4

4 More Advanced Techniques

We introduce the concept of border rank of a tensor, and use it to obtain Theorem 2 below, which
generalizes Theorem 1. We then present Schönhage’s asymptotic sum inequality (Theorem 3), which
significantly generalizes Theorem 2.

4.1 Approximate bilinear algorithms and border rank

Let λ be an indeterminate and F[λ] denote the ring of polynomials in λ with coefficients in the field F.
We now define the concept of border rank of a tensor (compare with Definition 2).

Definition 3. Let T be a tensor over (U, V,W). The border rank of T , denoted R(T), is the minimal
integer t for which there exist an integer c ≥ 0 and a tensor T ′′ such that T can be written as as

λcT =
t∑

s=1

dim(U)∑
u=1

αsuxu

⊗
dim(V)∑

v=1

βsvyv

⊗
dim(W)∑

w=1

γswzw

+ λc+1T ′′,

for some constants αsu, βsv, γsw in F[λ].

Obviously, R(T) ≤ R(T) for any tensor T . Moreover, Eqs. (3.3) and (3.4) hold when replacing the
rank by the border rank.

Let us study an example. Bini et al. [1] considered the tensor

TBini =
∑

1≤i,j,k≤2
(i,k) 6=(2,2)

aik ⊗ bkj ⊗ cij

=a11 ⊗ b11 ⊗ c11 + a12 ⊗ b21 ⊗ c11 + a11 ⊗ b12 ⊗ c12 + a12 ⊗ b22 ⊗ c12
+ a21 ⊗ b11 ⊗ c21 + a21 ⊗ b12 ⊗ c22,

which corresponds to a matrix product of two 2 × 2 matrices where one entry in the first matrix is zero
(more precisely, a22 = 0). It can be shown that R(TBini) = 6. Bini et al. [1] showed that R(TBini) ≤ 5
by exhibiting the identity

λTBini = T ′ + λ2T ′′

where

T ′ =(a12 + λa11)⊗ (b12 + λb22)⊗ c12
+ (a21 + λa11)⊗ b11 ⊗ (c11 + λc21)

− a12 ⊗ b12 ⊗ (c11 + c12 + λc22)

− a21 ⊗ (b11 + b12 + λb21)⊗ c11
+ (a12 + a21)⊗ (b12 + λb21)⊗ (c11 + λc22)

and

T ′′ = a11 ⊗ b22 ⊗ c12 + a11 ⊗ b11 ⊗ c21 + (a12 + a21)⊗ b21 ⊗ c22.

Remember that the rank of a tensor is related to the complexity of bilinear algorithms computing the
tensor. The border rank is related to the complexity of approximate bilinear algorithms computing the
tensor. Another contribution of [1] was to show that approximate bilinear algorithms can be converted
into usual bilinear algorithms without increasing the complexity too much, as stated in the following
proposition.

Proposition 2. There exists a constant a such that R(T) ≤ a×R(T) for any tensor T .

5

The constant a in Proposition 2 actually depends of the value c in the border rank. We will neverthe-
less ignore this technical point in these lectures.

It is easy to see, by combining two copies of the tensor TBini, thatR(〈3, 3, 2〉) ≤ 10. From the border
rank versions of Eqs. (3.3) and (3.4), this gives R(〈12, 12, 12〉) ≤ 1000, and thus

R(〈12, 12, 12〉) ≤ a× 1000

from Proposition 2. Unfortunately, this inequality (via Theorem 1) does not give any interesting upper
bound on ω unless a is very close to one, which is not the case (indeed, in the example we are now
studying the constant a can be taken as 10). The trick to bypass this difficulty is to consider the tensor
〈12, 12, 12〉⊗N ∼= 〈12N , 12N , 12N 〉 for a large integer N . We have

R(〈12N , 12N , 12N 〉) ≤ a×R(〈12N , 12N , 12N 〉) ≤ a× 1000N .

Now this inequality, via Theorem 1, gives ω ≤ log12(a
1/N × 1000), which implies

ω ≤ log12(1000) < 2.78

by taking the limit when N goes to infinity. This upper bound was obtained by Bini et al. [1].
The above analysis indicates that, when deriving an upper bound on ω via Theorem 1, one can use

the border rank instead of the rank. Indeed, the rank can be replaced by the border rank in Theorem 1, as
we now state.

Theorem 2. Let m,n, p and t be four positive integers. If R(〈m,n, p〉) ≤ t, then

(mnp)ω/3 ≤ t.

4.2 Schönhage’s asymptotic sum inequality

Schönhage [9] considered the following tensor:

TSchon =

3∑
i,j=1

ai ⊗ bj ⊗ cij +
4∑

k=1

vk ⊗ vk ⊗ w.

Observe that the first part is isomorphic to 〈3, 1, 3〉, and the second part is isomorphic to 〈1, 4, 1〉. Since
the first part and the second part do not share variables, the sum is actually direct, so we have

TSchon ∼= 〈3, 1, 3〉 ⊕ 〈1, 4, 1〉.

Since R(〈3, 1, 3〉) = 9 and R(〈1, 4, 1〉) = 4, we obtain immediately R(TSchon) ≤ 13. Schönhage
showed that

R(TSchon) ≤ 10,

by exhibiting the identity
λ2TSchon = T ′ + λ3T ′′

6

for

T ′ =(a1 + λu1)⊗ (b1 + λv1)⊗ (w + λ2c11)

+ (a1 + λu2)⊗ (b2 + λv2)⊗ (w + λ2c12)

+ (a2 + λu3)⊗ (b1 + λv3)⊗ (w + λ2c21)

+ (a2 + λu4)⊗ (b2 + λv4)⊗ (w + λ2c22)

+ (a3 − λu1 − λu3)⊗ b1 ⊗ (w + λ2c31)

+ (a3 − λu2 − λu4)⊗ b2 ⊗ (w + λ2c32)

+ a1 ⊗ (b3 − λv1 − λv2)⊗ (w + λ2c13)

+ a2 ⊗ (b3 − λv3 − λv4)⊗ (w + λ2c23)

+ a3 ⊗ b3 ⊗ (w + λ2c33)

− (a1 + a2 + a3)⊗ (b1 + b2 + b3)⊗ w

and some tensor T ′′.
Schönhage also showed the following strong generalization of Theorem 2 known as the asymptotic

sum inequality.

Theorem 3. Let k, t be two positive integers, and m1, . . . ,mk, n1, . . . , nk, p1, . . . , pk be 3k positive
integers. If

R

(
k⊕
i=1

〈mi, ni, pi〉

)
≤ t

then
k∑
i=1

(minipi)
ω/3 ≤ t.

Applying Theorem 3 to TSchon gives

9ω/3 + 4ω/3 ≤ 10,

which implies ω ≤ 2.60. Using a variant of this tensor, Schönhage [9] ultimately obtained the upper
bound

ω ≤ 2.55,

again via Theorem 3.

5 The Laser Method

We show how the techniques developed so far, combined with an approach sometimes called the laser
method, can be applied to obtain the upper bound ω < 2.38. This upper bound has been first obtained by
Coppersmith and Winograd [3].

5.1 The first construction by Coppersmith and Winograd

We start with the first construction from Coppersmith and Winograd’s paper [3].
Let q be a positive integer, and consider three vector spaces U , V and W of dimension q + 1 over

the field F. Take a basis {x0, . . . , xq} of U , a basis {y0, . . . , yq} of V , and a basis {z0, . . . , zq} of W .
Consider the tensor

Teasy = T 011
easy + T 101

easy + T 110
easy,

7

where

T 011
easy =

q∑
i=1

x0 ⊗ yi ⊗ zi ∼= 〈1, 1, q〉,

T 101
easy =

q∑
i=1

xi ⊗ y0 ⊗ zi ∼= 〈q, 1, 1〉,

T 110
easy =

q∑
i=1

xi ⊗ yi ⊗ z0 ∼= 〈1, q, 1〉.

Remark. The superscripts in T 011
easy, T 101

easy and T 110
easy come from the following decomposition of the

three vector spaces U, V and W :

U = U0 ⊕ U1 where U0 = span{x0} and U1 = span{x1, . . . , xq}
V = V0 ⊕ V1, where V0 = span{y0} and V1 = span{y1, . . . , yq}
W =W0 ⊕W1, where W0 = span{z0} and W1 = span{z1, . . . , zq}.

Observe that
λ3Teasy = T ′ + λ4T ′′

where

T ′ =

q∑
i=1

λ(x0 + λxi)⊗ (y0 + λyi)⊗ (z0 + λzi)

− (x0 + λ2
q∑
i=1

xi)⊗ (y0 + λ2
q∑
i=1

yi)⊗ (z0 + λ2
q∑
i=1

zi)

+ (1− qλ)x0 ⊗ y0 ⊗ z0.

and T ′′ is some tensor. Thus R(Teasy) ≤ q + 2.
While the tensor Teasy is a sum of three parts (T 011

easy, T 101
easy and T 110

easy), Theorem 3 cannot be used
since the sum is not direct (for instance, the variable yi, for any i ∈ {1, . . . , q}, is shared by T 011

easy and
T 110
easy). Coppersmith and Winograd [3] showed how to overcome this difficulty by considering several

copies of Teasy, and obtained the following result, which is an illustration of the laser method developed
by Strassen [12].

Theorem 4. For N large enough, the tensor T⊗Neasy can be converted into a direct sum of

2(H(
1
3
, 2
3)−o(1))N

terms1, each isomorphic to[
T 011
easy

]⊗N/3 ⊗ [T 101
easy

]⊗N/3 ⊗ [T 110
easy

]⊗N/3 ∼= 〈qN/3, qN/3, qN/3〉.
Theorem 4 implies, via Theorem 3, that

2(H(
1
3
, 2
3)−o(1))N × qNω/3 ≤ R(T⊗Neasy) ≤ (q + 2)N .

1Here H
(
1
3
, 2
3

)
= − 1

3
log2

(
1
3

)
− 2

3
log2

(
2
3

)
represents the entropy (with logarithms taken to the basis 2) of the corre-

sponding probability distribution.

8

We thus obtain
2H(

1
3
, 2
3) × qω/3 ≤ q + 2,

which gives
ω < 2.41

for q = 8.

5.2 The second construction by Coppersmith and Winograd

We now describe the second construction from Coppersmith and Winograd’s paper [3].
Let q be a positive integer, and consider three vector spaces U , V and W of dimension q + 2 over F.

Take a basis {x0, . . . , xq+1} of U , a basis {y0, . . . , yq+1} of V , and a basis {z0, . . . , zq+1} of W . Con-
sider the tensor

TCW = T 011
CW + T 101

CW + T 110
CW + T 002

CW + T 020
CW + T 200

CW ,

where

T 011
CW =

q∑
i=1

x0 ⊗ yi ⊗ zi ∼= 〈1, 1, q〉,

T 101
CW =

q∑
i=1

xi ⊗ y0 ⊗ zi ∼= 〈1, q, 1〉,

T 110
CW =

q∑
i=1

xi ⊗ yi ⊗ z0 ∼= 〈q, 1, 1〉,

T 002
CW = x0 ⊗ y0 ⊗ zq+1

∼= 〈1, 1, 1〉,
T 020
CW = x0 ⊗ yq+1 ⊗ z0 ∼= 〈1, 1, 1〉,
T 200
CW = xq+1 ⊗ y0 ⊗ z0 ∼= 〈1, 1, 1〉.

Remark. The superscripts in T 011
CW , T 101

CW , T 110
CW , T 200

CW , T 020
CW and T 002

CW come from the following
decomposition of the three vector spaces U, V and W :

U = U0 ⊕ U1 ⊕ U2 where U0 = span{x0}, U1 = span{x1, . . . , xq} and U2 = span{xq+1}
V = V0 ⊕ V1 ⊕ V2, where V0 = span{y0}, V1 = span{y1, . . . , yq} and V2 = span{yq+1}
W =W0 ⊕W1 ⊕W2, where W0 = span{z0},W1 = span{z1, . . . , zq} and W2 = span{zq+1}.

Observe that
λ3TCW = T ′ + λ4T ′′

where

T ′ =

q∑
i=1

λ(x0 + λxi)⊗ (y0 + λyi)⊗ (z0 + λzi)

− (x0 + λ2
q∑
i=1

xi)⊗ (y0 + λ2
q∑
i=1

yi)⊗ (z0 + λ2
q∑
i=1

zi)

+ (1− qλ)(x0 + λ3xq+1)⊗ (y0 + λ3yq+1)⊗ (z0 + λ3zq+1).

and T ′′ is some tensor. Thus R(TCW) ≤ q + 2.
While the tensor TCW is a sum of six parts, Theorem 3 cannot directly be used since the sum is not

direct. Again, Coppersmith and Winograd [3] showed that this difficulty can be overcome by considering
many copies of TCW, and obtained the following result.

9

Theorem 5. For any 0 ≤ α ≤ 1/3 and for N large enough, the tensor T⊗NCW can be converted into a
direct sum of

2(H(
2
3
−α,2α, 1

3
−α)−o(1))N

terms, each isomorphic to[
T 011
CW

]⊗αN⊗[T 101
CW

]⊗αN⊗[T 110
CW

]⊗αN⊗[T 002
CW

]⊗(1
3
−α)N⊗

[
T 020
CW

]⊗(1
3
−α)N⊗

[
T 200
CW

]⊗(1
3
−α)N ∼= 〈qαN , qαN , qαN 〉.

Theorem 5 implies, via Theorem 3, that

2(H(
2
3
−α,2α, 1

3
−α)−o(1))N × qαNω ≤ R(T⊗NCW) ≤ (q + 2)N .

We thus obtain
2H(

2
3
−α,2α, 1

3
−α) × qαω ≤ q + 2,

which gives
ω < 2.3871900

for q = 6 and α = 0.3173.

5.3 Taking powers of the second construction by Coppersmith and Winograd

Consider the tensor
T⊗2CW = TCW ⊗ TCW.

We can write

T⊗2CW = T 400 + T 040 + T 004 + T 310 + T 301 + T 103 + T 130 + T 013 + T 031 + T 220 + T 202 + T 022

+ T 211 + T 121 + T 112,

where

T 400 = T 200
CW ⊗ T 200

CW ,

T 310 = T 200
CW ⊗ T 110

CW + T 110
CW ⊗ T 200

CW ,

T 220 = T 200
CW ⊗ T 020

CW + T 020
CW ⊗ T 200

CW + T 110
CW ⊗ T 110

CW ,

T 211 = T 200
CW ⊗ T 011

CW + T 011
CW ⊗ T 200

CW + T 110
CW ⊗ T 101

CW + T 101
CW ⊗ T 110

CW ,

and the other 11 terms are obtained by permuting the variables (e.g., T 040 = T 020
CW ⊗ T 020

CW).
Coppersmith and Winograd [3] showed how to generalize the approach of Section 5.2 to analyze

T⊗2CW, and obtained the upper bound
ω ≤ 2.3754770

by solving an optimization problem of 3 variables (remember that in Section 5.2 the optimization problem
had only one variable α).

Since T⊗2CW gives better upper bounds on ω than TCW, a natural question was to consider higher
powers of TCW, i.e., study the tensor T⊗mCW for m ≥ 3. Investigating the third power (i.e., m = 3) was
indeed explicitly mentioned as an open problem in [3]. More that twenty years later, Stothers showed
that, while the third power does not seem to lead to any improvement, the fourth power does give an
improvement [10]. The cases m = 8, m = 16 and m = 32 have then been analyzed, giving the upper
bounds on ω summarized in Table 2.

10

Table 2: Upper bounds on ω obtained by analyzing the m-th power of the construction TCW.

m Upper bound
Number of variables in

Reference
in the optimization problem

1 ω < 2.3871900 1 Ref. [3]
2 ω < 2.3754770 3 Ref. [3]
4 ω < 2.3729269 9 Ref. [10, 13]

8 ω < 2.3728642 29
Ref. [5]
(ω < 2.3729 given in Ref. [13])

16 ω < 2.3728640 101 Ref. [5]
32 ω < 2.3728639 373 Ref. [5]

References

[1] BINI, D., CAPOVANI, M., ROMANI, F., AND LOTTI, G. O(n2.7799) complexity for n×n approx-
imate matrix multiplication. Information Processing Letters 8, 5 (1979), 234–235.

[2] COPPERSMITH, D., AND WINOGRAD, S. On the asymptotic complexity of matrix multiplication.
SIAM Journal on Computing 11, 3 (1982), 472–492.

[3] COPPERSMITH, D., AND WINOGRAD, S. Matrix multiplication via arithmetic progressions. Jour-
nal of Symbolic Computation 9, 3 (1990), 251–280.

[4] DAVIE, A. M., AND STOTHERS, A. J. Improved bound for complexity of matrix multiplication.
Proceedings of the Royal Society of Edinburgh 143A (2013), 351–370.

[5] LE GALL, F. Powers of tensors and fast matrix multiplication. In Proceedings of the 39th Interna-
tional Symposium on Symbolic and Algebraic Computation (2014), 296–303.

[6] PAN, V. Y. Field extension and triangular aggregating, uniting and canceling for the acceleration of
matrix multiplications. In Proceedings of the 20th Annual Symposium on Foundations of Computer
Science (1979), pp. 28–38.

[7] PAN, V. Y. New combinations of methods for the acceleration of matrix multiplication. Computer
and Mathematics with Applications (1981), 73–125.

[8] ROMANI, F. Some properties of disjoint sums of tensors related to matrix multiplication. SIAM
Journal on Computing 11, 2 (1982), 263–267.

[9] SCHÖNHAGE, A. Partial and total matrix multiplication. SIAM Journal on Computing 10, 3 (1981),
434–455.

[10] STOTHERS, A. On the Complexity of Matrix Multiplication. PhD thesis, University of Edinburgh,
2010.

[11] STRASSEN, V. Gaussian elimination is not optimal. Numerische Mathematik 13 (1969), 354–356.

[12] STRASSEN, V. The asymptotic spectrum of tensors and the exponent of matrix multiplication. In
Proceedings of the 27th Annual Symposium on Foundations of Computer Science (1986), pp. 49–
54.

[13] VASSILEVSKA WILLIAMS, V. Multiplying matrices faster than Coppersmith-Winograd. In Pro-
ceedings of the 44th Symposium on Theory of Computing (2012), pp. 887–898.

11

