# Complexity of Matrix Multiplication and Bilinear Problems 

## François Le Gall

Graduate School of Informatics
Kyoto University

ADFOCS17 - Lecture 1 22 August 2017

## Algebraic Complexity Theory

$\checkmark$ Algebraic complexity theory: study of computation using algebraic models
$\checkmark$ Main Achievements:
2 lower bounds on the complexity (in algebraic models of computation) of concrete problems
, powerful techniques to construct fast algorithms for computational problems with an algebraic structure

Several subareas:
> high degree algebraic complexity: study of high-degree polynomials
, low degree algebraic complexity: linear forms, bilinear forms,...
in particular matrix multiplication
the main concepts in low degree algebraic complexity theory have been introduced for the study of the complexity of matrix multiplication

## Some General References



Algebraic Complexity Theory
Bürgisser, Clausen and Shokrollahi
(Springer, 1997)

# How to Multiply Matrices Faster 

Pan
(Springer, 1984)


Fast Matrix Multiplication
Bläser
(Theory of Computing Library, Graduate Survey 5, 2013)

## Matrix Multiplication

This is one of the most fundamental problems in mathematics and computer science

Many problems in linear algebra have the same complexity as matrix multiplication:
$>$ inverting a matrix
$>$ solving a system of linear equations
$>$ computing a system of linear equations
$>$ computing the determinant
> ...
$\checkmark$ In several areas of theoretical computer science, the best known algorithms use matrix multiplication:
> computing the transitivity closure of a graph
$>$ computing the all-pairs shortest paths in graphs
$>$ detecting directed cycles in a graph
$>$ exact algorithms for MAX-2SAT

## Matrix Multiplication: Trivial Algorithm

Compute the product of two $n \times n$ matrices $A$ and $B$ over a field $\mathbb{F}$

$n$ multiplications and ( $n-1$ ) additions

$$
\mathrm{c}_{\mathrm{ij}}=\sum_{k=1}^{n} \mathrm{a}_{\mathrm{ik}} \mathrm{~b}_{\mathrm{kj}} \quad \text { for all } 1 \leq i \leq n \text { and } 1 \leq j \leq n
$$

Trivial algorithm: $n^{2}(2 n-1)=O\left(n^{3}\right)$ arithmetic operations
We can do better

## Overview of the Lectures

Fundamental techniques for fast matrix multiplication (1969~1987)
> Basics of bilinear complexity theory: exponent of matrix multiplication, Strassen's algorithm, bilinear algorithms
> First technique: tensor rank and recursion
$>$ Second technique: border rank
$>$ Third technique: the asymptotic sum inequality
$>$ Fourth technique: the laser method

Recent progress on matrix multiplication (1987~)
$>$ Laser method on powers of tensors $\Rightarrow$ currently fastest
Lecture 2
$>$ Other approaches
known algorithm for
matrix multiplication
> Lower bounds
> Rectangular matrix multiplication

## Handout for the First Part

## Fundamental techniques for fast matrix multiplication (1969~1987)

> Basics of bilinear complexity theory: exponent of matrix multiplication, Strassen's algorithm, bilinear algorithms
$>$ First technique: tensor rank and recursic
11 pages (5 sections)
Complexity of Matrix Multiplication and Bilinear Problems
$>$ Second technique: border rank
> Third technique: the asymptotic sum ine [Handout for the first two lectures]

François Le Gall
$>$ Fourth technique: the laser method

## Recent progress on matrix m

> Laser method on powers of $t \in$
5.3 Taking powers of the second construction by Coppersmith and Winograd Consider the tensor

$$
T_{\mathrm{CW}}^{\otimes 2}=T_{\mathrm{CW}} \otimes T_{\mathrm{cW}} .
$$

## We can write

$T_{\mathrm{CW}}^{\otimes 2}=T^{400}+T^{040}+T^{004}+T^{310}+T^{301}+T^{103}+T^{130}+T^{013}+T^{031}+T^{220}+T^{202}+T^{022}$ $+T^{211}+T^{121}+T^{112}$,
where
4.2 Schönhage's asymptotic sum inequality Schönhage [9] considered the following tensor:

## 5 The Laser Method

We show how the techniques developed so method, can be applied to obtain the upper Coppersmith and Winograd [3]
5.1 The first construction by Coppe

We start with the first construction from Co Let $q$ be a positive integer, and conside the field $\mathbb{F}$. Take a basis $\left\{x_{0}, \ldots, x_{\theta}\right\}$ of $L$ Consider the tensor
$T^{400}=T_{\mathrm{CW}}^{200} \otimes T_{\mathrm{CW}}^{200}$
$T^{310}=T_{\mathrm{CW}}^{200} \otimes T_{\mathrm{CW}}^{110}+T_{\mathrm{CW}}^{110} \otimes T_{\mathrm{CW}}^{200}$
$T^{220}=T_{\mathrm{CW}}^{200} \otimes T_{\mathrm{CW}}^{020}+T_{\mathrm{CW}}^{020} \otimes T_{\mathrm{CW}}^{200}+T_{\mathrm{CW}}^{110} \otimes T_{\mathrm{CW}}^{110}$,
$T^{211}=T_{\mathrm{CW}}^{200} \otimes T_{\mathrm{CW}}^{011}+T_{\mathrm{CW}}^{011} \otimes T_{\mathrm{CW}}^{200}+T_{\mathrm{CW}}^{110} \otimes T_{\mathrm{CW}}^{101}+T_{\mathrm{CW}}^{101} \otimes T_{\mathrm{CW}}^{110}$
and the other 11 terms are obtained by permuting the variables (e.g., $T^{040}=T_{\mathrm{CW}}^{020} \otimes T_{\mathrm{CW}}^{020}$ )
Coppersmith and Winograd [3] showed how to generalize the approach of Section 5.2 to analyze $T_{\mathrm{CW}}^{\otimes 2}$, and obtained the upper bound

## $\omega \leq 2.3754770$

by solving an optimization problem of 3 variables (remember that in Section 5.2 the optimization problem had only one variable $\alpha$ )

Since $T_{\mathrm{CW}}^{\otimes 2}$ gives better upper bounds on $\omega$ than $T_{\mathrm{CW}}$, a natural question was to consider higher powers of $T_{\mathrm{CW}}$, i.e., study the tensor $T_{\mathrm{CW}}^{\otimes m}$ for $m \geq 3$. Investigating the third power (i.e., $m=3$ ) was indeed explicitly mentioned as an open problem in [3]. More that twenty years later, Stothers showed that, while the third power does not seem to lead to any improvement, the fourth power does give an improvement [10]. The cases $m=8, m=16$ and $m=32$ have then been analyzed, giving the upper bounds on $\omega$ summarized in Table 2
els. One of the main punds on the computanother major achievemms for computational

## Overview of the Lectures

Fundamental techniques for fast matrix multiplication (1969~1987)
> Basics of bilinear complexity theory: exponent of matrix multiplication, Strassen's algorithm, bilinear algorithms
> First technique: tensor rank and recursion
$>$ Second technique: border rank
$>$ Third technique: the asymptotic sum inequality
$>$ Fourth technique: the laser method

Recent progress on matrix multiplication (1987~)
$>$ Laser method on powers of tensors
Lecture 2
$>$ Other approaches
> Lower bounds
$>$ Rectangular matrix multiplication

## Algebraic Model of Computation

## Compute the product of two $n \times n$ matrices $A$ and $B$ over a field $\mathbb{F}$

Model \#1: algebraic circuits
$\checkmark$ gates:,,$+- \times, \div$ (operations on two elements of the field)
$\checkmark$ inputs: $\mathrm{a}_{\mathrm{ij}}, \mathrm{b}_{\mathrm{ij}}$ ( $2 \mathrm{n}^{2}$ inputs)
$\checkmark$ output: $\mathrm{c}_{\mathrm{ij}}=\sum_{k=1}^{n} \mathrm{a}_{\mathrm{ik}} \mathrm{b}_{\mathrm{kj}}$
Model \#2: straight-line programs (sequence of instructions)
$C(n)=$ size of the shortest straight-line program computing the product
Informally: minimal number of arithmetic operations needed to compute the product

## Straightforward algorithm:

$C(n) \leq n^{2}(2 n-1)$ using the formulas $\mathrm{c}_{\mathrm{ij}}=\sum_{k=1}^{n} \mathrm{a}_{\mathrm{ik}} \mathrm{b}_{\mathrm{kj}}$
for instance $C(2) \leq 12$ (8 multiplications and 4 additions)

## The Exponent of Matrix Multiplication

Compute the product of two $n \times n$ matrices $A$ and $B$ over a field $\mathbb{F}$
$C(n)=$ size of the shortest straight-line program computing the product

## Exponent of matrix multiplication

$\omega=\inf \left\{\alpha \mid C(n)=O\left(n^{\alpha}\right)\right\}$
equivalently:

$$
\omega=\inf \left\{\alpha \mid C(n) \leq n^{\alpha} \text { for all large enough } n\right\}
$$

Straightforward algorithm:
$C(n) \leq n^{2}(2 n-1)$ using the formulas $\mathrm{c}_{\mathrm{ij}}=\sum_{k=1}^{n} \mathrm{a}_{\mathrm{ik}} \mathrm{b}_{\mathrm{kj}}$
$C(n)=O\left(n^{3}\right)$
Obvious
bough $n\}$


## The Exponent of Matrix Multiplication

Compute the product of two $n \times n$ matrices $A$ and $B$ over a field $\mathbb{F}$
$C(n)=$ size of the shortest straight-line program computing the product

## Exponent of matrix multiplication

$\omega=\inf \left\{\alpha \mid C(n)=O\left(n^{\alpha}\right)\right\}$
Obviously, $2 \leq \omega \leq 3$
equivalently:

$$
\omega=\inf \left\{\alpha \mid C(n) \leq n^{\alpha} \text { for all large enough } n\right\}
$$

Two remarks:
$\checkmark$ this is an inf and not a min since the exponent may be achieved by an algorithm with complexity of the form " $\mathrm{O}\left(n^{\omega+\varepsilon}\right)$ for any $\varepsilon>0$ "
$\checkmark \omega$ may depend on the field (but can depend only on its characteristic)

## History of the main improvements on the exponent of square matrix multiplication

| Upper bound | Year | Authors |
| :--- | :--- | :--- |
| $\omega \leq 3$ |  |  |
| $\omega<2.81$ | 1969 | Strassen |
| $\omega<2.79$ | 1979 | Pan |
| $\omega<2.78$ | 1979 | Bini, Capovani, Romani and Lotti |
| $\omega<2.55$ | 1981 | Schönhage |
| $\omega<2.53$ | 1981 | Pan |
| $\omega<2.52$ | 1982 | Romani |
| $\omega<2.50$ | 1982 | Coppersmith and Winograd |
| $\omega<2.48$ | 1986 | Strassen |
| $\omega<2.376$ | 1987 | Coppersmith and Winograd |
| $\omega<2.374$ | 2010 | Stothers |
| $\omega<2.3729$ | 2012 | Vassilevska Williams |
| $\omega<2.3728639$ | 2014 | LG |

What is $\omega ? \quad \omega=2 ?$

## History of the main improvements on the exponent of square matrix multiplication

| Upper bound | Year | Authors |  |
| :--- | :--- | :--- | :--- |
| $\omega \leq 3$ |  |  |  |
| $\omega<2.81$ | 1969 | Strassen Rank of a tensor |  |
| $\omega<2.79$ | 1979 | Pan | Border rank of a tensor |
| $\omega<2.78$ | 1979 | Bini, Capovani, Romani and Lotti |  |
| $\omega<2.55$ | 1981 | Schönhage | Asymptotic |
| $\omega<2.53$ | 1981 | Pan | sum <br> inequality <br> $\omega<2.52$ |
| 1982 | Romani |  |  |
| $\omega<2.50$ | 1982 | Coppersmith and Winograd |  |
| $\omega<2.48$ | 1986 | Strassen |  |
| $\omega<2.376$ | 1987 | Coppersmith and Winograd | Laser |
| $\omega<2.374$ | 2010 | Stothers | method |
| $\omega<2.3729$ | 2012 | Vassilevska Williams |  |
| $\omega<2.3728639$ | 2014 | LG |  |

## History of the main improvements on the exponent of square matrix multiplication

Remark: the recent algorithms are not practical

| $\frac{\text { Upper b }}{\omega \leq 3} O\left(n^{2.55}\right)$ | $O\left(n^{2.55}\right)$, but with a large constant in the big-O notation |  |  |
| :---: | :---: | :---: | :---: |
| $\omega<2.81$ | 1969 | Strassen |  |
| $\omega<2.79$ | 1979 | Pan |  |
| $\omega<2.78$ | 1979 | Bini, Capovani, Romani and Lotti |  |
| $\omega<2.55$ | 1981 | Schönhage |  |
| $\omega<2.53$ | 1981 | Pan | Asymptotic |
| $\omega<2.52$ | 1982 | Romani | sum |
| $\omega<2.50$ | 1982 | Coppersmith and Winograd |  |
| $\omega<2.48$ | 1986 | Strassen |  |
| $\omega<2.376$ | 1987 | Coppersmith and Winograd |  |
| $\omega<2.374$ | 2010 | Stothers | Laser |
| $\omega<2.3729$ | 2012 | Vassilevska Williams | method |
| $\omega<2.3728639$ | 2014 | LG |  |

## The Exponent of Matrix Multiplication

Compute the product of two $n \times n$ matrices $A$ and $B$ over a field $F$
$C(n)=$ size of the shortest straight-line program computing the product

Exponent of matrix multiplication
$\omega=\inf \left\{\alpha \mid C(n)=O\left(n^{\alpha}\right)\right\}$

In 1969, Strassen gave the first sub-cubic time algorithm for matrix multiplication

Complexity: $O\left(\mathrm{n}^{2.81}\right)$ arithmetic operations

$$
C(n)=O\left(n^{2.81}\right)
$$

$\omega \leq 2.81$

## Strassen's algorithm (for the product of two $2 \times 2$ matrices)

Goal: compute the product of $A=\binom{a_{11} a_{12}}{a_{21} a_{22}}$ by $B=\binom{b_{11} b_{12}}{b_{21} b_{22}}$

1. Compute:
2. Output:

$$
\begin{aligned}
& \frac{m_{1}}{m_{2}}=a_{11} *\left(b_{12}-b_{22}\right) \\
& \left.\frac{m_{31}}{}=\left(a_{12}\right) * b_{21}+a_{22}\right) * b_{11} \\
& m_{4}=a_{22} *\left(b_{21}-b_{11}\right) \\
& m_{5}=\left(a_{11}+a_{22}\right) *\left(b_{11}+b_{22}\right), \\
& m_{6}=\left(a_{12}-a_{22}\right) *\left(b_{21}+b_{22}\right), \\
& m_{7}=\left(a_{11}-a_{21}\right) *\left(b_{11}+b_{12}\right) .
\end{aligned}
$$

## 7 multiplications

18 additions/substractions

$$
C(2) \leq 25
$$

worse than the trivial algorithm (8 multiplications and 4 additions)

## Strassen's algorithm (for the product of two $2^{k \times 2} \times 2^{k}$ matrices)

Goal: compute the product of $A=\binom{A_{11} A_{12}}{A_{21} A_{22}}$ by $B=\left(\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right)$
$A_{i j}, B_{i j}$ : matrices of size $2^{k-1} \times 2^{k-1}$

1. Compute: $\quad M_{1}=A_{11} *\left(B_{12}-B_{22}\right)$,

$$
\begin{gathered}
M_{7}=\left(A_{11}-A_{21}\right) *\left(B_{11}+B_{12}\right) . \\
-M_{2}+M_{4}+M_{5}+M_{6}=C_{11},
\end{gathered}
$$

$$
M_{1}-M_{3}+M_{5}-M_{7}=C_{22}
$$

7 multiplications of two $2^{k-1} \times 2^{k-1}$ matrices

- done recursively using Strassen's algorithm

18 additions/substractions of two $2^{k-1} \times 2^{k-1}$ matrices

- $2^{2(k-1)}$ scalar operations for each


## Strassen's algorithm (for the product of two $2^{k} \times 2^{k}$ matrices)

Goal: compute the product of $A=\binom{A_{11} A_{12}}{A_{21} A_{22}}$ by $B=\binom{B_{11} B_{12}}{B_{21} B_{22}}$
Observation: the complexity of Strassen's algorithm is dominated by the number of (scalar) multiplications

Complexity of this algorithm

$$
\begin{aligned}
T\left(2^{k}\right) & =7 \times T\left(2^{k-1}\right)+18 \times 2^{2(k-1)} \\
& =O\left(7^{k}\right) \\
& =O\left(\left(2^{k}\right)^{\log _{2} 7}\right)
\end{aligned}
$$

Conclusion: $C\left(2^{k}\right)=O\left(\left(2^{k}\right)^{\log _{2} 7}\right)$

$$
\omega \leq \log _{2} 7=2.807 \ldots
$$

Remember:
[Strassen 69]
$18 \mathrm{ad} \underbrace{2} \begin{aligned} & \text { Exponent of matrix multiplication } \\ & 2^{2(k-1)} \text { scalar operations for each } \\ & \text { Exices }\end{aligned}$

## Bilinear Algorithms

A bilinear algorithm for matrix multiplication is an algebraic algorithm of the form: $t$ is the bilinear complexity of the algorithm

1. Compute $\quad m_{1}=$ (linear combination of the $a_{i j}$ 's) $*$ (linear combination of the $b_{i j}$ 's)

$$
m_{t}=\left(\text { linear combination of the } a_{i j} \text { 's }\right) *\left(\text { linear combination of the } b_{i j} \text { 's }\right)
$$

2. Each entry $c_{i j}$ is computed by taking a linear combination of $m_{1}, \ldots, m_{t}$
i.e., we do not allow products of the form $a_{i j} * a_{i^{\prime} j^{\prime}}$ or $b_{i j} * b_{i^{\prime} j^{\prime}}$
$C^{\text {bil }}(n)=$ bilinear complexity of the best bilinear algorithm computing the product of two $\mathrm{n} \times \mathrm{n}$ matrices

## Bilinear Algorithms

## By generalizing Strassen's recursive argument we obtain:

## Proposition 1

Let $m$ and $t$ be any positive integers. Suppose that there exists a bilinear algorithm that computes the product of two $m \times m$ matrices with bilinear complexity $t$. Then

$$
\omega \leq \log _{m}(t) .
$$

In short: $\mathcal{C}^{b i l}(m) \leq t \Longrightarrow \omega \leq \log _{m}(t)$
Example (Strassen's bound): $\mathcal{C}^{b i l}(2) \leq 7 \Longrightarrow \omega \leq \log _{2}(7)$
Proof: $\quad \mathcal{C}^{b i l}(m) \leq t \Longrightarrow \mathcal{C}^{b i l}\left(m^{k}\right) \leq t^{k}$ for any $k \geq 1$
"recursion"

$$
\text { and } t^{k}=\left(m^{k}\right)^{\log _{m}(t)}
$$

$$
\Rightarrow C\left(m^{k}\right)=O(t k) \quad \begin{gathered}
\text { "complexity dominated by the } \\
\text { number of multiplications" }
\end{gathered}
$$

## Exponent of matrix multiplication

$\omega=\inf \left\{\alpha \mid C(n)=O\left(n^{\alpha}\right)\right\}$

$$
\begin{aligned}
& \text { Corollary } \\
& \qquad \omega=\inf \left\{\alpha \mid C^{\text {bil }}(n)=O\left(n^{\alpha}\right)\right\}
\end{aligned}
$$

## Overview of the Lectures

Fundamental techniques for fast matrix multiplication (1969~1987)
> Basics of bilinear complexity theory: exponent of matrix multiplication, Strassen's algorithm, bilinear algorithms
> First technique: tensor rank and recursion
$>$ Second technique: border rank
$>$ Third technique: the asymptotic sum inequality
$>$ Fourth technique: the laser method

Recent progress on matrix multiplication (1987~)
$>$ Laser method on powers of tensors
Lecture 2
> Other approaches
> Lower bounds
$>$ Rectangular matrix multiplication

## The tensor of matrix multiplication

Definition 1
The tensor corresponding to the multiplication of an $m \times n$ matrix by an $n \times p$ matrix is

$$
\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} a_{i k} \otimes b_{k j} \otimes c_{i j}
$$

## The tensor of matrix multiplication

Definition 1
The tensor corresponding to the multiplication of an $m \times n$ matrix by an $n \times p$ matrix is

$$
\langle m, n, p\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} a_{i k} \otimes b_{k j} \otimes c_{i j}
$$

## The tensor of matrix multiplication

## Definition 1

The tensor corresponding to the multiplication of an $m \times n$ matrix by an $n \times p$ matrix is

$$
\langle m, n, p\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} a_{i k} \otimes b_{k j} \otimes c_{i j}
$$

intuitive interpretation: • this is a formal sum

## The tensor of matrix multiplication

## Definition 1

The tensor corresponding to the multiplication of an $m \times n$ matrix by an $n \times p$ matrix is

$$
\langle m, n, p\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} a_{i k} \otimes b_{k j} \otimes c_{i j}
$$

intuitive interpretation: • this is a formal sum

- when the $a_{i k}$ and the $b_{k j}$ are replaced by the corresponding entries of matrices, the coefficient of $c_{i j}$ becomes $\sum_{k=1}^{n} a_{i k} b_{k j}$


## The tensor of matrix multiplication

## Definition 1

The tensor corresponding to the multiplication of an $m \times n$ matrix by an $n \times p$ matrix is

$$
\langle m, n, p\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} a_{i k} \otimes b_{k j} \otimes c_{i j}
$$

intuitive interpretation: • this is a formal sum

- when the $a_{i k}$ and the $b_{k j}$ are replaced by the corresponding entries of matrices, the coefficient of $c_{i j}$ becomes $\sum_{k=1}^{n} a_{i k} b_{k j}$
why this is useful: • one object instead of $m p$ objects


## The tensor of matrix multiplication

## Definition 1

The tensor corresponding to the multiplication of an $m \times n$ matrix by an $n \times p$ matrix is

$$
\langle m, n, p\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} a_{i k} \otimes b_{k j} \otimes c_{i j} .
$$

intuitive interpretation: • this is a formal sum

- when the $a_{i k}$ and the $b_{k j}$ are replaced by the corresponding entries of matrices, the coefficient of $c_{i j}$ becomes $\sum_{k=1}^{n} a_{i k} b_{k j}$
why this is useful: • one object instead of $m p$ objects
- shows the symmetries between the two input matrices and the output matrix (see later)


## The tensor of matrix multiplication

Definition 1
The tensor corresponding to the multiplication of an $m \times n$ matrix by an $n \times p$ matrix is

$$
\langle m, n, p\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} a_{i k} \otimes b_{k j} \otimes c_{i j}
$$

## The tensor of matrix multiplication

## Definition 1

The tensor corresponding to the multiplication of an $m \times n$ matrix by an $n \times p$ matrix is

$$
\langle m, n, p\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} a_{i k} \otimes b_{k j} \otimes c_{i j} .
$$

Rank (slightly informal definition):
$R(\langle m, n, p\rangle)=$ minimal $t$ such that $\langle m, n, p\rangle$ can be written as the sum of $t$ terms of the form
(lin. comb. of $\left.a_{i j}\right) \otimes\left(\right.$ lin. comb. of $\left.b_{i j}\right) \otimes\left(\right.$ lin. comb. of $\left.c_{i j}\right)$.

## The tensor of matrix multiplication

## Definition 1

The tensor corresponding to the multiplication of an $m \times n$ matrix by an $n \times p$ matrix is

$$
\langle m, n, p\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} \underset{\substack{a_{i k} \otimes b_{k j} \otimes c_{i j} j \\ \text { one term }}}{ }
$$

Rank (slightly informal definition):

$$
R(\langle m, n, p\rangle) \leq m n p
$$

$R(\langle m, n, p\rangle)=$ minimal $t$ such that $\langle m, n, p\rangle$ can be written as the sum of $t$ terms of the form
$\left(\right.$ lin. comb. of $\left.a_{i j}\right) \otimes\left(\right.$ lin. comb. of $\left.b_{i j}\right) \otimes\left(\right.$ lin. comb. of $\left.c_{i j}\right)$.

## The tensor of matrix multiplication

## Definition 1

The tensor corresponding to the multiplication of an $m \times n$ matrix by an $n \times p$ matrix is

$$
\langle m, n, p\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} \underset{\substack{a_{i k} \otimes b_{k j} \otimes c_{i j} \\ \text { one term }}}{ }
$$

Rank (slightly informal definition):
$R(\langle m, n, p\rangle)=$ minimal $t$ such that $\langle m, n, p\rangle$ can be written as the sum of $t$ terms of the form
(lin. comb. of $\left.a_{i j}\right) \otimes\left(\right.$ lin. comb. of $\left.b_{i j}\right) \otimes\left(\right.$ lin. comb. of $\left.c_{i j}\right)$.

$$
\begin{aligned}
&\langle 2,2,2\rangle= a_{11} \otimes\left(b_{12}-b_{22}\right) \otimes\left(c_{12}+c_{22}\right) \\
&+\left(a_{11}+a_{12}\right) \otimes b_{22} \otimes\left(-c_{11}+c_{12}\right) \\
&+\left(a_{21}+a_{22}\right) \otimes b_{11} \otimes\left(c_{21}-c_{22}\right) \\
&+a_{22} \otimes\left(b_{21}-b_{11}\right) \otimes\left(c_{11}+c_{21}\right) \\
&+\left(a_{11}+a_{22}\right) \otimes\left(b_{11}+b_{22}\right) \otimes\left(c_{11}+c_{22}\right) \\
&+\left(a_{12}-a_{22}\right) \otimes\left(b_{21}+b_{22}\right) \otimes c_{11} \\
&+\left(a_{11}-a_{21}\right) \otimes\left(b_{11}+b_{12}\right) \otimes\left(-c_{22}\right) \\
& \hline
\end{aligned}
$$

Strassen's algorithm gives

$$
R(\langle 2,2,2\rangle) \leq 7
$$

## The tensor of matrix multiplication

1. Compute:

$$
\begin{aligned}
& m_{1}=a_{11} *\left(b_{12}-b_{22}\right), \\
& m_{2}=\left(a_{11}+a_{12}\right) * b_{22}, \\
& m_{3}=\left(a_{21}+a_{22}\right) * b_{11}, \\
& m_{4}=a_{22} *\left(b_{21}-b_{11}\right), \\
& m_{5}=\left(a_{11}+a_{22}\right) *\left(b_{11}+b_{22}\right), \\
& m_{6}=\left(a_{12}-a_{22}\right) *\left(b_{21}+b_{22}\right), \\
& m_{7}=\left(a_{11}-a_{21}\right) *\left(b_{11}+b_{12}\right) .
\end{aligned}
$$

of an $m \times n$ matrix by

| $\frac{i_{i k} \otimes b_{k j} \otimes c_{i j}}{\text { one term }}$ |
| :--- |
| $R(\langle m, n, p\rangle) \leq m n p$ |

$$
\begin{aligned}
-m_{2}+m_{4}+m_{5}+m_{6} & =c_{11}, \\
m_{1}+m_{2} & =c_{12}, \\
m_{3}+m_{4} & =c_{21}, \\
m_{1}-m_{3}+m_{5}-m_{7} & =c_{22} .
\end{aligned}
$$

$\left.b_{i j}\right) \otimes\left(\right.$ lin. comb. of $\left.c_{i j}\right)$.

$$
\begin{aligned}
&\langle 2,2,2\rangle= a_{11} \otimes\left(b_{12}-b_{22}\right) \otimes\left(c_{12}+c_{22}\right) \\
&+\left(a_{11}+a_{12}\right) \otimes b_{22} \otimes\left(-c_{11}+c_{12}\right) \\
&+\left(a_{21}+a_{22}\right) \otimes b_{11} \otimes\left(c_{21}-c_{22}\right) \\
&+a_{22} \otimes\left(b_{21}-b_{11}\right) \otimes\left(c_{11}+c_{21}\right) \\
&+\left(a_{11}+a_{22}\right) \otimes\left(b_{11}+b_{22}\right) \otimes\left(c_{11}+c_{22}\right) \\
&+\left(a_{12}-a_{22}\right) \otimes\left(b_{21}+b_{22}\right) \otimes c_{11} \\
&+\left(a_{11}-a_{21}\right) \otimes\left(b_{11}+b_{12}\right) \otimes\left(-c_{22}\right) \\
& \hline
\end{aligned}
$$

Strassen's algorithm gives

$$
R(\langle 2,2,2\rangle) \leq 7
$$

## The tensor of matrix multiplication

1. Compute:

$$
\begin{aligned}
& m_{1}=a_{11} *\left(b_{12}-b_{22}\right), \\
& m_{2}=\left(a_{11}+a_{12}\right) * b_{22}, \\
& m_{3}=\left(a_{21}+a_{22}\right) * b_{11}, \\
& m_{4}=a_{22} *\left(b_{21}-b_{11}\right), \\
& m_{5}=\left(a_{11}+a_{22}\right) *\left(b_{11}+b_{22}\right), \\
& m_{6}=\left(a_{12}-a_{22}\right) *\left(b_{21}+b_{22}\right), \\
& m_{7}=\left(a_{11}-a_{21}\right) *\left(b_{11}+b_{12}\right) .
\end{aligned}
$$

of an $m \times n$ matrix by
${ }_{i k} \otimes b_{k j} \otimes c_{i j}$
one term
$R(\langle m, n, p\rangle) \leq m n p$
2. Output:

$$
\begin{aligned}
-m_{2}+m_{4}+m_{5}+m_{6} & =c_{11} \\
m_{1}+m_{2} & =c_{12} \\
m_{3}+m_{4} & =c_{21} \\
m_{1}-m_{3}+m_{5}-m_{7} & =c_{22}
\end{aligned}
$$

$$
\begin{aligned}
&\langle 2,2,2\rangle= \frac{\left.a_{11} \otimes\left(b_{12}-b_{22}\right) \otimes\left(c_{12}\right)+c_{22}\right)}{} \\
&+\left(a_{11}+a_{12}\right) \otimes b_{22} \otimes\left(-c_{11}+c_{12}\right) \\
&+\left(a_{21}+a_{22}\right) \otimes b_{11} \otimes\left(c_{21}-c_{22}\right) \\
&+a_{22} \otimes\left(b_{21}-b_{11}\right) \otimes\left(c_{11}+c_{21}\right) \\
&+\left(a_{11}+a_{22}\right) \otimes\left(b_{11}+b_{22}\right) \otimes\left(c_{11}+c_{22}\right) \\
&+\left(a_{12}-a_{22}\right) \otimes\left(b_{21}+b_{22}\right) \otimes c_{11} \\
&+\left(a_{11}-a_{21}\right) \otimes\left(b_{11}+b_{12}\right) \otimes\left(-c_{22}\right) \\
& \hline
\end{aligned}
$$

Strassen's algorithm gives

$$
R(\langle 2,2,2\rangle) \leq 7
$$

## The tensor of matrix multiplication

1. Compute:

$$
\begin{aligned}
& m_{1}=a_{11} *\left(b_{12}-b_{22}\right), \\
& m_{2}=\left(a_{11}+a_{12}\right) * b_{22}, \\
& m_{3}=\left(a_{21}+a_{22}\right) * b_{11}, \\
& m_{4}=a_{22} *\left(b_{21}-b_{11}\right), \\
& m_{5}=\left(a_{11}+a_{22}\right) *\left(b_{11}+b_{22}\right), \\
& m_{6}=\left(a_{12}-a_{22}\right) *\left(b_{21}+b_{22}\right), \\
& m_{7}=\left(a_{11}-a_{21}\right) *\left(b_{11}+b_{12}\right) .
\end{aligned}
$$

of an $m \times n$ matrix by
$i_{i k} \otimes b_{k j} \otimes c_{i j}$
one term
$R(\langle m, n, p\rangle) \leq m n p$
2. Output:

$$
\begin{aligned}
-m_{2}+m_{4}+m_{5}+m_{6} & =c_{11} \\
m_{1}+m_{2} & =c_{12} \\
m_{3}+m_{4} & =c_{21} \\
m_{1}-m_{3}+m_{5}-m_{7} & =c_{22}
\end{aligned}
$$

$\left.b_{i j}\right) \otimes\left(\right.$ lin. comb. of $\left.c_{i j}\right)$.

$$
\begin{aligned}
\langle 2,2,2\rangle= & \frac{\left.a_{11} \otimes\left(b_{12}-b_{22}\right) \otimes\left(c_{12}\right)+c_{22}\right)}{} \\
& +\left(a_{11}+a_{12}\right) \otimes b_{22} \otimes\left(-c_{11}+c_{12}\right) \\
& +\left(a_{21}+a_{22}\right) \otimes b_{11} \otimes\left(c_{21}-c_{22}\right) \\
& +a_{22} \otimes\left(b_{21}-b_{11}\right) \otimes\left(c_{11}+c_{21}\right) \\
& +\left(a_{11}+a_{22}\right) \otimes\left(b_{11}+b_{22}\right) \otimes\left(c_{11}+c_{22}\right) \\
& +\left(a_{12}-a_{22}\right) \otimes\left(b_{21}+b_{22}\right) \otimes c_{11} \\
& +\left(a_{11}-a_{21}\right) \otimes\left(b_{11}+b_{12}\right) \otimes\left(-c_{22}\right)
\end{aligned}
$$

Strassen's algorithm gives

$$
R(\langle 2,2,2\rangle) \leq 7
$$

rank = bilinear complexity

## The tensor of matrix multiplication

## Definition 1

The tensor corresponding to the multiplication of an $m \times n$ matrix by an $n \times p$ matrix is

$$
\langle m, n, p\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} \underset{\substack{a_{i k} \otimes b_{k j} \otimes c_{i j} \\ \text { one term }}}{ }
$$

Rank (slightly informal definition):
$R(\langle m, n, p\rangle)=$ minimal $t$ such that $\langle m, n, p\rangle$ can be written as the sum of $t$ terms of the form
(lin. comb. of $\left.a_{i j}\right) \otimes\left(\right.$ lin. comb. of $\left.b_{i j}\right) \otimes\left(\right.$ lin. comb. of $\left.c_{i j}\right)$.

$$
\begin{aligned}
&\langle 2,2,2\rangle= a_{11} \otimes\left(b_{12}-b_{22}\right) \otimes\left(c_{12}+c_{22}\right) \\
&+\left(a_{11}+a_{12}\right) \otimes b_{22} \otimes\left(-c_{11}+c_{12}\right) \\
&+\left(a_{21}+a_{22}\right) \otimes b_{11} \otimes\left(c_{21}-c_{22}\right) \\
&+a_{22} \otimes\left(b_{21}-b_{11}\right) \otimes\left(c_{11}+c_{21}\right) \\
&+\left(a_{11}+a_{22}\right) \otimes\left(b_{11}+b_{22}\right) \otimes\left(c_{11}+c_{22}\right) \\
&+\left(a_{12}-a_{22}\right) \otimes\left(b_{21}+b_{22}\right) \otimes c_{11} \\
&+\left(a_{11}-a_{21}\right) \otimes\left(b_{11}+b_{12}\right) \otimes\left(-c_{22}\right) \\
& \hline
\end{aligned}
$$

Strassen's algorithm gives

$$
R(\langle 2,2,2\rangle) \leq 7
$$

rank = bilinear complexity

## The tensor of matrix multiplication

## Definition 1

The tensor corresponding to the multiplication of an $m \times n$ matrix by an $n \times p$ matrix is

$$
\langle m, n, p\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} \underset{\substack{a_{i k} \otimes b_{k j} \otimes c_{i j} \\ \text { one term }}}{ }
$$

Rank (slightly informal definition):
$R(\langle m, n, p\rangle)=$ minimal $t$ such that $\langle m, n, p\rangle$ can be written as the sum of $t$ terms of the form
$\left(\right.$ lin. comb. of $\left.a_{i j}\right) \otimes\left(\right.$ lin. comb. of $\left.b_{i j}\right) \otimes\left(\right.$ lin. comb. of $\left.c_{i j}\right)$.

$$
\begin{aligned}
\langle 2,2,2\rangle= & a_{11} \otimes\left(b_{12}-b_{22}\right) \otimes\left(c_{12}+c_{22}\right) \\
& +\left(a_{11}+a_{12}\right) \otimes b_{22} \otimes\left(-c_{11}+c_{12}\right) \\
& +\left(a_{21}+a_{22}\right) \otimes b_{11} \otimes\left(c_{21}-c_{22}\right) \\
& +a_{22} \otimes\left(b_{21}-b_{11}\right) \otimes\left(c_{11}+c_{21}\right) \\
& +\left(a_{11}+a_{02}\right) \otimes\left(b_{11}+b_{20}\right) \otimes\left(c_{11}+c_{02}\right) \\
\omega=\inf & \left\{\alpha \mid R(\langle n, n, n\rangle)=O\left(n^{\alpha}\right)\right\}
\end{aligned}
$$

## Properties of this tensor

## Definition 1

The tensor corresponding to the multiplication of an $m \times n$ matrix by an $n \times p$ matrix is

$$
\langle m, n, p\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} a_{i k} \otimes b_{k j} \otimes c_{i j}
$$

## Property (Equation (3.2))

$\langle m, n, p\rangle \otimes\left\langle m^{\prime}, n^{\prime}, p^{\prime}\right\rangle \cong\left\langle m m^{\prime}, n n^{\prime}, p p^{\prime}\right\rangle$

## Properties of this tensor

## Definition 1

The tensor corresponding to the multiplication of an $m \times n$ matrix by an $n \times p$ matrix is

$$
\langle m, n, p\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} a_{i k} \otimes b_{k j} \otimes c_{i j}
$$

## Property (Equation (3.2))

$$
\langle m, n, p\rangle \otimes\left\langle m^{\prime}, n^{\prime}, p^{\prime}\right\rangle \cong\left\langle m m^{\prime}, n n^{\prime}, p p^{\prime}\right\rangle
$$

Proof:
$\langle m, n, p\rangle \otimes\left\langle m^{\prime}, n^{\prime}, p^{\prime}\right\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} \sum_{i^{\prime}=1}^{m^{\prime}} \sum_{j^{\prime}=1}^{p^{\prime}} \sum_{k^{\prime}=1}^{n^{\prime}}\left(a_{i k} \otimes a_{i^{\prime} k^{\prime}}^{\prime}\right) \otimes\left(b_{k j} \otimes b_{k^{\prime} j^{\prime}}^{\prime}\right) \otimes\left(c_{i j} \otimes c_{i^{\prime} j^{\prime}}^{\prime}\right)$,

## Properties of this tensor

## Definition 1

The tensor corresponding to the multiplication of an $m \times n$ matrix by an $n \times p$ matrix is

$$
\langle m, n, p\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} a_{i k} \otimes b_{k j} \otimes c_{i j}
$$

## Property (Equation (3.2))

$\langle m, n, p\rangle \otimes\left\langle m^{\prime}, n^{\prime}, p^{\prime}\right\rangle \cong\left\langle m m^{\prime}, n n^{\prime}, p p^{\prime}\right\rangle$
Proof:
$\langle m, n, p\rangle \otimes\left\langle m^{\prime}, n^{\prime}, p^{\prime}\right\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} \sum_{i^{\prime}=1}^{m^{\prime}} \sum_{j^{\prime}=1}^{p^{\prime}} \sum_{k^{\prime}=1}^{n^{\prime}}\left(\frac{a_{i k} \otimes a_{i^{\prime} k^{\prime}}^{\prime}}{a_{i i^{\prime} k k^{\prime}}}\right) \otimes(\underbrace{\left(b_{k j} \otimes b_{k^{\prime} j^{\prime}}^{\prime}\right.}_{b_{k k^{\prime} \prime j^{\prime}}}) \otimes(\underbrace{c_{i j} \otimes c_{i^{\prime} j^{\prime}}^{\prime}}_{c_{i i^{\prime}} j j^{\prime}})$

## Properties of this tensor

## Definition 1

The tensor corresponding to the multiplication of an $m \times n$ matrix by an $n \times p$ matrix is

$$
\langle m, n, p\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} a_{i k} \otimes b_{k j} \otimes c_{i j}
$$

## Property (Equation (3.2))

$$
\langle m, n, p\rangle \otimes\left\langle m^{\prime}, n^{\prime}, p^{\prime}\right\rangle \cong\left\langle m m^{\prime}, n n^{\prime}, p p^{\prime}\right\rangle
$$

$$
\begin{aligned}
& \text { Proof: } \\
& \langle m, n, p\rangle \otimes\left\langle m^{\prime}, n^{\prime}, p^{\prime}\right\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} \sum_{i^{\prime}=1}^{m^{\prime}} \sum_{j^{\prime}=1}^{p^{\prime}} \sum_{k^{\prime}=1}^{n^{\prime}}\left(\frac{a_{i k} \otimes a_{i^{\prime} k^{\prime}}^{\prime}}{a_{i i^{\prime} k k^{\prime}}}\right) \otimes(\underbrace{b_{k j} \otimes b_{k^{\prime} j^{\prime}}^{\prime}}_{b_{k k^{\prime} j j^{\prime}}}) \otimes(\underbrace{c_{i j} \otimes c_{i^{\prime} j^{\prime}}^{\prime}}_{c_{i i^{\prime} j j^{\prime}}})
\end{aligned}
$$

Intuitive explanation of $\langle n, n, n\rangle \otimes\langle n, n, n\rangle \cong\left\langle n^{2}, n^{2}, n^{2}\right\rangle$ :

## Properties of this tensor

## Definition 1

The tensor corresponding to the multiplication of an $m \times n$ matrix by an $n \times p$ matrix is

$$
\langle m, n, p\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} a_{i k} \otimes b_{k j} \otimes c_{i j} .
$$

## Property (Equation (3.2))

$$
\langle m, n, p\rangle \otimes\left\langle m^{\prime}, n^{\prime}, p^{\prime}\right\rangle \cong\left\langle m m^{\prime}, n n^{\prime}, p p^{\prime}\right\rangle
$$

$$
\begin{aligned}
& \text { Proof: } \\
& \langle m, n, p\rangle \otimes\left\langle m^{\prime}, n^{\prime}, p^{\prime}\right\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} \sum_{i^{\prime}=1}^{m^{\prime}} \sum_{j^{\prime}=1}^{p^{\prime}} \sum_{k^{\prime}=1}^{n^{\prime}}\left(\frac{a_{i k} \otimes a_{i^{\prime} k^{\prime}}^{\prime}}{a_{i i^{\prime} k k^{\prime}}}\right) \otimes(\underbrace{b_{k j} \otimes b_{k^{\prime} j^{\prime}}^{\prime}}_{b_{k k^{\prime} j j^{\prime}}}) \otimes(\underbrace{c_{i j} \otimes c_{i^{\prime} j^{\prime}}^{\prime}}_{c_{i i^{\prime} j j^{\prime}}})
\end{aligned}
$$

Intuitive explanation of $\langle n, n, n\rangle \otimes\langle n, n, n\rangle \cong\left\langle n^{2}, n^{2}, n^{2}\right\rangle$ :
$\langle n, n, n\rangle$ : product of two $n \times n$ matrices, each entry being an element in $\mathbb{F}$

## Properties of this tensor

## Definition 1

The tensor corresponding to the multiplication of an $m \times n$ matrix by an $n \times p$ matrix is

$$
\langle m, n, p\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} a_{i k} \otimes b_{k j} \otimes c_{i j} .
$$

## Property (Equation (3.2))

$$
\langle m, n, p\rangle \otimes\left\langle m^{\prime}, n^{\prime}, p^{\prime}\right\rangle \cong\left\langle m m^{\prime}, n n^{\prime}, p p^{\prime}\right\rangle
$$

$$
\begin{aligned}
& \text { Proof: } \\
& \langle m, n, p\rangle \otimes\left\langle m^{\prime}, n^{\prime}, p^{\prime}\right\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} \sum_{i^{\prime}=1}^{m^{\prime}} \sum_{j^{\prime}=1}^{p^{\prime}} \sum_{k^{\prime}=1}^{n^{\prime}}\left(\frac{a_{i k} \otimes a_{i^{\prime} k^{\prime}}^{\prime}}{a_{i i^{\prime} k k^{\prime}}}\right) \otimes(\underbrace{b_{k j} \otimes b_{k^{\prime} j^{\prime}}^{\prime}}_{b_{k k^{\prime} j j^{\prime}}}) \otimes(\underbrace{c^{\prime}}_{\left.c_{i i^{\prime} j j^{\prime}}^{c_{i j} \otimes c_{i^{\prime} j^{\prime}}^{\prime}}\right)})
\end{aligned}
$$

Intuitive explanation of $\langle n, n, n\rangle \otimes\langle n, n, n\rangle \cong\left\langle n^{2}, n^{2}, n^{2}\right\rangle$ :
$\langle n, n, n\rangle$ : product of two $n \times n$ matrices, each entry being an element in $\mathbb{F}$
$\langle n, n, n\rangle \otimes\langle n, n, n\rangle$ : product of two $n \times n$ matrices, each entry being an $n \times n$ matrix

## Properties of this tensor

## Definition 1

The tensor corresponding to the multiplication of an $m \times n$ matrix by an $n \times p$ matrix is

$$
\langle m, n, p\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} a_{i k} \otimes b_{k j} \otimes c_{i j} .
$$

## Property (Equation (3.2))

$\langle m, n, p\rangle \otimes\left\langle m^{\prime}, n^{\prime}, p^{\prime}\right\rangle \cong\left\langle m m^{\prime}, n n^{\prime}, p p^{\prime}\right\rangle$
Proof:
$\langle m, n, p\rangle \otimes\left\langle m^{\prime}, n^{\prime}, p^{\prime}\right\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} \sum_{i^{\prime}=1}^{m^{\prime}} \sum_{j^{\prime}=1}^{p^{\prime}} \sum_{k^{\prime}=1}^{n^{\prime}}(\underbrace{a_{i k} \otimes a_{i^{\prime} k^{\prime}}^{\prime}}_{a_{i i^{\prime} k k^{\prime}}}) \otimes(\underbrace{\left(b_{k j} \otimes b_{k^{\prime} j^{\prime}}^{\prime}\right.}_{b_{k k^{\prime} j j^{\prime}}}) \otimes(\underbrace{c_{i j} \otimes c_{i^{\prime} j^{\prime}}^{\prime}}_{i i^{\prime} j j^{\prime}})$
Intuitive explanation of $\langle n, n, n\rangle \otimes\langle n, n, n\rangle \cong\left\langle n^{2}, n^{2}, n^{2}\right\rangle$ :
$\langle n, n, n\rangle$ : product of two $n \times n$ matrices, each entry being an element in $\mathbb{F}$
$\langle n, n, n\rangle \otimes\langle n, n, n\rangle$ : product of two $n \times n$ matrices, each entry being an $n \times n$ matrix
$=$ product of two $n^{2} \times n^{2}$ matrices over $\mathbb{F}$

## Properties of this tensor

## Definition 1

The tensor corresponding to the multiplication of an $m \times n$ matrix by an $n \times p$ matrix is

$$
\langle m, n, p\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} a_{i k} \otimes b_{k j} \otimes c_{i j} .
$$

## Property (Equation (3.2))

$$
\langle m, n, p\rangle \otimes\left\langle m^{\prime}, n^{\prime}, p^{\prime}\right\rangle \cong\left\langle m m^{\prime}, n n^{\prime}, p p^{\prime}\right\rangle
$$

$$
\begin{aligned}
& \text { Proof: } \\
& \langle m, n, p\rangle \otimes\left\langle m^{\prime}, n^{\prime}, p^{\prime}\right\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} \sum_{i^{\prime}=1}^{m^{\prime}} \sum_{j^{\prime}=1}^{p^{\prime}} \sum_{k^{\prime}=1}^{n^{\prime}}(\underbrace{a_{i k} \otimes a_{i^{\prime} k^{\prime}}^{\prime}}_{a_{i i^{\prime} k k^{\prime}}}) \otimes(\underbrace{b_{k j} \otimes b_{k^{\prime} j^{\prime}}^{\prime}}_{b_{k k^{\prime} j j^{\prime}}}) \otimes\left(c_{i i^{\prime} j j^{\prime}}^{c_{i j} \otimes c_{i^{\prime} j^{\prime}}^{\prime}}\right)
\end{aligned}
$$

Property: submultiplicativity of the rank (Equation (3.3), special case)

$$
R\left(\left\langle m m^{\prime}, n n^{\prime}, p p^{\prime}\right\rangle\right) \leq R(\langle m, n, p\rangle) \times R\left(\left\langle m^{\prime}, n^{\prime}, p^{\prime}\right\rangle\right)
$$

## Properties of this tensor

## Definition 1

The tensor corresponding to the multiplication of an $m \times n$ matrix by an $n \times p$ matrix is

$$
\langle m, n, p\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} a_{i k} \otimes b_{k j} \otimes c_{i j}
$$

Property (Equation (3.4))
$R(\langle m, n, p\rangle)=R(\langle m, p, n\rangle)=\cdots=R(\langle p, n, m\rangle)$
(by permuting the variables, which preserves the rank)

## Properties of this tensor

## Definition 1

The tensor corresponding to the multiplication of an $m \times n$ matrix by an $n \times p$ matrix is

$$
\langle m, n, p\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} a_{i k} \otimes b_{k j} \otimes c_{i j}
$$

Property (Equation (3.4))
$R(\langle m, n, p\rangle)=R(\langle m, p, n\rangle)=\cdots=R(\langle p, n, m\rangle)$
(by permuting the variables, which preserves the rank)
Consequence: $\quad R\left(\left\langle n, n, n^{2}\right\rangle\right)=R\left(\left\langle n, n^{2}, n\right\rangle\right)$

## Properties of this tensor

## Definition 1

The tensor corresponding to the multiplication of an $m \times n$ matrix by an $n \times p$ matrix is

$$
\langle m, n, p\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} a_{i k} \otimes b_{k j} \otimes c_{i j} .
$$

Property (Equation (3.4))
$R(\langle m, n, p\rangle)=R(\langle m, p, n\rangle)=\cdots=R(\langle p, n, m\rangle)$
(by permuting the variables, which preserves the rank)
Consequence: $\quad R\left(\left\langle n, n, n^{2}\right\rangle\right)=R\left(\left\langle n, n^{2}, n\right\rangle\right)$
$n \times n$ matrix by $n \times n^{2}$ matrix $n \times n^{2}$ matrix by $n^{2} \times n$ matrix

## Properties of this tensor

## Definition 1

The tensor corresponding to the multiplication of an $m \times n$ matrix by an $n \times p$ matrix is

$$
\langle m, n, p\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} a_{i k} \otimes b_{k j} \otimes c_{i j}
$$

Property (Equation (3.4))
$R(\langle m, n, p\rangle)=R(\langle m, p, n\rangle)=\cdots=R(\langle p, n, m\rangle)$
(by permuting the variables, which preserves the rank)
Consequence: $\quad R\left(\left\langle n, n, n^{2}\right\rangle\right)=R\left(\left\langle n, n^{2}, n\right\rangle\right)$
$n \times n$ matrix by $n \times n^{2}$ matrix $n \times n^{2}$ matrix by $n^{2} \times n$ matrix
same (bilinear) complexity!

## The first Inequality

## Remember:

## Proposition 1

Let $m$ and $t$ be any positive integers. Suppose that there exists a bilinear algorithm that computes the product of two $m \times m$ matrices with bilinear complexity $t$. Then

$$
\omega \leq \log _{m}(t)
$$

In short: $\quad \mathcal{C}^{b i l}(m) \leq t \Longrightarrow \omega \leq \log _{m}(t)$

## The first Inequality

## Remember:

## Proposition 1

Let $m$ and $t$ be any positive integers. Suppose that there exists a bilinear algorithm that computes the product of two $m \times m$ matrices with bilinear complexity $t$. Then

$$
\omega \leq \log _{m}(t)
$$

In short: $\quad \mathcal{C}^{b i l}(m) \leq t \Longrightarrow \omega \leq \log _{m}(t) \quad$ or $\quad \mathcal{C}^{b i l}(m) \leq t \Longrightarrow m^{\omega} \leq t$

## The first Inequality

## Remember:

## Proposition 1

Let $m$ and $t$ be any positive integers. Suppose that there exists a bilinear algorithm that computes the product of two $m \times m$ matrices with bilinear complexity $t$. Then

$$
\omega \leq \log _{m}(t)
$$

In short: $\mathcal{C}^{b i l}(m) \leq t \Longrightarrow \omega \leq \log _{m}(t) \quad$ or $\quad \mathcal{C}^{b i l}(m) \leq t \Longrightarrow m^{\omega} \leq t$
In our new terminology: $R(\langle m, m, m\rangle) \leq t \Longrightarrow m^{\omega} \leq t$

## The first Inequality

## Remember:

## Proposition 1

Let $m$ and $t$ be any positive integers. Suppose that there exists a bilinear algorithm that computes the product of two $m \times m$ matrices with bilinear complexity $t$. Then

$$
\omega \leq \log _{m}(t)
$$

In short: $\mathcal{C}^{b i l}(m) \leq t \Longrightarrow \omega \leq \log _{m}(t) \quad$ or $\quad \mathcal{C}^{b i l}(m) \leq t \Longrightarrow m^{\omega} \leq t$
In our new terminology: $R(\langle m, m, m\rangle) \leq t \Longrightarrow m^{\omega} \leq t$

## Theorem 1

$R(\langle m, n, p\rangle) \leq t \Longrightarrow(m n p)^{\omega / 3} \leq t$

## The first Inequality

## Remember:

## Proposition 1

Let $m$ and $t$ be any positive integers. Suppose that there exists a bilinear algorithm that computes the product of two $m \times m$ matrices with bilinear complexity $t$. Then

$$
\omega \leq \log _{m}(t)
$$

In short: $\mathcal{C}^{b i l}(m) \leq t \Longrightarrow \omega \leq \log _{m}(t) \quad$ or $\quad \mathcal{C}^{b i l}(m) \leq t \Longrightarrow m^{\omega} \leq t$
In our new terminology: $R(\langle m, m, m\rangle) \leq t \Longrightarrow m^{\omega} \leq t$

## Theorem 1

$R(\langle m, n, p\rangle) \leq t \Longrightarrow(m n p)^{\omega / 3} \leq t$
Proof: consider $T=\langle m, n, p\rangle \otimes\langle n, p, m\rangle \otimes\langle p, m, n\rangle$

## The first Inequality

## Remember:

## Proposition 1

Let $m$ and $t$ be any positive integers. Suppose that there exists a bilinear algorithm that computes the product of two $m \times m$ matrices with bilinear complexity $t$. Then

$$
\omega \leq \log _{m}(t)
$$

In short: $\mathcal{C}^{b i l}(m) \leq t \Longrightarrow \omega \leq \log _{m}(t) \quad$ or $\quad \mathcal{C}^{b i l}(m) \leq t \Longrightarrow m^{\omega} \leq t$
In our new terminology: $R(\langle m, m, m\rangle) \leq t \Longrightarrow m^{\omega} \leq t$

## Theorem 1

$R(\langle m, n, p\rangle) \leq t \Longrightarrow(m n p)^{\omega / 3} \leq t$
Proof: consider $T=\langle m, n, p\rangle \otimes\langle n, p, m\rangle \otimes\langle p, m, n\rangle$

$$
T \cong\langle m n p, m n p, m n p\rangle
$$

## The first Inequality

## Remember:

## Proposition 1

Let $m$ and $t$ be any positive integers. Suppose that there exists a bilinear algorithm that computes the product of two $m \times m$ matrices with bilinear complexity $t$. Then

$$
\omega \leq \log _{m}(t)
$$

In short: $\mathcal{C}^{b i l}(m) \leq t \Longrightarrow \omega \leq \log _{m}(t) \quad$ or $\quad \mathcal{C}^{b i l}(m) \leq t \Longrightarrow m^{\omega} \leq t$
In our new terminology: $R(\langle m, m, m\rangle) \leq t \Longrightarrow m^{\omega} \leq t$

## Theorem 1

$R(\langle m, n, p\rangle) \leq t \Longrightarrow(m n p)^{\omega / 3} \leq t$
Proof: consider $T=\langle m, n, p\rangle \otimes\langle n, p, m\rangle \otimes\langle p, m, n\rangle$

$$
\begin{aligned}
& T \cong\langle m n p, m n p, m n p\rangle \\
& R(T) \leq R(\langle m, n, p\rangle) \times R(\langle n, p, m\rangle) \times R(\langle p, m, n\rangle)
\end{aligned}
$$

## The first Inequality

## Remember:

## Proposition 1

Let $m$ and $t$ be any positive integers. Suppose that there exists a bilinear algorithm that computes the product of two $m \times m$ matrices with bilinear complexity $t$. Then

$$
\omega \leq \log _{m}(t)
$$

In short: $\mathcal{C}^{b i l}(m) \leq t \Longrightarrow \omega \leq \log _{m}(t) \quad$ or $\quad \mathcal{C}^{b i l}(m) \leq t \Longrightarrow m^{\omega} \leq t$
In our new terminology: $R(\langle m, m, m\rangle) \leq t \Longrightarrow m^{\omega} \leq t$

## Theorem 1

$R(\langle m, n, p\rangle) \leq t \Longrightarrow(m n p)^{\omega / 3} \leq t$
Proof: consider $T=\langle m, n, p\rangle \otimes\langle n, p, m\rangle \otimes\langle p, m, n\rangle$

$$
\begin{aligned}
& T \cong\langle m n p, m n p, m n p\rangle \\
& R(T) \leq R(\langle m, n, p\rangle) \times R(\langle n, p, m\rangle) \times R(\langle p, m, n\rangle)=R(\langle m, n, p\rangle)^{3}
\end{aligned}
$$

## The first Inequality

## Remember:

## Proposition 1

Let $m$ and $t$ be any positive integers. Suppose that there exists a bilinear algorithm that computes the product of two $m \times m$ matrices with bilinear complexity $t$. Then

$$
\omega \leq \log _{m}(t)
$$

In short: $\mathcal{C}^{b i l}(m) \leq t \Longrightarrow \omega \leq \log _{m}(t) \quad$ or $\quad \mathcal{C}^{b i l}(m) \leq t \Longrightarrow m^{\omega} \leq t$
In our new terminology: $R(\langle m, m, m\rangle) \leq t \Longrightarrow m^{\omega} \leq t$

## Theorem 1

$R(\langle m, n, p\rangle) \leq t \Longrightarrow(m n p)^{\omega / 3} \leq t$
Proof: consider $T=\langle m, n, p\rangle \otimes\langle n, p, m\rangle \otimes\langle p, m, n\rangle$

$$
\begin{aligned}
& T \cong\langle m n p, m n p, m n p\rangle \\
& R(T) \leq R(\langle m, n, p\rangle) \times R(\langle n, p, m\rangle) \times R(\langle p, m, n\rangle)=R(\langle m, n, p\rangle)^{3} \leq t^{3}
\end{aligned}
$$

## The first Inequality

## Remember:

## Proposition 1

Let $m$ and $t$ be any positive integers. Suppose that there exists a bilinear algorithm that computes the product of two $m \times m$ matrices with bilinear complexity $t$. Then

$$
\omega \leq \log _{m}(t)
$$

In short: $\mathcal{C}^{b i l}(m) \leq t \Longrightarrow \omega \leq \log _{m}(t) \quad$ or $\quad \mathcal{C}^{b i l}(m) \leq t \Longrightarrow m^{\omega} \leq t$
In our new terminology: $R(\langle m, m, m\rangle) \leq t \Longrightarrow m^{\omega} \leq t$

## Theorem 1

$R(\langle m, n, p\rangle) \leq t \Longrightarrow(m n p)^{\omega / 3} \leq t$
Proof: consider $T=\langle m, n, p\rangle \otimes\langle n, p, m\rangle \otimes\langle p, m, n\rangle$

$$
\begin{aligned}
& T \cong\langle m n p, m n p, m n p\rangle \\
& R(T) \leq R(\langle m, n, p\rangle) \times R(\langle n, p, m\rangle) \times R(\langle p, m, n\rangle)=R(\langle m, n, p\rangle)^{3} \leq t^{3} \\
& \quad \Longrightarrow R(\langle m n p, m n p, m n p\rangle) \leq t^{3}
\end{aligned}
$$

## The first Inequality

## Remember:

## Proposition 1

Let $m$ and $t$ be any positive integers. Suppose that there exists a bilinear algorithm that computes the product of two $m \times m$ matrices with bilinear complexity $t$. Then

$$
\omega \leq \log _{m}(t)
$$

In short: $\mathcal{C}^{b i l}(m) \leq t \Longrightarrow \omega \leq \log _{m}(t) \quad$ or $\quad \mathcal{C}^{b i l}(m) \leq t \Longrightarrow m^{\omega} \leq t$
In our new terminology: $R(\langle m, m, m\rangle) \leq t \Longrightarrow m^{\omega} \leq t$

## Theorem 1

$R(\langle m, n, p\rangle) \leq t \Longrightarrow(m n p)^{\omega / 3} \leq t$
Proof: consider $T=\langle m, n, p\rangle \otimes\langle n, p, m\rangle \otimes\langle p, m, n\rangle$

$$
\begin{aligned}
& T \cong\langle m n p, m n p, m n p\rangle \\
& R(T) \leq R(\langle m, n, p\rangle) \times R(\langle n, p, m\rangle) \times R(\langle p, m, n\rangle)=R(\langle m, n, p\rangle)^{3} \leq t^{3} \\
& \quad \Longrightarrow R(\langle m n p, m n p, m n p\rangle) \leq t^{3} \quad \stackrel{\text { Prop } 1}{\Longrightarrow}(m n p)^{\omega} \leq t^{3} \quad \text { QED }
\end{aligned}
$$

## The first Inequality: applications

## Theorem 1 <br> $R(\langle m, n, p\rangle) \leq t \Longrightarrow(m n p)^{\omega / 3} \leq t$

Strassen 1969:

$$
R(\langle 2,2,2\rangle) \leq 7 \Longrightarrow \omega<2.81
$$

## The first Inequality: applications

## Theorem 1 <br> $R(\langle m, n, p\rangle) \leq t \Longrightarrow(m n p)^{\omega / 3} \leq t$

Strassen 1969:

$$
\begin{aligned}
& R(\langle 2,2,2\rangle) \leq 7 \Longrightarrow \omega<2.81 \\
& R(\langle 2,3,3\rangle) \leq 15 \Longrightarrow \omega<2.82
\end{aligned}
$$

## The first Inequality: applications

> Theorem 1 $$
R(\langle m, n, p\rangle) \leq t \Longrightarrow(m n p)^{\omega / 3} \leq t
$$

Strassen 1969:

$$
\begin{aligned}
& R(\langle 2,2,2\rangle) \leq 7 \Longrightarrow \omega<2.81 \\
& R(\langle 2,3,3\rangle) \leq 15 \Longrightarrow \omega<2.82
\end{aligned}
$$

Laderman 1976:

$$
R(\langle 3,3,3\rangle) \leq 23 \Longrightarrow \omega<2.86
$$

## The first Inequality: applications

$$
\begin{aligned}
& \text { Theorem } 1 \\
& \qquad R(\langle m, n, p\rangle) \leq t \Longrightarrow(m n p)^{\omega / 3} \leq t
\end{aligned}
$$

Strassen 1969:

$$
\begin{aligned}
& R(\langle 2,2,2\rangle) \leq 7 \Longrightarrow \omega<2.81 \\
& R(\langle 2,3,3\rangle) \leq 15 \Longrightarrow \omega<2.82
\end{aligned}
$$

Laderman 1976:
Pan 1978:
$R(\langle 3,3,3\rangle) \leq 23 \Longrightarrow \omega<2.86$
$R(\langle 70,70,70\rangle) \leq 143640 \Longrightarrow \omega<2.795 \ldots$ using "trilinear aggregation"

## The first Inequality: applications

> Theorem 1 $$
R(\langle m, n, p\rangle) \leq t \Longrightarrow(m n p)^{\omega / 3} \leq t
$$

Strassen 1969:

$$
\begin{aligned}
& R(\langle 2,2,2\rangle) \leq 7 \Longrightarrow \omega<2.81 \\
& R(\langle 2,3,3\rangle) \leq 15 \Longrightarrow \omega<2.82
\end{aligned}
$$

Laderman 1976:
Pan 1978:
$R(\langle 3,3,3\rangle) \leq 23 \Longrightarrow \omega<2.86$
$R(\langle 70,70,70\rangle) \leq 143640 \Longrightarrow \omega<2.795 \ldots$ using "trilinear aggregation"
Pan 1979:
$R(\langle ?, ?, ?\rangle) \leq ? \Longrightarrow \omega<2.781 \ldots$

## History of the main improvements on the exponent of square matrix multiplication

| Upper bound | Year | Authors |
| :--- | :--- | :--- |
| $\omega \leq 3$ |  |  |
| $\omega<2.81$ | 1969 | Strassen |
| $\omega<2.79$ | 1979 | Pan |
| $\omega<2.78$ | 1979 | Bini, Capovani, Romani and Lotti |
| $\omega<2.55$ | 1981 | Schönhage |
| $\omega<2.53$ | 1981 | Pan |
| $\omega<2.52$ | 1982 | Romani |
| $\omega<2.50$ | 1982 | Coppersmith and Winograd |
| $\omega<2.48$ | 1986 | Strassen |
| $\omega<2.376$ | 1987 | Coppersmith and Winograd |
| $\omega<2.373$ | 2010 | Stothers |
| $\omega<2.3729$ | 2012 | Vassilevska Williams |
| $\omega<2.3728639$ | 2014 | LG |

## General Tensors (Section 3.1)

Consider three vector spaces $U, V$ and $W$ over $\mathbb{F}$

## General Tensors (Section 3.1)

Consider three vector spaces $U, V$ and $W$ over $\mathbb{F}$
Take bases of $U, V$ and $W$

$$
\begin{aligned}
U & =\operatorname{span}\left\{x_{1}, \ldots, x_{\operatorname{dim}(U)}\right\} \\
V & =\operatorname{span}\left\{y_{1}, \ldots, y_{\operatorname{dim}(V)}\right\} \\
W & =\operatorname{span}\left\{z_{1}, \ldots, z_{\operatorname{dim}(W)}\right\}
\end{aligned}
$$

## General Tensors (Section 3.1)

Consider three vector spaces $U, V$ and $W$ over $\mathbb{F}$
Take bases of $U, V$ and $W: \quad U=\operatorname{span}\left\{x_{1}, \ldots, x_{\operatorname{dim}(U)}\right\}$

$$
\begin{aligned}
V & =\operatorname{span}\left\{y_{1}, \ldots, y_{\operatorname{dim}(V)}\right\} \\
W & =\operatorname{span}\left\{z_{1}, \ldots, z_{\operatorname{dim}(W)}\right\}
\end{aligned}
$$

A tensor over $(U, V, W)$ is an element of $U \otimes V \otimes W$

## General Tensors (Section 3.1)

Consider three vector spaces $U, V$ and $W$ over $\mathbb{F}$
Take bases of $U, V$ and $W: \quad U=\operatorname{span}\left\{x_{1}, \ldots, x_{\operatorname{dim}(U)}\right\}$

$$
\begin{aligned}
V & =\operatorname{span}\left\{y_{1}, \ldots, y_{\operatorname{dim}(V)}\right\} \\
W & =\operatorname{span}\left\{z_{1}, \ldots, z_{\operatorname{dim}(W)}\right\}
\end{aligned}
$$

A tensor over $(U, V, W)$ is an element of $U \otimes V \otimes W$
i.e., a formal sum $T=\sum_{u=1}^{\operatorname{dim}(U)} \sum_{v=1}^{\operatorname{dim}(V)} \sum_{w=1}^{\operatorname{dim}(W)} d_{u v w} x_{u} \otimes y_{v} \otimes z_{w}$

## General Tensors (Section 3.1)

Consider three vector spaces $U, V$ and $W$ over $\mathbb{F}$
Take bases of $U, V$ and $W: \quad U=\operatorname{span}\left\{x_{1}, \ldots, x_{\operatorname{dim}(U)}\right\}$

$$
\begin{aligned}
V & =\operatorname{span}\left\{y_{1}, \ldots, y_{\operatorname{dim}(V)}\right\} \\
W & =\operatorname{span}\left\{z_{1}, \ldots, z_{\operatorname{dim}(W)}\right\}
\end{aligned}
$$

A tensor over $(U, V, W)$ is an element of $U \otimes V \otimes W$
i.e., a formal sum $T=\sum_{u=1}^{\operatorname{dim}(U)} \sum_{v=1}^{\operatorname{dim}(V)} \sum_{w=1}^{\operatorname{dim}(W)} \underbrace{d_{u v w}}_{\in \mathbb{F}} x_{u} \otimes y_{v} \otimes z_{w}$

## General Tensors (Section 3.1)

Consider three vector spaces $U, V$ and $W$ over $\mathbb{F}$
Take bases of $U, V$ and $W: \quad U=\operatorname{span}\left\{x_{1}, \ldots, x_{\operatorname{dim}(U)}\right\}$

$$
\begin{aligned}
V & =\operatorname{span}\left\{y_{1}, \ldots, y_{\operatorname{dim}(V)}\right\} \\
W & =\operatorname{span}\left\{z_{1}, \ldots, z_{\operatorname{dim}(W)}\right\}
\end{aligned}
$$

A tensor over $(U, V, W)$ is an element of $U \otimes V \otimes W$ i.e., a formal sum $T=\sum_{u=1}^{\operatorname{dim}(U)} \sum_{v=1}^{\operatorname{dim}(V)} \sum_{w=1}^{\operatorname{dim}(W)} \frac{d_{u v w}}{\in \mathbb{F}} x_{u} \otimes y_{v} \otimes z_{w}$
"a three-dimension array with $\operatorname{dim}(U) \times \operatorname{dim}(V) \times \operatorname{dim}(W)$ entries in $\mathbb{F}^{\prime \prime}$

## General Tensors (Section 3.1)

A tensor over $(U, V, W)$ is an element of $U \otimes V \otimes W$

$$
\operatorname{dim}(U) \operatorname{dim}(V) \operatorname{dim}(W)
$$

i.e., a formal sum $T=\sum_{u=1} \sum_{v=1} \sum_{w=1} \underset{\in \mathbb{F}}{d_{u v w}} x_{u} \otimes y_{v} \otimes z_{w}$

## General Tensors (Section 3.1)

A tensor over $(U, V, W)$ is an element of $U \otimes V \otimes W$

$$
\operatorname{dim}(U) \operatorname{dim}(V) \operatorname{dim}(W)
$$

i.e., a formal sum $T=\sum_{u=1} \sum_{v=1} \sum_{w=1} \underset{\in \mathbb{F}}{d_{u v w}} x_{u} \otimes y_{v} \otimes z_{w}$

## Definition 1

The tensor corresponding to the multiplication of an $m \times n$ matrix by an $n \times p$ matrix is

$$
\langle m, n, p\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} a_{i k} \otimes b_{k j} \otimes c_{i j}
$$

## General Tensors (Section 3.1)

A tensor over $(U, V, W)$ is an element of $U \otimes V \otimes W$

$$
\operatorname{dim}(U) \operatorname{dim}(V) \operatorname{dim}(W)
$$

i.e., a formal sum $T=\sum_{u=1} \sum_{v=1} \sum_{w=1} \underset{\in \mathbb{F}}{d_{u v w}} x_{u} \otimes y_{v} \otimes z_{w}$

## Definition 1

The tensor corresponding to the multiplication of an $m \times n$ matrix by an $n \times p$ matrix is

$$
\langle m, n, p\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} a_{i k} \otimes b_{k j} \otimes c_{i j}
$$

## General Tensors (Section 3.1)

A tensor over $(U, V, W)$ is an element of $U \otimes V \otimes W$

$$
\operatorname{dim}(U) \operatorname{dim}(V) \operatorname{dim}(W)
$$

i.e., a formal sum $T=\sum_{u=1} \sum_{v=1} \sum_{w=1} \underset{\in \mathbb{F}}{d_{u v w}} x_{u} \otimes y_{v} \otimes z_{w}$

$$
\operatorname{dim}(U)=m n, \operatorname{dim}(V)=n p \text { and } \operatorname{dim}(W)=m p
$$

## Definition 1

The tensor corresponding to the multiplication of an $m \times n$ matrix by an $n \times p$ matrix is

$$
\langle m, n, p\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} a_{i k} \otimes b_{k j} \otimes c_{i j} .
$$

## General Tensors (Section 3.1)

A tensor over $(U, V, W)$ is an element of $U \otimes V \otimes W$

$$
\operatorname{dim}(U) \operatorname{dim}(V) \operatorname{dim}(W)
$$

i.e., a formal sum $T=\sum_{u=1} \sum_{v=1} \sum_{w=1} \underset{\in \mathbb{F}}{d_{u v w}} x_{u} \otimes y_{v} \otimes z_{w}$

$$
\begin{aligned}
& \operatorname{dim}(U)=m n, \operatorname{dim}(V)=n p \text { and } \operatorname{dim}(W)=m p \\
& U=\operatorname{span}\left\{\left\{a_{i k}\right\}_{1 \leq i \leq m, 1 \leq k \leq n}\right\} \\
& V=\operatorname{span}\left\{\left\{b_{k^{\prime} j}\right\}_{1 \leq k^{\prime} \leq n, 1 \leq j \leq p}\right\} \\
& W=\operatorname{span}\left\{\left\{c_{i^{\prime} j^{\prime}}\right\}_{1 \leq i^{\prime} \leq m, 1 \leq j^{\prime} \leq p}\right\}
\end{aligned}
$$

## Definition 1

The tensor corresponding to the multiplication of an $m \times n$ matrix by an $n \times p$ matrix is

$$
\langle m, n, p\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} a_{i k} \otimes b_{k j} \otimes c_{i j}
$$

## General Tensors (Section 3.1)

A tensor over $(U, V, W)$ is an element of $U \otimes V \otimes W$

$$
\operatorname{dim}(U) \operatorname{dim}(V) \operatorname{dim}(W)
$$

i.e., a formal sum $T=\sum_{u=1} \sum_{v=1} \sum_{w=1} \underbrace{d_{u v w}}_{\in \mathbb{F}} x_{u} \otimes y_{v} \otimes z_{w}$

$$
\left.\begin{array}{l}
\operatorname{dim}(U)=m n, \operatorname{dim}(V)=n p \text { and } \operatorname{dim}(W)=m p \\
U=\operatorname{span}\left\{\left\{a_{i k}\right\}_{1 \leq i \leq m, 1 \leq k \leq n}\right\} \\
V=\operatorname{span}\left\{\left\{b_{k^{\prime} j}\right\}_{1 \leq k^{\prime} \leq n, 1 \leq j \leq p}\right\} \\
W=\operatorname{span}\left\{\left\{c_{\prime^{\prime}, j^{\prime}}\right\}_{1 \leq j^{\prime} \leq m, 1 \leq i^{\prime} \leq n}\right.
\end{array}\right\} \begin{array}{ll}
d_{i k k^{\prime} j^{\prime} j^{\prime} j^{\prime}}= \begin{cases}1 & \text { if } i=i^{\prime}, j=j^{\prime}, k=k^{\prime} \\
0 & \text { otherwise }\end{cases}
\end{array}
$$

## Definition 1

The tensor corresponding to the multiplication of an $m \times n$ matrix by an $n \times p$ matrix is

$$
\langle m, n, p\rangle=\sum_{i=1}^{m} \sum_{j=1}^{p} \sum_{k=1}^{n} a_{i k} \otimes b_{k j} \otimes c_{i j} .
$$

## The rank of a tensor (Section 3.2)

## Definition 2

Let $T$ be a tensor over $(U, V, W)$. The rank of $T$, denoted $R(T)$, is the minimal integer $t$ for which $T$ can be written as

$$
T=\sum_{s=1}^{t}\left[\left(\sum_{u=1}^{\operatorname{dim}(U)} \alpha_{s u} x_{u}\right) \otimes\left(\sum_{v=1}^{\operatorname{dim}(V)} \beta_{s v} y_{v}\right) \otimes\left(\sum_{w=1}^{\operatorname{dim}(W)} \gamma_{s w} z_{w}\right)\right]
$$

for some constants $\alpha_{s u}, \beta_{s v}, \gamma_{s w}$ in $\mathbb{F}$.

## The rank of a tensor (Section 3.2)

## Definition 2

Let $T$ be a tensor over $(U, V, W)$. The rank of $T$, denoted $R(T)$, is the minimal integer $t$ for which $T$ can be written as

$$
T=\sum_{s=1}^{t}\left[\left(\sum_{u=1}^{\operatorname{dim}(U)} \alpha_{s u} x_{u}\right) \otimes\left(\sum_{v=1}^{\operatorname{dim}(V)} \beta_{s v} y_{v}\right) \otimes\left(\sum_{w=1}^{\operatorname{dim}(W)} \gamma_{s w} z_{w}\right)\right]
$$

for some constants $\alpha_{s u}, \beta_{s v}, \gamma_{s w}$ in $\mathbb{F}$.
lin. comb. of the $x_{u}$ 's
lin. comb. of the $y_{v}$ 's

## The rank of a tensor (Section 3.2)

## Definition 2

Let $T$ be a tensor over $(U, V, W)$. The rank of $T$, denoted $R(T)$, is the minimal integer $t$ for which $T$ can be written as

lin. comb. of the $y_{v}$ 's
lin. comb. of the $x_{u}{ }^{\text {'s }}$

## Overview of the Lectures

Fundamental techniques for fast matrix multiplication (1969~1987)
> Basics of bilinear complexity theory: exponent of matrix multiplication, Strassen's algorithm, bilinear algorithms
> First technique: tensor rank and recursion
$>$ Second technique: border rank
$>$ Third technique: the asymptotic sum inequality
$>$ Fourth technique: the laser method

Recent progress on matrix multiplication (1987~)
$>$ Laser method on powers of tensors
Lecture 2
> Other approaches
> Lower bounds
$>$ Rectangular matrix multiplication

## The border rank of a tensor (Section 4.1)

Let $\lambda$ be an indeterminate
$\mathbb{F}[\lambda]$ denotes the ring of polynomials in $\lambda$ with coefficients in $\mathbb{F}$

## Definition 3

Let $T$ be a tensor over $(U, V, W)$. The border rank of $T$, denoted $\underline{R}(T)$, is the minimal integer $t$ for which there exist an integer $c \geq 0$ and a tensor $T^{\prime \prime}$ such that $T$ can be written as
$\lambda^{c} T=\sum_{s=1}^{t}\left[\left(\sum_{u=1}^{\operatorname{dim}(U)} \alpha_{s u} x_{u}\right) \otimes\left(\sum_{v=1}^{\operatorname{dim}(V)} \beta_{s v} y_{v}\right) \otimes\left(\sum_{w=1}^{\operatorname{dim}(W)} \gamma_{s w} z_{w}\right)\right]+\lambda^{c+1} T^{\prime \prime}$,
for some constants $\alpha_{s u}, \beta_{s v}, \gamma_{s w}$ in $\mathbb{F}[\lambda]$.

## The border rank of a tensor (Section 4.1)

Let $\lambda$ be an indeterminate
$\mathbb{F}[\lambda]$ denotes the ring of polynomials in $\lambda$ with coefficients in $\mathbb{F}$

## Definition 3

Let $T$ be a tensor over $(U, V, W)$. The border rank of $T$, denoted $\underline{R}(T)$, is the minimal integer $t$ for which there exist an integer $c \geq 0$ and a tensor $T^{\prime \prime}$ such that $T$ can be written as
$\lambda^{c} T=\sum_{s=1}^{t}\left[\left[\left(\sum_{u=1}^{\operatorname{dim}(U)} \alpha_{s u} x_{u}\right)\right] \otimes\left(\sum_{v=1}^{\operatorname{dim}(V)} \beta_{s v} y_{v}\right) \otimes\left(\sum_{w=1}^{\operatorname{dim}(W)} \gamma_{s w} z_{w}\right)\right]+\lambda^{c+1} T^{\prime \prime}$,
for some cohstants $\alpha_{s u}, \beta_{s v}, \gamma_{s w}$ in $\mathbb{F}[\lambda]$.
lin. comb. of the $x_{u}$ 's
lin. comb. of the $y_{v}$ 's
lin. comb. of the $z_{w}$ 's

## The border rank of a tensor (Section 4.1)

Let $\lambda$ be an indeterminate
$\mathbb{F}[\lambda]$ denotes the ring of polynomials in $\lambda$ with coefficients in $\mathbb{F}$

## Definition 3

Let $T$ be a tensor over $(U, V, W)$. The border rank of $T$, denoted $\underline{R}(T)$, is the minimal integer $t$ for which there exist an integer $c \geq 0$ and a tensor $T^{\prime \prime}$ such that $T$ can be written as
$\lambda^{c} \Gamma=\sum_{s=1}^{t}\left[\left(\sum_{u=1}^{\operatorname{dim}(U)} \alpha_{s u} x_{u}\right) \otimes\left(\sum_{v=1}^{\operatorname{dim}(V)} \beta_{s v} y_{v}\right) \otimes\left(\sum_{w=1}^{\operatorname{dim}(W)} \gamma_{s w} z_{w}\right)\right]+\lambda^{c+1} T^{\prime \prime}$.
for some constants $\alpha_{s u}, \beta_{s v}, \gamma_{s w}$ in $\mathbb{F}[\lambda]$.

## The border rank of a tensor (Section 4.1)

Let $\lambda$ be an indeterminate
$\mathbb{F}[\lambda]$ denotes the ring of polynomials in $\lambda$ with coefficients in $\mathbb{F}$

## Definition 3

Let $T$ be a tensor over $(U, V, W)$. The border rank of $T$, denoted $\underline{R}(T)$, is the minimal integer $t$ for which there exist an integer $c \geq 0$ and a tensor $T^{\prime \prime}$ such that $T$ can be written as
$\lambda^{c} \Gamma=\sum_{s=1}^{t}\left[\left(\sum_{u=1}^{\operatorname{dim}(U)} \alpha_{s u} x_{u}\right) \otimes\left(\sum_{v=1}^{\operatorname{dim}(V)} \beta_{s v} y_{v}\right) \otimes\left(\sum_{w=1}^{\operatorname{dim}(W)} \gamma_{s w} z_{w}\right)\right]+\lambda^{c+1} T^{\prime \prime}$.
for some constants $\alpha_{s u}, \beta_{s v}, \gamma_{s w}$ in $\mathbb{F}[\lambda]$.

Obviously, $\underline{R}(T) \leq R(T)$ for any tensor $T$.

## Example

Construction by Bini, Capovani, Romani and Lotti (1979):

$$
\begin{aligned}
T_{\text {Bini }}= & \sum_{\substack{1 \leq i, j, k \leq 2 \\
(i, k) \neq(2,2)}} a_{i k} \otimes b_{k j} \otimes c_{i j} \\
= & a_{11} \otimes b_{11} \otimes c_{11}+a_{12} \otimes b_{21} \otimes c_{11}+a_{11} \otimes b_{12} \otimes c_{12} \\
& +a_{12} \otimes b_{22} \otimes c_{12}+a_{21} \otimes b_{11} \otimes c_{21}+a_{21} \otimes b_{12} \otimes c_{22}
\end{aligned}
$$

## Example

Construction by Bini, Capovani, Romani and Lotti (1979):

$$
\begin{aligned}
T_{\text {Bini }}= & \sum_{\substack{1 \leq i, j, k \leq 2 \\
(i, k) \neq(2,2)}} a_{i k} \otimes b_{k j} \otimes c_{i j} \\
= & a_{11} \otimes b_{11} \otimes c_{11}+a_{12} \otimes b_{21} \otimes c_{11}+a_{11} \otimes b_{12} \otimes c_{12} \\
& +a_{12} \otimes b_{22} \otimes c_{12}+a_{21} \otimes b_{11} \otimes c_{21}+a_{21} \otimes b_{12} \otimes c_{22}
\end{aligned}
$$

same as $\langle 2,2,2\rangle$, but without $a_{22} \otimes b_{21} \otimes c_{21}$ and $a_{22} \otimes b_{22} \otimes c_{22}$

## Example

Construction by Bini, Capovani, Romani and Lotti (1979):

$$
\begin{aligned}
T_{\text {Bini }}= & \sum_{\substack{1 \leq i, j, k \leq 2 \\
(i, k) \neq(2,2)}} a_{i k} \otimes b_{k j} \otimes c_{i j} \\
= & a_{11} \otimes b_{11} \otimes c_{11}+a_{12} \otimes b_{21} \otimes c_{11}+a_{11} \otimes b_{12} \otimes c_{12} \\
& +a_{12} \otimes b_{22} \otimes c_{12}+a_{21} \otimes b_{11} \otimes c_{21}+a_{21} \otimes b_{12} \otimes c_{22}
\end{aligned}
$$

same as $\langle 2,2,2\rangle$, but $\underbrace{\text { without } a_{22} \otimes b_{21} \otimes c_{21} \text { and } a_{22} \otimes b_{22} \otimes c_{22}}_{a_{22}=0}$,

## Example

Construction by Bini, Capovani, Romani and Lotti (1979):

$$
\begin{aligned}
T_{\text {Bini }}= & \sum_{\substack{1 \leq i, j, k \leq 2 \\
(i, k) \neq(2,2)}} a_{i k} \otimes b_{k j} \otimes c_{i j} \\
= & a_{11} \otimes b_{11} \otimes c_{11}+a_{12} \otimes b_{21} \otimes c_{11}+a_{11} \otimes b_{12} \otimes c_{12} \\
& +a_{12} \otimes b_{22} \otimes c_{12}+a_{21} \otimes b_{11} \otimes c_{21}+a_{21} \otimes b_{12} \otimes c_{22}
\end{aligned}
$$

same as $\langle 2,2,2\rangle$, but $\underbrace{\text { without } a_{22} \otimes b_{21} \otimes c_{21} \text { and } a_{22} \otimes b_{22} \otimes c_{22}}_{a_{22}=0}$,
$T_{\text {Bini }}$ represents $\left(\begin{array}{cc}a_{11} & a_{12} \\ a_{21} & 0\end{array}\right) \times\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)$

## Example

Construction by Bini, Capovani, Romani and Lotti (1979):

$$
\begin{aligned}
T_{\text {Bini }}= & \sum_{\substack{1 \leq i, j, k \leq 2 \\
(i, k) \neq(2,2)}} a_{i k} \otimes b_{k j} \otimes c_{i j} \\
= & a_{11} \otimes b_{11} \otimes c_{11}+a_{12} \otimes b_{21} \otimes c_{11}+a_{11} \otimes b_{12} \otimes c_{12} \\
& +a_{12} \otimes b_{22} \otimes c_{12}+a_{21} \otimes b_{11} \otimes c_{21}+a_{21} \otimes b_{12} \otimes c_{22}
\end{aligned}
$$

same as $\langle 2,2,2\rangle$, but $\underbrace{\text { without } a_{22} \otimes b_{21} \otimes c_{21} \text { and } a_{22} \otimes b_{22} \otimes c_{22}}_{a_{22}=0}$,
$T_{\text {Bini }}$ represents $\left(\begin{array}{cc}a_{11} & a_{12} \\ a_{21} & 0\end{array}\right) \times\left(\begin{array}{cc}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right) \quad \square \square \square \square$

## Example

Construction by Bini, Capovani, Romani and Lotti (1979):

$$
\begin{aligned}
T_{\text {Bini }}= & \sum_{\substack{1 \leq i, j, k \leq 2 \\
(i, k) \neq(2,2)}} a_{i k} \otimes b_{k j} \otimes c_{i j} \\
= & a_{11} \otimes b_{11} \otimes c_{11}+a_{12} \otimes b_{21} \otimes c_{11}+a_{11} \otimes b_{12} \otimes c_{12} \\
& +a_{12} \otimes b_{22} \otimes c_{12}+a_{21} \otimes b_{11} \otimes c_{21}+a_{21} \otimes b_{12} \otimes c_{22}
\end{aligned}
$$

same as $\langle 2,2,2\rangle$, but $\underbrace{\text { without } a_{22} \otimes b_{21} \otimes c_{21} \text { and } a_{22} \otimes b_{22} \otimes c_{22}}_{a_{22}=0}$,

$$
T_{\text {Bini }} \text { represents }\left(\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & 0
\end{array}\right) \times\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right) \quad \square \times \square
$$

$$
R\left(T_{\mathrm{Bini}}\right)=6
$$

## Example

Construction by Bini, Capovani, Romani and Lotti (1979):

$$
\begin{aligned}
T_{\text {Bini }}= & \sum_{\substack{1 \leq i, j, k \leq 2 \\
(i, k) \neq(2,2)}} a_{i k} \otimes b_{k j} \otimes c_{i j} \\
= & a_{11} \otimes b_{11} \otimes c_{11}+a_{12} \otimes b_{21} \otimes c_{11}+a_{11} \otimes b_{12} \otimes c_{12} \\
& +a_{12} \otimes b_{22} \otimes c_{12}+a_{21} \otimes b_{11} \otimes c_{21}+a_{21} \otimes b_{12} \otimes c_{22}
\end{aligned}
$$

same as $\langle 2,2,2\rangle$, but $\underbrace{\text { without } a_{22} \otimes b_{21} \otimes c_{21} \text { and } a_{22} \otimes b_{22} \otimes c_{22}}_{a_{22}=0}$,
$T_{\text {Bini }}$ represents $\left(\begin{array}{cc}a_{11} & a_{12} \\ a_{21} & 0\end{array}\right) \times\left(\begin{array}{cc}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right) \quad \square \square \square \square$
$R\left(T_{\text {Bini }}\right)=6$
Bini et al. showed that $\underline{R}\left(T_{\text {Bini }}\right)=5$

## Example

Construction by Bini, Capovani, Romani and Lotti (1979): $\underline{R}\left(T_{\text {Bini }}\right) \leq 5$

$$
\begin{aligned}
T_{\mathrm{Bini}}= & a_{11} \otimes b_{11} \otimes c_{11}+a_{12} \otimes b_{21} \otimes c_{11}+a_{11} \otimes b_{12} \otimes c_{12} \\
& +a_{12} \otimes b_{22} \otimes c_{12}+a_{21} \otimes b_{11} \otimes c_{21}+a_{21} \otimes b_{12} \otimes c_{22}
\end{aligned}
$$

## Example

Construction by Bini, Capovani, Romani and Lotti (1979): $\underline{R}\left(T_{\text {Bini }}\right) \leq 5$

$$
\begin{aligned}
T_{\mathrm{Bini}}= & a_{11} \otimes b_{11} \otimes c_{11}+a_{12} \otimes b_{21} \otimes c_{11}+a_{11} \otimes b_{12} \otimes c_{12} \\
& +a_{12} \otimes b_{22} \otimes c_{12}+a_{21} \otimes b_{11} \otimes c_{21}+a_{21} \otimes b_{12} \otimes c_{22}
\end{aligned}
$$

$\lambda T_{\mathrm{Bini}}=T^{\prime}+\lambda^{2} T^{\prime \prime}$

## Example

Construction by Bini, Capovani, Romani and Lotti (1979): $\underline{R}\left(T_{\text {Bini }}\right) \leq 5$

$$
\begin{aligned}
T_{\mathrm{Bini}}= & a_{11} \otimes b_{11} \otimes c_{11}+a_{12} \otimes b_{21} \otimes c_{11}+a_{11} \otimes b_{12} \otimes c_{12} \\
& +a_{12} \otimes b_{22} \otimes c_{12}+a_{21} \otimes b_{11} \otimes c_{21}+a_{21} \otimes b_{12} \otimes c_{22}
\end{aligned}
$$

$\lambda T_{\mathrm{Bini}}=T^{\prime}+\lambda^{2} T^{\prime \prime}$

$$
\text { where } \begin{aligned}
T^{\prime}= & \left(a_{12}+\lambda a_{11}\right) \otimes\left(b_{12}+\lambda b_{22}\right) \otimes c_{12} \\
& +\left(a_{21}+\lambda a_{11}\right) \otimes b_{11} \otimes\left(c_{11}+\lambda c_{21}\right) \\
& -a_{12} \otimes b_{12} \otimes\left(c_{11}+c_{12}+\lambda c_{22}\right) \\
& -a_{21} \otimes\left(b_{11}+b_{12}+\lambda b_{21}\right) \otimes c_{11} \\
& +\left(a_{12}+a_{21}\right) \otimes\left(b_{12}+\lambda b_{21}\right) \otimes\left(c_{11}+\lambda c_{22}\right)
\end{aligned}
$$

and $\quad T^{\prime \prime}=a_{11} \otimes b_{22} \otimes c_{12}+a_{11} \otimes b_{11} \otimes c_{21}+\left(a_{12}+a_{21}\right) \otimes b_{21} \otimes c_{22}$.

## Example

Construction by Bini, Capovani, Romani and Lotti (1979): $\underline{R}\left(T_{\text {Bini }}\right) \leq 5$

$$
\begin{aligned}
T_{\mathrm{Bini}}= & a_{11} \otimes b_{11} \otimes c_{11}+a_{12} \otimes b_{21} \otimes c_{11}+a_{11} \otimes b_{12} \otimes c_{12} \\
& +a_{12} \otimes b_{22} \otimes c_{12}+a_{21} \otimes b_{11} \otimes c_{21}+a_{21} \otimes b_{12} \otimes c_{22}
\end{aligned}
$$

$$
\lambda T_{\mathrm{Bini}}=T^{\prime}+\lambda^{2} T^{\prime \prime} \quad c=1
$$

where $T^{\prime}=\left(a_{12}+\lambda a_{11}\right) \otimes\left(b_{12}+\lambda b_{22}\right) \otimes c_{12}$

$$
+\left(a_{21}+\lambda a_{11}\right) \otimes b_{11} \otimes\left(c_{11}+\lambda c_{21}\right)
$$

$$
\begin{array}{l|l}
-a_{12} \otimes b_{12} \otimes\left(c_{11}+c_{12}+\lambda c_{22}\right) & t=5 \text { rank-one terms }
\end{array}
$$

$$
-a_{21} \otimes\left(b_{11}+b_{12}+\lambda b_{21}\right) \otimes c_{11}
$$

$$
+\left(a_{12}+a_{21}\right) \otimes\left(b_{12}+\lambda b_{21}\right) \otimes\left(c_{11}+\lambda c_{22}\right)
$$

and $\quad T^{\prime \prime}=a_{11} \otimes b_{22} \otimes c_{12}+a_{11} \otimes b_{11} \otimes c_{21}+\left(a_{12}+a_{21}\right) \otimes b_{21} \otimes c_{22}$.

## Example

Construction by Bini, Capovani, Romani and Lotti (1979): $\underline{R}\left(T_{\text {Bini }}\right) \leq 5$

$$
\begin{aligned}
T_{\mathrm{Bini}}= & a_{11} \otimes b_{11} \otimes c_{11}+a_{12} \otimes b_{21} \otimes c_{11}+a_{11} \otimes b_{12} \otimes c_{12} \\
& +a_{12} \otimes b_{22} \otimes c_{12}+a_{21} \otimes b_{11} \otimes c_{21}+a_{21} \otimes b_{12} \otimes c_{22}
\end{aligned}
$$

$\lambda T_{\mathrm{Bini}}=T^{\prime}+\lambda^{2} T^{\prime \prime}$

$$
c=1 \quad t=5
$$

Definition 3
Let $T$ be a tensor over $(U, V, W)$. The border rank of $T$, denoted $\underline{R}(T)$, is the minimal integer $t$ for which there exist an integer $c \geq 0$ and a tensor $T^{\prime \prime}$ such that $T$ can be written as

$$
\lambda^{c} T=\sum_{s=1}^{t}\left[\left(\sum_{u=1}^{\operatorname{dim}(U)} \alpha_{s u} x_{u}\right) \otimes\left(\sum_{v=1}^{\operatorname{dim}(V)} \beta_{s v} y_{v}\right) \otimes\left(\sum_{w=1}^{\operatorname{dim}(W)} \gamma_{s w} z_{w}\right)\right]+\lambda^{c+1} T^{\prime \prime}
$$

for some constants $\alpha_{s u}, \beta_{s v}, \gamma_{s w}$ in $\mathbb{F}[\lambda]$.

## Example

Construction by Bini, Capovani, Romani and Lotti (1979): $\underline{R}\left(T_{\text {Bini }}\right) \leq 5$

$$
\begin{aligned}
T_{\mathrm{Bini}}= & a_{11} \otimes b_{11} \otimes c_{11}+a_{12} \otimes b_{21} \otimes c_{11}+a_{11} \otimes b_{12} \otimes c_{12} \\
& +a_{12} \otimes b_{22} \otimes c_{12}+a_{21} \otimes b_{11} \otimes c_{21}+a_{21} \otimes b_{12} \otimes c_{22}
\end{aligned}
$$

$\lambda T_{\mathrm{Bini}}=T^{\prime}+\lambda^{2} T^{\prime \prime}$

$$
c=1 \quad t=5
$$

## Definition 3

Let $T$ be a tensor over $(U, V, W)$. The border rank of $T$, denoted $\underline{R}(T)$, is the minimal integer $t$ for which there exist an integer $c \geq 0$ and a tensor $T^{\prime \prime}$ such that $T$ can be written as
$\left.\lambda^{c} T=\sum_{s=1}^{t}\left[\left(\sum_{u=1}^{\operatorname{dim}(U)} \alpha_{s u} x_{u}\right) \otimes\left(\sum_{v=1}^{\operatorname{dim}(V)} \beta_{s v} y_{v}\right) \otimes\left(\sum_{w=1}^{\operatorname{dim}(W)} \gamma_{s w} z_{w}\right)\right]\right]+\lambda^{c+1} T^{\prime \prime}$,
$T^{\prime}$ that can be computed with $t$ multiplications over $\mathbb{F}[\lambda]$
for some constants $\alpha_{s u}, \beta_{s v}, \gamma_{s w}$ in $\mathbb{F}[\lambda]$.

## Interpretation of the border rank

## Definition 3

Let $T$ be a tensor over $(U, V, W)$. The border rank of $T$, denoted $\underline{R}(T)$, is the minimal integer $t$ for which there exist an integer $c \geq 0$ and a tensor $T^{\prime \prime}$ such that $T$ can be written as
$\lambda^{c} T=\sum_{s=1}^{t}\left[\left(\sum_{u=1}^{\operatorname{dim}(U)} \alpha_{s u} x_{u}\right) \otimes\left(\sum_{v=1}^{\operatorname{dim}(V)} \beta_{s v} y_{v}\right) \otimes\left(\sum_{w=1}^{\operatorname{dim}(W)} \gamma_{s w} z_{w}\right)\right]+\lambda^{c+1} T^{\prime \prime}$,
$T^{\prime}$ that can be computed with $t$ multiplications over $\mathbb{F}[\lambda]$
for some constants $\alpha_{s u}, \beta_{s v}, \gamma_{s w}$ in $\mathbb{F}[\lambda]$.

## Interpretation of the border rank

$T^{\prime}=\lambda^{c} T-\lambda^{c+1} T^{\prime \prime}$

## Definition 3

Let $T$ be a tensor over $(U, V, W)$. The border rank of $T$, denoted $\underline{R}(T)$, is the minimal integer $t$ for which there exist an integer $c \geq 0$ and a ter sor $T^{\prime \prime}$ such that $T$ can be written as
$\lambda^{c} T=\sum_{s=1}^{t}\left[\left(\sum_{u=1}^{\operatorname{dim}(U)} \alpha_{s u} x_{u}\right) \otimes\left(\sum_{v=1}^{\operatorname{dim}(V)} \beta_{s v} y_{v}\right) \otimes\left(\sum_{w=1}^{\operatorname{dim}(W)} \gamma_{s w} z_{w}\right)\right]+\lambda^{c+1} T^{\prime \prime}$,
$T^{\prime}$ that can be computed with $t$ multiplications over $\mathbb{F}[\lambda]$
for some constants $\alpha_{s u}, \beta_{s v}, \gamma_{s w}$ in $\mathbb{F}[\lambda]$.

## Interpretation of the border rank

$T^{\prime}=\lambda^{c} T-\lambda^{c+1} T^{\prime \prime}$
we get $T$ be computing $T^{\prime}$ and keeping the terms with the lowest degree in $\lambda$

## Definition 3

Let $T$ be a tensor over $(U, V, W)$. The border rank of $T$, denoted $\underline{R}(T)$, is the minimal integer $t$ for which there exist an integer $c \geq 0$ and a ter sor $T^{\prime \prime}$ such that $T$ can be written as
$\lambda^{c} T=\sum_{s=1}^{t}\left[\left(\sum_{u=1}^{\operatorname{dim}(U)} \alpha_{s u} x_{u}\right) \otimes\left(\sum_{v=1}^{\operatorname{dim}(V)} \beta_{s v} y_{v}\right) \otimes\left(\sum_{w=1}^{\operatorname{dim}(W)} \gamma_{s w} z_{w}\right)\right]+\lambda^{c+1} T^{\prime \prime}$,
$T^{\prime}$ that can be computed with $t$ multiplications over $\mathbb{F}[\lambda]$
for some constants $\alpha_{s u}, \beta_{s v}, \gamma_{s w}$ in $\mathbb{F}[\lambda]$.

## Interpretation of the border rank

$T^{\prime}=\lambda^{c} T-\lambda^{c+1} T^{\prime \prime}$
we get $T$ be computing $T^{\prime}$ and keeping the terms with the lowest degree in $\lambda$
one can think of numerically (e.g., for $\mathbb{F}=\mathbb{R}$ ) taking $\lambda$ very small and computing $\lambda^{-c} T^{\prime}$

## Definition 3

Let $T$ be a tensor over $(U, V, W)$. The border rank of $T$, denoted $\underline{R}(T)$, is the minimal integer $t$ for which there exist an integer $c \geq 0$ and a ter sor $T^{\prime \prime}$ such that $T$ can be written as
$\lambda^{c} T=\sum_{s=1}^{t}\left[\left(\sum_{u=1}^{\operatorname{dim}(U)} \alpha_{s u} x_{u}\right) \otimes\left(\sum_{v=1}^{\operatorname{dim}(V)} \beta_{s v} y_{v}\right) \otimes\left(\sum_{w=1}^{\operatorname{dim}(W)} \gamma_{s w} z_{w}\right)\right]+\lambda^{c+1} T^{\prime \prime}$,
$T^{\prime}$ that can be computed with $t$ multiplications over $\mathbb{F}[\lambda]$
for some constants $\alpha_{s u}, \beta_{s v}, \gamma_{s w}$ in $\mathbb{F}[\lambda]$.

## Interpretation of the border rank

$T^{\prime}=\lambda^{c} T-\lambda^{c+1} T^{\prime \prime}$
we get $T$ be computing $T^{\prime}$ and keeping the terms with the lowest degree in $\lambda$
one can think of numerically (e.g., for $\mathbb{F}=\mathbb{R}$ ) taking $\lambda$ very small and computing $\lambda^{-c} T^{\prime}=T-\lambda T^{\prime \prime}$

## Defini ion 3

Let $T$ be a tensor over $(U, V, W)$. The border rank of $T$, denoted $\underline{R}(T)$, is the minimal integer $t$ for which there exist an integer $c \geq 0$ and a ter sor $T^{\prime \prime}$ such that $T$ can be written as
$\lambda^{c} T=\sum_{s=1}^{t}\left[\left(\sum_{u=1}^{\operatorname{dim}(U)} \alpha_{s u} x_{u}\right) \otimes\left(\sum_{v=1}^{\operatorname{dim}(V)} \beta_{s v} y_{v}\right) \otimes\left(\sum_{w=1}^{\operatorname{dim}(W)} \gamma_{s w} z_{w}\right)\right]+\lambda^{c+1} T^{\prime \prime}$,
$T^{\prime}$ that can be computed with $t$ multiplications over $\mathbb{F}[\lambda]$
for some constants $\alpha_{s u}, \beta_{s v}, \gamma_{s w}$ in $\mathbb{F}[\lambda]$.

## Interpretation of the border rank

$T^{\prime}=\lambda^{c} T-\lambda^{c+1} T^{\prime \prime}$
we get $T$ be computing $T^{\prime}$ and keeping the terms with the lowest degree in $\lambda$
one can think of numerically (e.g., for $\mathbb{F}=\mathbb{R}$ ) taking $\lambda$ very small and computing $\lambda^{-c} T^{\prime}=T-\lambda T^{\prime \prime} \approx T$

## Defini ion 3

Let $T$ be a tensor over $(U, V, W)$. The border rank of $T$, denoted $\underline{R}(T)$, is the minimal integer $t$ for which there exist an integer $c \geq 0$ and a ter sor $T^{\prime \prime}$ such that $T$ can be written as
$\lambda^{c} T=\sum_{s=1}^{t}\left[\left(\sum_{u=1}^{\operatorname{dim}(U)} \alpha_{s u} x_{u}\right) \otimes\left(\sum_{v=1}^{\operatorname{dim}(V)} \beta_{s v} y_{v}\right) \otimes\left(\sum_{w=1}^{\operatorname{dim}(W)} \gamma_{s w} z_{w}\right)\right]+\lambda^{c+1} T^{\prime \prime}$,
$T^{\prime}$ that can be computed with $t$ multiplications over $\mathbb{F}[\lambda]$
for some constants $\alpha_{s u}, \beta_{s v}, \gamma_{s w}$ in $\mathbb{F}[\lambda]$.

## Interpretation of the border rank

$T^{\prime}=\lambda^{c} T-\lambda^{c+1} T^{\prime \prime}$
we get $T$ be computing $T^{\prime}$ and keeping the terms with the lowest degree in $\lambda$
one can think of numerically (e.g., for $\mathbb{F}=\mathbb{R}$ ) taking $\lambda$ very small and computing $\lambda^{-c} T^{\prime}=T-\lambda T^{\prime \prime} \approx T$

## Definition 3

"border rank = complexity of approximate bilinear algorithms"
Let $T$ be a tensor over $(U, V, W)$. The border rank of $T$, denoted $\underline{R}(T)$, is the minimal integer $t$ for which there exist an integer $c \geq 0$ and a ter sor $T^{\prime \prime}$ such that $T$ can be written as
$\lambda^{c} T=\sum_{s=1}^{t}\left[\left(\sum_{u=1}^{\operatorname{dim}(U)} \alpha_{s u} x_{u}\right) \otimes\left(\sum_{v=1}^{\operatorname{dim}(V)} \beta_{s v} y_{v}\right) \otimes\left(\sum_{w=1}^{\operatorname{dim}(W)} \gamma_{s w} z_{w}\right)\right]+\lambda^{c+1} T^{\prime \prime}$,
$T^{\prime}$ that can be computed with $t$ multiplications over $\mathbb{F}[\lambda]$
for some constants $\alpha_{s u}, \beta_{s v}, \gamma_{s w}$ in $\mathbb{F}[\lambda]$.

## Border rank v.s. rank

Obviously, $\underline{R}(T) \leq R(T)$ for any tensor $T$.

## Border rank v.s. rank

Obviously, $\underline{R}(T) \leq R(T)$ for any tensor $T$.
Proposition 2
There exists a constant $a$ such that $R(T) \leq a \times \underline{R}(T)$ for any tensor $T$.

## Border rank v.s. rank

Obviously, $\underline{R}(T) \leq R(T)$ for any tensor $T$.
Proposition 2
There exists a constant $a$ such that $R(T) \leq a \times \underline{R}(T)$ for any tensor $T$.
Remark: the constant $a$ actually depends on the $c$ in the definition of $\underline{R}(T)$ (for instance: $a=3$ for $c=1$ )

## Border rank v.s. rank

Obviously, $\underline{R}(T) \leq R(T)$ for any tensor $T$.
Proposition 2
There exists a constant $a$ such that $R(T) \leq a \times \underline{R}(T)$ for any tensor $T$.
Remark: the constant $a$ actually depends on the $c$ in the definition of $\underline{R}(T)$ (for instance: $a=3$ for $c=1$ )

Consequence: an approximate bilinear algorithm can be converted into an (usual) bilinear algorithm of "similar" complexity

## Border rank v.s. rank

Proposition 2
There exists a constant $a$ such that $R(T) \leq a \times \underline{R}(T)$ for any tensor $T$.
Proof outline (for $c=1$ ):

## Border rank v.s. rank

## Proposition 2

There exists a constant $a$ such that $R(T) \leq a \times \underline{R}(T)$ for any tensor $T$.

## Proof outline (for $c=1$ ):

assume that

$$
\lambda T=\sum_{s=1}^{t}\left[\left(\sum_{u=1}^{\operatorname{dim}(U)} \alpha_{s u} x_{u}\right) \otimes\left(\sum_{v=1}^{\operatorname{dim}(V)} \beta_{s v} y_{v}\right) \otimes\left(\sum_{w=1}^{\operatorname{dim}(W)} \gamma_{s w} z_{w}\right)\right]+\lambda^{2} T^{\prime \prime}
$$

for some tensor $T^{\prime \prime}$ and some constants $\alpha_{s u}, \beta_{s v}, \gamma_{s w}$ in $\mathbb{F}[\lambda]$

## Border rank v.s. rank

## Proposition 2

There exists a constant $a$ such that $R(T) \leq a \times \underline{R}(T)$ for any tensor $T$.

## Proof outline (for $c=1$ ):

assume that

$$
\lambda T=\sum_{s=1}^{t}\left[\left(\sum_{u=1}^{\operatorname{dim}(U)} \alpha_{s u} x_{u}\right) \otimes\left(\sum_{v=1}^{\operatorname{dim}(V)} \beta_{s v} y_{v}\right) \otimes\left(\sum_{w=1}^{\operatorname{dim}(W)} \gamma_{s w} z_{w}\right)\right]+\lambda^{2} T^{\prime \prime}
$$

for some tensor $T^{\prime \prime}$ and some constants $\alpha_{s u}, \beta_{s v}, \gamma_{s w}$ in $\mathbb{F}[\lambda]$

$$
\text { i.e., } \underline{R}(T) \leq t
$$

## Border rank v.s. rank

## Proposition 2

There exists a constant $a$ such that $R(T) \leq a \times \underline{R}(T)$ for any tensor $T$.
Proof outline (for $c=1$ ):
we get $T$ be computing the coefficient of $\lambda$ in $T^{\prime}$
$T^{\prime}=\lambda T-\lambda^{2} T^{\prime \prime}$
assume that

$$
\lambda T=\sum_{s=1}^{t}\left[\left(\sum_{u=1}^{\operatorname{dim}(U)} \alpha_{s u} x_{u}\right) \otimes\left(\sum_{v=1}^{\operatorname{dim}(V)} \beta_{s v} y_{v}\right) \otimes\left(\sum_{w=1}^{\operatorname{dim}(W)} \gamma_{s w} z_{w}\right)\right]+\lambda^{2} T^{\prime \prime}
$$

for some tensor $T^{\prime \prime}$ and some constants $\alpha_{s u}, \beta_{s v}, \gamma_{s w}$ in $\mathbb{F}[\lambda]$
i.e., $\underline{R}(T) \leq t$

## Border rank v.s. rank

## Proposition 2

There exists a constant $a$ such that $R(T) \leq a \times \underline{R}(T)$ for any tensor $T$.
Proof outline (for $c=1$ ):
we get $T$ be computing the coefficient of $\lambda$ in $T^{\prime}$
$T^{\prime}=\lambda T-\lambda^{2} T^{\prime \prime}$
assume that

$$
\lambda T=\sum_{s=1}^{t}\left[\left(\sum_{u=1}^{\operatorname{dim}(U)} \alpha_{s u} x_{u}\right) \otimes\left(\sum_{v=1}^{\operatorname{dim}(V)} \beta_{s v} y_{v}\right) \otimes\left(\sum_{w=1}^{\operatorname{dim}(W)} \gamma_{s w} z_{w}\right)\right]+\lambda^{2} T^{\prime \prime}
$$

for some tensor $T^{\prime \prime}$ and some constants $\alpha_{s u}, \beta_{s v}, \gamma_{s w}$ in $\mathbb{F}[\lambda]$
i.e., $\underline{R}(T) \leq t$

$$
\alpha_{s u}=\alpha_{s u}^{[0]}+\alpha_{s u}^{[1]} \lambda+\alpha_{s u}^{[2]} \lambda^{2}+\cdots
$$

## Border rank v.s. rank

## Proposition 2

There exists a constant $a$ such that $R(T) \leq a \times \underline{R}(T)$ for any tensor $T$.
Proof outline (for $c=1$ ):
we get $T$ be computing the coefficient of $\lambda$ in $T^{\prime}$
$T^{\prime}=\lambda T-\lambda^{2} T^{\prime \prime}$
assume that

$$
\lambda T=\sum_{s=1}^{t}\left[\left(\sum_{u=1}^{\operatorname{dim}(U)} \alpha_{s u} x_{u}\right) \otimes\left(\sum_{v=1}^{\operatorname{dim}(V)} \beta_{s v} y_{v}\right) \otimes\left(\sum_{w=1}^{\operatorname{dim}(W)} \gamma_{s w} z_{w}\right)\right]+\lambda^{2} T^{\prime \prime}
$$

for some tensor $T^{\prime \prime}$ and some constants $\alpha_{s u}, \beta_{s v}, \gamma_{s w}$ in $\mathbb{F}[\lambda]$
i.e., $\underline{R}(T) \leq t$

$$
\alpha_{s u}=\alpha_{s u}^{[0]}+\alpha_{s u}^{[1]} \lambda+\alpha_{s u}^{[2]} \lambda^{2}+\cdots
$$ similarly for $\beta_{s v}$ and $\gamma_{s w}$

## Border rank v.s. rank

## Proposition 2

There exists a constant $a$ such that $R(T) \leq a \times \underline{R}(T)$ for any tensor $T$.
Proof outline (for $c=1$ ):
we get $T$ be computing the coefficient of $\lambda$ in $T^{\prime}$
$T^{\prime}=\lambda T-\lambda^{2} T^{\prime \prime}$
assume that

$$
\lambda T=\sum_{s=1}^{t}\left[\left(\sum_{u=1}^{\operatorname{dim}(U)} \alpha_{s u} x_{u}\right) \otimes\left(\sum_{v=1}^{\operatorname{dim}(V)} \beta_{s v} y_{v}\right) \otimes\left(\sum_{w=1}^{\operatorname{dim}(W)} \gamma_{s w} z_{w}\right)\right]+\lambda^{2} T^{\prime \prime}
$$

for some tensor $T^{\prime \prime}$ and some constants $\alpha_{s u}, \beta_{s v}, \gamma_{s w}$ in $\mathbb{F}[\lambda]$

$$
\text { i.e., } \underline{R}(T) \leq t
$$

$$
\alpha_{s u}=\alpha_{s u}^{[0]}+\alpha_{s u}^{[1]} \lambda+\alpha_{s u}^{[2]} \lambda^{2}+\cdots
$$

$$
\text { similarly for } \beta_{s v} \text { and } \gamma_{s w}
$$

## Border rank v.s. rank

## Proposition 2

There exists a constant $a$ such that $R(T) \leq a \times \underline{R}(T)$ for any tensor $T$.
Proof outline (for $c=1$ ):
we get $T$ be computing the coefficient of $\lambda$ in $T^{\prime}$
$T^{\prime}=\lambda T-\lambda^{2} T^{\prime \prime} \quad T=\sum_{s=1}^{t}\left[\left(\sum_{u=1}^{\operatorname{dim}(U)} \alpha_{s u}^{[1]} x_{u}\right) \otimes\left(\sum_{v=1}^{\operatorname{dim}(V)} \beta_{s v}^{[0]} y_{v}\right) \otimes\left(\sum_{w=1}^{\operatorname{dim}(W)} \gamma_{s w}^{[0]} z_{w}\right)\right]$

$$
R(T) \leq 3 \times t
$$

assume that

$$
\lambda T=\sum_{s=1}^{t}\left[\left(\sum_{u=1}^{\operatorname{dim}(U)} \alpha_{s u} x_{u}\right) \otimes\left(\sum_{v=1}^{\operatorname{dim}(V)} \beta_{s v} y_{v}\right) \otimes\left(\sum_{w=1}^{\operatorname{dim}(W)} \gamma_{s w} z_{w}\right)\right]+\lambda^{2} T^{\prime \prime}
$$

for some tensor $T^{\prime \prime}$ and some constants $\alpha_{s u}, \beta_{s v}, \gamma_{s w}$ in $\mathbb{F}[\lambda]$

$$
\text { i.e., } \underline{R}(T) \leq t
$$

$$
\alpha_{s u}=\alpha_{s u}^{[0]}+\alpha_{s u}^{[1]} \lambda+\alpha_{s u}^{[2]} \lambda^{2}+\cdots
$$

$$
\text { similarly for } \beta_{s v} \text { and } \gamma_{s w}
$$

## Example

Construction by Bini, Capovani, Romani and Lotti (1979):

$$
\begin{aligned}
T_{\mathrm{Bini}}= & a_{11} \otimes b_{11} \otimes c_{11}+a_{12} \otimes b_{21} \otimes c_{11}+a_{11} \otimes b_{12} \otimes c_{12} \\
& +a_{12} \otimes b_{22} \otimes c_{12}+a_{21} \otimes b_{11} \otimes c_{21}+a_{21} \otimes b_{12} \otimes c_{22}
\end{aligned}
$$

## $\underline{R}\left(T_{\text {Bini }}\right) \leq 5$

## Example

Construction by Bini, Capovani, Romani and Lotti (1979):

$$
\begin{aligned}
T_{\mathrm{Bini}}= & a_{11} \otimes b_{11} \otimes c_{11}+a_{12} \otimes b_{21} \otimes c_{11}+a_{11} \otimes b_{12} \otimes c_{12} \\
& +a_{12} \otimes b_{22} \otimes c_{12}+a_{21} \otimes b_{11} \otimes c_{21}+a_{21} \otimes b_{12} \otimes c_{22}
\end{aligned}
$$

$\underline{R}\left(T_{\text {Bini }}\right) \leq 5$
$T_{\text {Bini }}$ represents $\left(\begin{array}{cc}a_{11} & a_{12} \\ a_{21} & 0\end{array}\right) \times\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)$

## Example

Construction by Bini, Capovani, Romani and Lotti (1979):

$$
\begin{aligned}
T_{\mathrm{Bini}}= & a_{11} \otimes b_{11} \otimes c_{11}+a_{12} \otimes b_{21} \otimes c_{11}+a_{11} \otimes b_{12} \otimes c_{12} \\
& +a_{12} \otimes b_{22} \otimes c_{12}+a_{21} \otimes b_{11} \otimes c_{21}+a_{21} \otimes b_{12} \otimes c_{22}
\end{aligned}
$$

$\underline{R}\left(T_{\text {Bini }}\right) \leq 5$
$T_{\text {Bini }}$ represents $\left(\begin{array}{cc}a_{11} & a_{12} \\ a_{21} & 0\end{array}\right) \times\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right) \quad \square \times \square$

## Example

Construction by Bini, Capovani, Romani and Lotti (1979):

$$
\begin{aligned}
T_{\mathrm{Bini}}= & a_{11} \otimes b_{11} \otimes c_{11}+a_{12} \otimes b_{21} \otimes c_{11}+a_{11} \otimes b_{12} \otimes c_{12} \\
& +a_{12} \otimes b_{22} \otimes c_{12}+a_{21} \otimes b_{11} \otimes c_{21}+a_{21} \otimes b_{12} \otimes c_{22}
\end{aligned}
$$

$\underline{R}\left(T_{\text {Bini }}\right) \leq 5$
$T_{\text {Bini }}$ represents $\left(\begin{array}{cc}a_{11} & a_{12} \\ a_{21} & 0\end{array}\right) \times\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right) \quad \square \times \square$

Two copies of $T_{\text {Bini }}$


## Example

Construction by Bini, Capovani, Romani and Lotti (1979):

$$
\begin{aligned}
T_{\text {Bini }}= & a_{11} \otimes b_{11} \otimes c_{11}+a_{12} \otimes b_{21} \otimes c_{11}+a_{11} \otimes b_{12} \otimes c_{12} \\
& +a_{12} \otimes b_{22} \otimes c_{12}+a_{21} \otimes b_{11} \otimes c_{21}+a_{21} \otimes b_{12} \otimes c_{22}
\end{aligned}
$$

$\underline{R}\left(T_{\text {Bini }}\right) \leq 5$
$T_{\text {Bini }}$ represents $\left(\begin{array}{cc}a_{11} & a_{12} \\ a_{21} & 0\end{array}\right) \times\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right) \quad \square \times \square$

Two copies of $T_{\text {Bini }}$


## Example

Construction by Bini, Capovani, Romani and Lotti (1979):

$$
\begin{aligned}
T_{\mathrm{Bini}}= & a_{11} \otimes b_{11} \otimes c_{11}+a_{12} \otimes b_{21} \otimes c_{11}+a_{11} \otimes b_{12} \otimes c_{12} \\
& +a_{12} \otimes b_{22} \otimes c_{12}+a_{21} \otimes b_{11} \otimes c_{21}+a_{21} \otimes b_{12} \otimes c_{22}
\end{aligned}
$$

$\underline{R}\left(T_{\text {Bini }}\right) \leq 5$
$T_{\text {Bini }}$ represents $\left(\begin{array}{cc}a_{11} & a_{12} \\ a_{21} & 0\end{array}\right) \times\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right) \quad \square \times \square$

Two copies of $T_{\text {Bini }}$


Consequence: $\underline{R}(\langle 3,2,2\rangle) \leq 10$

## Example

Consequence: $\underline{R}(\langle 3,2,2\rangle) \leq 10$

There exists a constant $a$ such that $R(T) \leq a \times \underline{R}(T)$ for any tensor $T$.

Consequence: $\underline{R}(\langle 3,2,2\rangle) \leq 10 \xrightarrow{\text { Prop } 2} R(\langle 3,2,2\rangle) \leq a \times 10$

## Proposition 2

There exists a constant $a$ such that $R(T) \leq a \times \underline{R}(T)$ for any tensor $T$.

## Theorem 1

$R(\langle m, n, p\rangle) \leq t \Longrightarrow(m n p)^{\omega / 3} \leq t$
Consequence: $\underline{R}(\langle 3,2,2\rangle) \leq 10 \stackrel{\text { Prop } 2}{\Longrightarrow} R(\langle 3,2,2\rangle) \leq a \times 10$

$$
\stackrel{\text { Th } 1}{\Longrightarrow} 12^{\omega / 3} \leq a \times 10
$$

## Proposition 2

There exists a constant $a$ such that $R(T) \leq a \times \underline{R}(T)$ for any tensor $T$.

## Theorem 1

$R(\langle m, n, p\rangle) \leq t \Longrightarrow(m n p)^{\omega / 3} \leq t$
Consequence: $\underline{R}(\langle 3,2,2\rangle) \leq 10 \stackrel{\text { Prop } 2}{\Longrightarrow} R(\langle 3,2,2\rangle) \leq a \times 10$

$$
\stackrel{\text { Th } 1}{\Longrightarrow} 12^{\omega / 3} \leq a \times 10
$$

$$
\Longrightarrow \omega \leq 4.106 \ldots \text { (with } a=3 \text { ) }
$$

## Proposition 2

There exists a constant $a$ such that $R(T) \leq a \times \underline{R}(T)$ for any tensor $T$.

## Theorem 1

$$
R(\langle m, n, p\rangle) \leq t \Longrightarrow(m n p)^{\omega / 3} \leq t
$$

Consequence: $\underline{R}(\langle 3,2,2\rangle) \leq 10 \stackrel{\text { Prop } 2}{\Longrightarrow} R(\langle 3,2,2\rangle) \leq a \times 10$

$$
\begin{aligned}
& \stackrel{\text { Th 1 }}{\Longrightarrow} 12^{\omega / 3} \leq a \times 10 \\
& \Longrightarrow \omega \leq 4.106 \ldots(\text { with } a=3)
\end{aligned}
$$

$\underline{R}(\langle 3,2,2\rangle) \leq 10$

## Proposition 2

There exists a constant $a$ such that $R(T) \leq a \times \underline{R}(T)$ for any tensor $T$.

## Theorem 1

$R(\langle m, n, p\rangle) \leq t \Longrightarrow(m n p)^{\omega / 3} \leq t$
Consequence: $\underline{R}(\langle 3,2,2\rangle) \leq 10 \stackrel{\text { Prop } 2}{\Longrightarrow} R(\langle 3,2,2\rangle) \leq a \times 10$

$$
\begin{aligned}
& \stackrel{\text { Th 1 }}{\Longrightarrow} 12^{\omega / 3} \leq a \times 10 \\
& \Longrightarrow \omega \leq 4.106 \ldots(\text { with } a=3)
\end{aligned}
$$

$\underline{R}(\langle 3,2,2\rangle) \leq 10 \Longrightarrow \underline{R}\left(\langle 3,2,2\rangle^{\otimes N}\right) \leq 10^{N} \quad$ (submultiplicativity of the border rank)

## Proposition 2

There exists a constant $a$ such that $R(T) \leq a \times \underline{R}(T)$ for any tensor $T$.

## Theorem 1

$$
R(\langle m, n, p\rangle) \leq t \Longrightarrow(m n p)^{\omega / 3} \leq t
$$

Consequence: $\underline{R}(\langle 3,2,2\rangle) \leq 10 \stackrel{\text { Prop } 2}{\Longrightarrow} R(\langle 3,2,2\rangle) \leq a \times 10$

$$
\begin{aligned}
& \stackrel{\text { Th 1 }}{\Longrightarrow} 12^{\omega / 3} \leq a \times 10 \\
& \Longrightarrow \omega \leq 4.106 \ldots(\text { with } a=3)
\end{aligned}
$$

$\underline{R}(\langle 3,2,2\rangle) \leq 10 \Longrightarrow \underline{R}(\underbrace{\langle 3,2,2\rangle^{\otimes N}}_{\left\langle 3^{N}, 2^{N}, 2^{N}\right\rangle}) \leq 10^{N} \quad$ (submultiplicativity of the border rank)

## Proposition 2

There exists a constant $a$ such that $R(T) \leq a \times \underline{R}(T)$ for any tensor $T$.

## Theorem 1

$$
R(\langle m, n, p\rangle) \leq t \Longrightarrow(m n p)^{\omega / 3} \leq t
$$

Consequence: $\underline{R}(\langle 3,2,2\rangle) \leq 10 \stackrel{\text { Prop } 2}{\Longrightarrow} R(\langle 3,2,2\rangle) \leq a \times 10$

$$
\begin{aligned}
& \stackrel{\text { Th } 1}{\Longrightarrow} 12^{\omega / 3} \leq a \times 10 \\
& \Longrightarrow \omega \leq 4.106 \ldots(\text { with } a=3)
\end{aligned}
$$

$\underline{R}(\langle 3,2,2\rangle) \leq 10 \Longrightarrow \underline{R}(\underbrace{\langle 3,2,2\rangle^{\otimes N}}_{\left\langle 3^{N}, 2^{N}, 2^{N}\right\rangle}) \leq 10^{N} \quad$ (submultiplicativity of the border rank)

$$
\stackrel{\text { Prop } 2}{\Longrightarrow} R\left(\left\langle 3^{N}, 2^{N}, 2^{N}\right\rangle\right) \leq a \times 10^{N}
$$

## Proposition 2

There exists a constant $a$ such that $R(T) \leq a \times \underline{R}(T)$ for any tensor $T$.

## Theorem 1

$$
R(\langle m, n, p\rangle) \leq t \Longrightarrow(m n p)^{\omega / 3} \leq t
$$

Consequence: $\underline{R}(\langle 3,2,2\rangle) \leq 10 \stackrel{\text { Prop } 2}{\Longrightarrow} R(\langle 3,2,2\rangle) \leq a \times 10$

$$
\begin{aligned}
& \stackrel{\text { Th 1 }}{\Longrightarrow} 12^{\omega / 3} \leq a \times 10 \\
& \Longrightarrow \omega \leq 4.106 \ldots(\text { with } a=3)
\end{aligned}
$$

$\underline{R}(\langle 3,2,2\rangle) \leq 10 \Longrightarrow \underline{R}(\underbrace{\langle 3,2,2\rangle^{\otimes N}}_{\left\langle 3^{N}, 2^{N}, 2^{N}\right\rangle}) \leq 10^{N} \quad$ (submultiplicativity of the border rank)

$$
\begin{aligned}
& \stackrel{\text { Prop } 2}{\Longrightarrow} R\left(\left\langle 3^{N}, 2^{N}, 2^{N}\right\rangle\right) \leq a \times 10^{N} \\
& \stackrel{\text { Th1 }}{\Longrightarrow} 12^{N \omega / 3} \leq a \times 10^{N}
\end{aligned}
$$

## Proposition 2

There exists a constant $a$ such that $R(T) \leq a \times \underline{R}(T)$ for any tensor $T$.

## Theorem 1

$$
R(\langle m, n, p\rangle) \leq t \Longrightarrow(m n p)^{\omega / 3} \leq t
$$

Consequence: $\underline{R}(\langle 3,2,2\rangle) \leq 10 \stackrel{\text { Prop } 2}{\Longrightarrow} R(\langle 3,2,2\rangle) \leq a \times 10$

$$
\begin{aligned}
& \stackrel{\text { Th } 1}{\Longrightarrow} 12^{\omega / 3} \leq a \times 10 \\
& \Longrightarrow \omega \leq 4.106 \ldots(\text { with } a=3)
\end{aligned}
$$

$\underline{R}(\langle 3,2,2\rangle) \leq 10 \Longrightarrow \underline{R}(\underbrace{\langle 3,2,2\rangle^{\otimes N}}_{\left\langle 3^{N}, 2^{N}, 2^{N}\right\rangle}) \leq 10^{N} \quad$ (submultiplicativity of the border rank)

$$
\begin{aligned}
& \stackrel{\text { Prop 2 }}{\Longrightarrow} R\left(\left\langle 3^{N}, 2^{N}, 2^{N}\right\rangle\right) \leq a \times 10^{N} \\
& \stackrel{\text { Th 1 }}{\Longrightarrow} 12^{N \omega / 3} \leq a \times 10^{N} \\
& \Longrightarrow 12^{\omega / 3} \leq a^{1 / N} \times 10
\end{aligned}
$$

## Proposition 2

There exists a constant $a$ such that $R(T) \leq a \times \underline{R}(T)$ for any tensor $T$.

## Theorem 1

$$
R(\langle m, n, p\rangle) \leq t \Longrightarrow(m n p)^{\omega / 3} \leq t
$$

Consequence: $\underline{R}(\langle 3,2,2\rangle) \leq 10 \stackrel{\text { Prop } 2}{\Longrightarrow} R(\langle 3,2,2\rangle) \leq a \times 10$

$$
\begin{aligned}
& \stackrel{\text { Th } 1}{\Longrightarrow} 12^{\omega / 3} \leq a \times 10 \\
& \Longrightarrow \omega \leq 4.106 \ldots(\text { with } a=3)
\end{aligned}
$$

$\underline{R}(\langle 3,2,2\rangle) \leq 10 \Longrightarrow \underline{R}(\underbrace{\langle 3,2,2\rangle^{\otimes N}}_{\left\langle 3^{N}, 2^{N}, 2^{N}\right\rangle}) \leq 10^{N} \quad$ (submultiplicativity of the border rank)
$\xrightarrow{\text { Prop } 2} R\left(\left\langle 3^{N}, 2^{N}, 2^{N}\right\rangle\right) \leq a \times 10^{N}$
$\xrightarrow{\text { Th } 1} 12^{N \omega / 3} \leq a \times 10^{N}$
$\Longrightarrow 12^{\omega / 3} \leq a^{1 / N} \times 10 \quad($ for any $N \geq 1)$

## Proposition 2

There exists a constant $a$ such that $R(T) \leq a \times \underline{R}(T)$ for any tensor $T$.

## Theorem 1

$$
R(\langle m, n, p\rangle) \leq t \Longrightarrow(m n p)^{\omega / 3} \leq t
$$

Consequence: $\underline{R}(\langle 3,2,2\rangle) \leq 10 \stackrel{\text { Prop } 2}{\Longrightarrow} R(\langle 3,2,2\rangle) \leq a \times 10$

$$
\begin{aligned}
& \stackrel{\text { Th } 1}{\Longrightarrow} 12^{\omega / 3} \leq a \times 10 \\
& \Longrightarrow \omega \leq 4.106 \ldots(\text { with } a=3)
\end{aligned}
$$

$$
\underline{R}(\langle 3,2,2\rangle) \leq 10 \Longrightarrow \underline{R}(\underbrace{\langle 3,2,2\rangle^{\otimes N}}_{\left\langle 3^{N}, 2^{N}, 2^{N}\right\rangle}) \leq 10^{N} \quad \text { (submultiplicativity of the border rank) }
$$

$$
\begin{aligned}
& \stackrel{\text { Prop } 2}{\Longrightarrow} R\left(\left\langle 3^{N}, 2^{N}, 2^{N}\right\rangle\right) \leq a \times 10^{N} \\
& \stackrel{\text { Th } 1}{\Longrightarrow} 12^{N \omega / 3} \leq a \times 10^{N} \\
& \Longrightarrow 12^{\omega / 3} \leq a^{1 / N} \times 10 \quad(\text { for any } N \geq 1) \\
& \Longrightarrow 12^{\omega / 3} \leq 10 \quad(\text { take } N \rightarrow \infty)
\end{aligned}
$$

## Proposition 2

There exists a constant $a$ such that $R(T) \leq a \times \underline{R}(T)$ for any tensor $T$.

## Theorem 1

$$
R(\langle m, n, p\rangle) \leq t \Longrightarrow(m n p)^{\omega / 3} \leq t
$$

Consequence: $\underline{R}(\langle 3,2,2\rangle) \leq 10 \stackrel{\text { Prop } 2}{\Longrightarrow} R(\langle 3,2,2\rangle) \leq a \times 10$

$$
\begin{aligned}
& \stackrel{\text { Th } 1}{\Longrightarrow} 12^{\omega / 3} \leq a \times 10 \\
& \Longrightarrow \omega \leq 4.106 \ldots(\text { with } a=3)
\end{aligned}
$$

$$
\begin{aligned}
\underline{R}(\langle 3,2,2\rangle) \leq 10 & \Longrightarrow \underline{R}(\underbrace{\left\langle 3^{N}, 2^{N}, 2^{N}\right\rangle}_{\langle 3,2,2\rangle^{\otimes N}}) \leq 10^{N} \quad \text { (submultiplicativity of the border rank) } \\
& \stackrel{\text { Prop } 2}{\Longrightarrow} R\left(\left\langle 3^{N}, 2^{N}, 2^{N}\right\rangle\right) \leq a \times 10^{N} \\
& \stackrel{\text { Th }}{\Longrightarrow} 12^{N \omega / 3} \leq a \times 10^{N} \\
& \Longrightarrow 12^{\omega / 3} \leq a^{1 / N} \times 10 \quad(\text { for any } N \geq 1) \\
& \left.\Longrightarrow 12^{\omega / 3} \leq 10 \quad \text { (take } N \rightarrow \infty\right) \\
& \Longrightarrow \omega \leq 2.779 \ldots \quad \text { [Bini et al. 79] }
\end{aligned}
$$

## Proposition 2

There exists a constant $a$ such that $R(T) \leq a \times \underline{R}(T)$ for any tensor $T$.

## Theorem 1 <br> $R(\langle m, n, p\rangle) \leq t \Longrightarrow(m n p)^{\omega / 3} \leq t$



$$
\begin{aligned}
\underline{R}(\langle 3,2,2\rangle) \leq 10 & \Longrightarrow \underline{R}(\underbrace{\langle 3,2,2\rangle^{\otimes N}}_{\left(3^{N}, 2^{N}, 2^{N}\right\rangle}) \leq 10^{N} \quad \text { (submultiplicativity of the border rank) } \\
& \xlongequal{\text { Prop } 2} R\left(\left\langle 3^{N}, 2^{N}, 2^{N}\right\rangle\right) \leq a \times 10^{N} \\
& \xlongequal{\Longrightarrow} 12^{N \omega / 3} \leq a \times 10^{N} \\
& \Longrightarrow 12^{\omega / 3} \leq a^{1 / N} \times 10 \quad(\text { for any } N \geq 1) \\
& \left.\Longrightarrow 12^{\omega / 3} \leq 10 \quad \text { (take } N \rightarrow \infty\right) \\
& \Longrightarrow \omega \leq 2.779 \ldots \quad \text { Bini et al. 79] }
\end{aligned}
$$ as one" when deriving an upper bound on $\omega$ using Theorem 1

$$
\begin{aligned}
& \stackrel{\text { Th1 } 1}{\Longrightarrow} 12^{\omega / 3} \leq a \times 10 \\
& \Longrightarrow \omega \leq 4.106 \ldots \text { (with } a=3 \text { ) }
\end{aligned}
$$

## Proposition 2

There exists a constant $a$ such that $R(T) \leq a \times \underline{R}(T)$ for any tensor $T$.

## Theorem 1

$R(\langle m, n, p\rangle) \leq t \Longrightarrow(m n p)^{\omega / 3} \leq t$

The constant $a$ can be "taken as one" when deriving an upper bound on $\omega$ using Theorem 1

## Theorem 2

$$
\underline{R}(\langle m, n, p\rangle) \leq t \Longrightarrow(m n p)^{\omega / 3} \leq t
$$

$$
\begin{aligned}
\underline{R}(\langle 3,2,2\rangle) \leq 10 & \Longrightarrow \underline{R}\left(\underline{\left.u^{\langle }, 2,2\right\rangle^{\otimes N}}\right) \leq 10^{N} \quad \text { (submultiplicativity of the border rank) } \\
& \stackrel{\left\langle 3^{N}, 2^{N}, 2^{N}\right\rangle}{\text { Prop } 2} R\left(\left\langle 3^{N}, 2^{N}, 2^{N}\right\rangle\right) \leq a \times 10^{N} \\
& \xlongequal{\Longrightarrow h 1} 12^{N \omega / 3} \leq a \times 10^{N} \\
& \Longrightarrow 12^{\omega / 3} \leq a^{1 / N} \times 10 \\
& \left.\Longrightarrow 12^{\omega / 3} \leq 10 \quad \text { (take } N \rightarrow \infty\right) \\
& \Longrightarrow \omega \leq 2.779 \ldots \quad \text { [Bini et al. 79] }
\end{aligned}
$$

## Proposition 2

There exists a constant $a$ such that $R(T) \leq a \times \underline{R}(T)$ for any tensor $T$.

## Theorem 1

$R(\langle m, n, p\rangle) \leq t \Longrightarrow(m n p)^{\omega / 3} \leq t$

The constant $a$ can be "taken as one" when deriving an upper bound on $\omega$ using Theorem 1

## Theorem 2

$$
\underline{R}(\langle m, n, p\rangle) \leq t \Longrightarrow(m n p)^{\omega / 3} \leq t
$$

$$
\begin{aligned}
& \underline{R}\left(\left\langle3,2,2 \text { here we used } a^{1 / N} \rightarrow 1\right.\right. \\
& \begin{array}{l}
\stackrel{\text { Prop 2 }}{\Longrightarrow} R\left(\left\langle3^{N},\right.\right. \\
\stackrel{\text { Th 1 }}{\Longrightarrow} 12^{N \omega / 3} \\
\left.\left.\Longrightarrow 12^{\omega / 3} \leq \sqrt{N}, 2^{N}\right\rangle\right) \leq a \times 10^{N} \\
=a \times 10^{N} \\
a^{1 / N} \times 10 \\
\Longrightarrow 12^{\omega / 3} \leq \quad(\text { take } N \rightarrow \infty) \\
\Longrightarrow \omega \leq 2.779 \ldots \quad[\text { Bini et al. } 79]
\end{array}
\end{aligned}
$$

## Proposition 2

There exists a constant $a$ such that $R(T) \leq a \times \underline{R}(T)$ for any tensor $T$.

## Theorem 1

$R(\langle m, n, p\rangle) \leq t \Longrightarrow(m n p)^{\omega / 3} \leq t$

The constant $a$ can be "taken as one" when deriving an upper bound on $\omega$ using Theorem 1

## Theorem 2

$$
\underline{R}(\langle m, n, p\rangle) \leq t \Longrightarrow(m n p)^{\omega / 3} \leq t
$$

```
\(\underline{R}\left(\left\langle 3,2,2\right.\right.\) here we used \(a^{1 / N} \rightarrow 1\) this is the major source of inefficiency in Theorem 2
```

$$
\begin{aligned}
& \xrightarrow{\text { Poop } 2} R\left(\left\langle 3^{N}, \quad{ }^{N}, 2^{N}\right\rangle\right) \leq a \times 10^{N} \\
& \xrightarrow{\text { Th } 1} 12^{N \omega / 3} \xlongequal{\square} 12 \times 10^{N} \\
& \Longrightarrow 12^{\omega / 3} \leq a^{1 / N} \times 10 \\
& \Longrightarrow 12^{\omega / 3} \leq 10 \quad \text { (take } N \rightarrow \infty \text { ) } \\
& \Longrightarrow \omega \leq 2.779 \ldots \text { [Bini et al. } 79 \text { ] }
\end{aligned}
$$

## History of the main improvements on the exponent of square matrix multiplication

| Upper bound | Year | Authors |
| :--- | :--- | :--- |
| $\omega \leq 3$ |  |  |
| $\omega<2.81$ | 1969 | Strassen |
| $\omega<2.79$ | 1979 | Pan $\quad$ Border rank and Theorem 2 |
| $\omega<2.78$ | 1979 | Bini, Capovani, Romani and Lotti |
| $\omega<2.55$ | 1981 | Schönhage |
| $\omega<2.53$ | 1981 | Pan |
| $\omega<2.52$ | 1982 | Romani |
| $\omega<2.50$ | 1982 | Coppersmith and Winograd |
| $\omega<2.48$ | 1986 | Strassen |
| $\omega<2.376$ | 1987 | Coppersmith and Winograd |
| $\omega<2.373$ | 2010 | Stothers |
| $\omega<2.3729$ | 2012 | Vassilevska Williams |
| $\omega<2.3728639$ | 2014 | LG |

## Overview of the Lectures

Fundamental techniques for fast matrix multiplication (1969~1987)
> Basics of bilinear complexity theory: exponent of matrix multiplication, Strassen's algorithm, bilinear algorithms
> First technique: tensor rank and recursion
$>$ Second technique: border rank
$>$ Third technique: the asymptotic sum inequality
> Fourth technique: the laser method

Recent progress on matrix multiplication (1987~)
$>$ Laser method on powers of tensors
Lecture 2
> Other approaches
> Lower bounds
$>$ Rectangular matrix multiplication

## The asymptotic sum inequality (Section 4.2)

Schönhage's construction (1981):

$$
T_{\text {Schon }}=\sum_{i, j=1}^{3} a_{i} \otimes b_{j} \otimes c_{i j}+\sum_{k=1}^{4} u_{k} \otimes v_{k} \otimes w
$$

## The asymptotic sum inequality (Section 4.2)

Schönhage's construction (1981):

$$
T_{\text {Schon }}=\sum_{i, j=1}^{3} a_{i} \otimes b_{j} \otimes c_{i j}+\sum_{k=1}^{4} u_{k} \otimes v_{k} \otimes w
$$

$$
\begin{array}{ll}
\sum_{i, j=1}^{3} a_{i} \otimes b_{j} \otimes c_{i j} \cong\langle 3,1,3\rangle & 3 \times 1 \text { matrix by } 1 \times 3 \text { matrix } \\
\sum_{k=1}^{4} u_{k} \otimes v_{k} \otimes w \cong a_{i 1} \otimes b_{1 j} \otimes c_{i j} \\
\left.\sum_{k=1}^{4}, 4,1\right\rangle & 1 \times 4 \text { matrix by } 4 \times 1 \text { matrix }
\end{array} \quad \sum_{k=1}^{4} u_{1 k} \otimes v_{k 1} \otimes w_{11} .
$$

## The asymptotic sum inequality (Section 4.2)

Schönhage's construction (1981):

$$
T_{\text {Schon }}=\sum_{i, j=1}^{3} a_{i} \otimes b_{j} \otimes c_{i j}+\sum_{k=1}^{4} u_{k} \otimes v_{k} \otimes w
$$

$\sum_{i, j=1}^{3} a_{i} \otimes b_{j} \otimes c_{i j} \cong\langle 3,1,3\rangle \quad 3 \times 1$ matrix by $1 \times 3$ matrix $\quad \sum_{i, j=1}^{3} a_{i 1} \otimes b_{1 j} \otimes c_{i j}$
$\sum_{k=1}^{4} u_{k} \otimes v_{k} \otimes w \cong\langle 1,4,1\rangle \quad 1 \times 4$ matrix by $4 \times 1$ matrix $\quad \sum_{k=1}^{4} u_{1 k} \otimes v_{k 1} \otimes w_{11}$
$\underline{R}(\langle 3,1,3\rangle)=9$
$\underline{R}(\langle 1,4,1\rangle)=4$

## The asymptotic sum inequality (Section 4.2)

Schönhage's construction (1981):

$$
T_{\text {Schon }}=\sum_{i, j=1}^{3} a_{i} \otimes b_{j} \otimes c_{i j}+\sum_{k=1}^{4} u_{k} \otimes v_{k} \otimes w
$$

$$
\sum_{i, j=1}^{3} a_{i} \otimes b_{j} \otimes c_{i j} \cong\langle 3,1,3\rangle \quad 3 \times 1 \text { matrix by } 1 \times 3 \text { matrix } \quad \sum_{i, j=1}^{3} a_{i 1} \otimes b_{1 j} \otimes c_{i j}
$$

$$
\sum_{k=1}^{4} u_{k} \otimes v_{k} \otimes w \cong\langle 1,4,1\rangle \quad 1 \times 4 \text { matrix by } 4 \times 1 \text { matrix } \quad \sum_{k=1}^{4} u_{1 k} \otimes v_{k 1} \otimes w_{11}
$$

$$
\underline{R}(\langle 3,1,3\rangle)=9
$$

$$
\underline{R}(\langle 1,4,1\rangle)=4 \quad \Longrightarrow \underline{R}\left(T_{\text {Schon }}\right) \leq 13
$$

## The asymptotic sum inequality (Section 4.2)

Schönhage's construction (1981):

$$
T_{\text {Schon }}=\sum_{i, j=1}^{3} a_{i} \otimes b_{j} \otimes c_{i j}+\sum_{k=1}^{4} u_{k} \otimes v_{k} \otimes w
$$

$$
\begin{array}{ll}
\sum_{i, j=1}^{3} a_{i} \otimes b_{j} \otimes c_{i j} \cong\langle 3,1,3\rangle & 3 \times 1 \text { matrix by } 1 \times 3 \text { matrix } \\
\sum_{k=1}^{4} u_{k} \otimes v_{k} \otimes w \cong \sum_{i, j=1}^{3} a_{i 1} \otimes b_{1 j} \otimes c_{i j} \\
&
\end{array}
$$

$$
\underline{R}(\langle 3,1,3\rangle)=9
$$

$$
\underline{R}(\langle 1,4,1\rangle)=4 \quad \Longrightarrow \underline{R}\left(T_{\text {Schon }}\right) \leq 13
$$

Schönhage showed that $\underline{R}\left(T_{\text {schon }}\right) \leq 10$

## The asymptotic sum inequality (Section 4.2)

Schönhage's construction (1981):

$$
T_{\text {Schon }}=\sum_{i, j=1}^{3} a_{i} \otimes b_{j} \otimes c_{i j}+\sum_{k=1}^{4} u_{k} \otimes v_{k} \otimes w \quad \underline{R}\left(T_{\text {Schon }}\right) \leq 10
$$

## The asymptotic sum inequality (Section 4.2)

Schönhage's construction (1981):

$$
T_{\text {Schon }}=\sum_{i, j=1}^{3} a_{i} \otimes b_{j} \otimes c_{i j}+\sum_{k=1}^{4} u_{k} \otimes v_{k} \otimes w \quad \underline{R}\left(T_{\text {Schon }}\right) \leq 10
$$

$$
\lambda^{2} T_{\text {Schon }}=T^{\prime}+\lambda^{3} T^{\prime \prime}
$$

## The asymptotic sum inequality (Section 4.2)

## Schönhage's construction (1981):

$$
T_{\text {Schon }}=\sum_{i, j=1}^{3} a_{i} \otimes b_{j} \otimes c_{i j}+\sum_{k=1}^{4} u_{k} \otimes v_{k} \otimes w
$$

$$
\underline{R}\left(T_{\text {Schon }}\right) \leq 10
$$

$$
\lambda^{2} T_{\text {Schon }}=T^{\prime}+\lambda^{3} T^{\prime \prime}
$$

$$
\text { where } \quad \begin{align*}
T^{\prime}= & \left(a_{1}+\lambda u_{1}\right) \otimes\left(b_{1}+\lambda v_{1}\right) \otimes\left(w+\lambda^{2} c_{11}\right) \\
& +\left(a_{1}+\lambda u_{2}\right) \otimes\left(b_{2}+\lambda v_{2}\right) \otimes\left(w+\lambda^{2} c_{12}\right) \\
& +\left(a_{2}+\lambda u_{3}\right) \otimes\left(b_{1}+\lambda v_{3}\right) \otimes\left(w+\lambda^{2} c_{21}\right) \\
& +\left(a_{2}+\lambda u_{4}\right) \otimes\left(b_{2}+\lambda v_{4}\right) \otimes\left(w+\lambda^{2} c_{22}\right) \\
& +\left(a_{3}-\lambda u_{1}-\lambda u_{3}\right) \otimes b_{1} \otimes\left(w+\lambda^{2} c_{31}\right) \\
& +\left(a_{3}-\lambda u_{2}-\lambda u_{4}\right) \otimes b_{2} \otimes\left(w+\lambda^{2} c_{32}\right) \\
& +a_{1} \otimes\left(b_{3}-\lambda v_{1}-\lambda v_{2}\right) \otimes\left(w+\lambda^{2} c_{13}\right) \\
& +a_{2} \otimes\left(b_{3}-\lambda v_{3}-\lambda v_{4}\right) \otimes\left(w+\lambda^{2} c_{23}\right) \\
& +a_{3} \otimes b_{3} \otimes\left(w+\lambda^{2} c_{33}\right) \\
& -\left(a_{1}+a_{2}+a_{3}\right) \otimes\left(b_{1}+b_{2}+b_{3}\right) \otimes w
\end{align*}
$$

10 multiplications
and $T^{\prime \prime}$ is some tensor

## The asymptotic sum inequality (Section 4.2)

Schönhage's construction (1981):

the sum is direct (the two terms do not share variables)

## The asymptotic sum inequality (Section 4.2)

Schönhage's construction (1981):

the sum is direct (the two terms do not share variables)
formally:

$$
\begin{aligned}
& \sum_{i, j=1}^{3} a_{i} \otimes b_{j} \otimes c_{i j} \text { is a tensor over }\left(U_{1}, V_{1}, W_{1}\right) \\
& U_{1}=\operatorname{span}\left\{a_{1}, a_{2}, a_{3}\right\} \quad V_{1}=\operatorname{span}\left\{b_{1}, b_{2}, b_{3}\right\} \quad W_{1}=\operatorname{span}\left\{c_{11}, \ldots, c_{33}\right\} \\
& \sum_{k=1}^{4} u_{k} \otimes v_{k} \otimes w \quad \text { is a tensor over }\left(U_{2}, V_{2}, W_{2}\right) \\
& U_{2}=\operatorname{span}\left\{u_{1}, \ldots, u_{4}\right\} \quad V_{2}=\operatorname{span}\left\{v_{1}, \ldots, v_{4}\right\} \quad W_{2}=\operatorname{span}\{w\}
\end{aligned}
$$

$T_{\text {Schon }}$ is a tensor over $\left(U_{1} \oplus U_{2}, V_{1} \oplus V_{2}, W_{1} \oplus W_{2}\right)$

## The asymptotic sum inequality (Section 4.2)

Schönhage's construction (1981):
$T_{\text {Schon }}=\sum_{i, j=1}^{3} a_{i} \otimes b_{j} \otimes c_{i j}+\sum_{k=1}^{4} u_{k} \otimes v_{k} \otimes w \quad \underline{R}\left(T_{\text {Schon }}\right) \leq 10$
the sum is direct (the two terms do not share variables)

$$
\sum_{i, j=1}^{3} a_{i} \otimes b_{j} \otimes c_{i j} \cong\langle 3,1,3\rangle \quad \sum_{k=1}^{4} u_{k} \otimes v_{k} \otimes w \cong\langle 1,4,1\rangle
$$

## The asymptotic sum inequality (Section 4.2)

Schönhage's construction (1981):
$T_{\text {Schon }}=\sum_{i, j=1}^{3} a_{i} \otimes b_{j} \otimes c_{i j}+\sum_{k=1}^{4} u_{k} \otimes v_{k} \otimes w \quad \underline{R}\left(T_{\text {Schon }}\right) \leq 10$
the sum is direct (the two terms do not share variables)

$$
\sum_{i, j=1}^{3} a_{i} \otimes b_{j} \otimes c_{i j} \cong\langle 3,1,3\rangle \quad \sum_{k=1}^{4} u_{k} \otimes v_{k} \otimes w \cong\langle 1,4,1\rangle
$$

$$
T_{\text {Schon }} \cong\langle 3,1,3\rangle \oplus\langle 1,4,1\rangle
$$

## The asymptotic sum inequality (Section 4.2)

Schönhage's construction (1981):
$T_{\text {Schon }}=\sum_{i, j=1}^{3} a_{i} \otimes b_{j} \otimes c_{i j}+\sum_{k=1}^{4} u_{k} \otimes v_{k} \otimes w \quad \underline{R}\left(T_{\text {Schon }}\right) \leq 10$
the sum is direct (the two terms do not share variables)

$$
\sum_{i, j=1}^{3} a_{i} \otimes b_{j} \otimes c_{i j} \cong\langle 3,1,3\rangle \quad \sum_{k=1}^{4} u_{k} \otimes v_{k} \otimes w \cong\langle 1,4,1\rangle
$$

$$
T_{\text {Schon }} \cong\langle 3,1,3\rangle \oplus\langle 1,4,1\rangle
$$

Theorem (the asymptotic sum inequality, special case) [Schönhage 1981]
$\underline{R}\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right) \leq t \Longrightarrow\left(m_{1} n_{1} p_{1}\right)^{\omega / 3}+\left(m_{2} n_{2} p_{2}\right)^{\omega / 3} \leq t$

## The asymptotic sum inequality (Section 4.2)

Schönhage's construction (1981):

the sum is direct (the two terms do not share variables)

$$
\begin{aligned}
& \quad \sum_{i, j=1}^{3} a_{i} \otimes b_{j} \otimes c_{i j} \cong\langle 3,1,3\rangle \quad \sum_{k=1}^{4} u_{k} \otimes v_{k} \otimes w \cong\langle 1,4,1\rangle \\
& T_{\text {Schon }} \cong\langle 3,1,3\rangle \oplus\langle 1,4,1\rangle
\end{aligned}
$$

Theorem (the asymptotic sum inequality, special case) [Schönhage 1981]
$\underline{R}\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right) \leq t \Longrightarrow\left(m_{1} n_{1} p_{1}\right)^{\omega / 3}+\left(m_{2} n_{2} p_{2}\right)^{\omega / 3} \leq t$
Consequence: $9^{\omega / 3}+4^{\omega / 3} \leq 10$

## The asymptotic sum inequality (Section 4.2)

Schönhage's construction (1981):
$T_{\text {Schon }}=\sum_{i, j=1}^{3} a_{i} \otimes b_{j} \otimes c_{i j}+\sum_{k=1}^{4} u_{k} \otimes v_{k} \otimes w \quad \underline{R}\left(T_{\text {Schon }}\right) \leq 10$
the sum is direct (the two terms do not share variables)

$$
\begin{aligned}
& \quad \sum_{i, j=1}^{3} a_{i} \otimes b_{j} \otimes c_{i j} \cong\langle 3,1,3\rangle \quad \sum_{k=1}^{4} u_{k} \otimes v_{k} \otimes w \cong\langle 1,4,1\rangle \\
& T_{\text {Schon }} \cong\langle 3,1,3\rangle \oplus\langle 1,4,1\rangle
\end{aligned}
$$

Theorem (the asymptotic sum inequality, special case) [Schönhage 1981]
$\underline{R}\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right) \leq t \Longrightarrow\left(m_{1} n_{1} p_{1}\right)^{\omega / 3}+\left(m_{2} n_{2} p_{2}\right)^{\omega / 3} \leq t$
Consequence: $9^{\omega / 3}+4^{\omega / 3} \leq 10 \Longrightarrow \omega \leq 2.59 \ldots$

## The asymptotic sum inequality (Section 4.2)

Schönhage's construction (1981):
$T_{\text {Schon }}=\sum_{i, j=1}^{3} a_{i} \otimes b_{j} \otimes c_{i j}+\sum_{k=1}^{4} u_{k} \otimes v_{k} \otimes w \quad \underline{R}\left(T_{\text {Schon }}\right) \leq 10$
the sum is direct (the two terms do not share variables)

$$
\sum_{i, j=1}^{3} a_{i} \otimes b_{j} \otimes c_{i j} \cong\langle 3,1,3\rangle
$$

$$
\sum_{k=1}^{4} u_{k} \otimes v_{k} \otimes w \cong\langle 1,4,1\rangle
$$

$$
T_{\text {Schon }} \cong\langle 3,1,3\rangle \oplus\langle 1,4,1\rangle
$$

Theorem (the asymptotic sum inequality, special case) [Schönhage 1981]
$\underline{R}\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right) \leq t \Longrightarrow\left(m_{1} n_{1} p_{1}\right)^{\omega / 3}+\left(m_{2} n_{2} p_{2}\right)^{\omega / 3} \leq t$
Consequence: $9^{\omega / 3}+4^{\omega / 3} \leq 10 \Longrightarrow \omega \leq 2.59 \ldots$
Using a variant of this construction, Schönhage finally obtained $\omega \leq 2.54 \ldots$

## History of the main improvements on the exponent of square matrix multiplication

| Upper bound | Year | Authors |
| :--- | :--- | :--- |
| $\omega \leq 3$ |  |  |
| $\omega<2.81$ | 1969 | Strassen |
| $\omega<2.79$ | 1979 | Pan |
| $\omega<2.78$ | 1979 | Bini, Capovani, Romani and Lotti |
| $\omega<2.55$ | 1981 | Schönhage Asymptotic sum inequality |
| $\omega<2.53$ | 1981 | Pan |
| $\omega<2.52$ | 1982 | Romani |
| $\omega<2.50$ | 1982 | Coppersmith and Winograd |
| $\omega<2.48$ | 1986 | Strassen |
| $\omega<2.376$ | 1987 | Coppersmith and Winograd |
| $\omega<2.373$ | 2010 | Stothers |
| $\omega<2.3729$ | 2012 | Vassilevska Williams |
| $\omega<2.3728639$ | 2014 | LG |

## The asymptotic sum inequality

## Theorem 3 (the asymptotic sum inequality, general form) [Schönhage 1981]

$$
\underline{R}\left(\bigoplus_{i=1}^{k}\left\langle m_{i}, n_{i}, p_{i}\right\rangle\right) \leq t \Longrightarrow \sum_{i=1}^{k}\left(m_{i} n_{i} p_{i}\right)^{\omega / 3} \leq t
$$

Theorem (the asymptotic sum inequality, special case) [Schönhage 1981]
$\underline{R}\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right) \leq t \Longrightarrow\left(m_{1} n_{1} p_{1}\right)^{\omega / 3}+\left(m_{2} n_{2} p_{2}\right)^{\omega / 3} \leq t$
Consequence: $9^{\omega / 3}+4^{\omega / 3} \leq 10 \Longrightarrow \omega \leq 2.59 \ldots$
Using a variant of this construction, Schönhage finally obtained $\omega \leq 2.54 \ldots$

## The asymptotic sum inequality

Theorem (the asympotic sum inequality, special case)
$\underline{R}\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right) \leq t \Longrightarrow\left(m_{1} n_{1} p_{1}\right)^{\omega / 3}+\left(m_{2} n_{2} p_{2}\right)^{\omega / 3} \leq t$
Proof outline

## The asymptotic sum inequality

## Theorem (the asympotic sum inequality, special case)

$\underline{R}\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right) \leq t \Longrightarrow\left(m_{1} n_{1} p_{1}\right)^{\omega / 3}+\left(m_{2} n_{2} p_{2}\right)^{\omega / 3} \leq t$
Proof outline
Take the $N$-th power, for some large $N$ :

$$
t^{N} \geq \underline{R}\left(\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right)^{\otimes N}\right)
$$

## The asymptotic sum inequality

## Theorem (the asympotic sum inequality, special case)

$\underline{R}\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right) \leq t \Longrightarrow\left(m_{1} n_{1} p_{1}\right)^{\omega / 3}+\left(m_{2} n_{2} p_{2}\right)^{\omega / 3} \leq t$

## Proof outline

Take the $N$-th power, for some large $N$ :

$$
\begin{aligned}
t^{N} & \geq \underline{R}\left(\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right)^{\otimes N}\right) \\
& =\underline{R}\left(\sum_{a=0}^{N}\binom{N}{a}\left\langle m_{1}, n_{1}, p_{1}\right\rangle^{\otimes a} \otimes\left\langle m_{2}, n_{2}, p_{2}\right\rangle^{\otimes(N-a)}\right)
\end{aligned}
$$

## The asymptotic sum inequality

## Theorem (the asympotic sum inequality, special case)

$\underline{R}\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right) \leq t \Longrightarrow\left(m_{1} n_{1} p_{1}\right)^{\omega / 3}+\left(m_{2} n_{2} p_{2}\right)^{\omega / 3} \leq t$

## Proof outline

Take the $N$-th power, for some large $N$ :

$$
\begin{aligned}
t^{N} & \geq \underline{R}\left(\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right)^{\otimes N}\right) \\
& =\underline{R}(\sum_{a=0}^{N} \underbrace{\text { direct sum of }\left(\begin{array}{c}
N \\
a \\
a
\end{array}\right) \text { copies of }\left\langle m_{1}, n_{1}, p_{1}\right\rangle^{\otimes a} \otimes\left\langle m_{2}, n_{2}, p_{2}\right\rangle^{\otimes(N-a)}}\left\langle m_{1}, n_{1}, p_{1}\right\rangle^{\otimes a} \otimes\left\langle m_{2}, n_{2}, p_{2}\right\rangle^{\otimes(N-a)})
\end{aligned}
$$

## The asymptotic sum inequality

## Theorem (the asympotic sum inequality, special case)

$\underline{R}\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right) \leq t \Longrightarrow\left(m_{1} n_{1} p_{1}\right)^{\omega / 3}+\left(m_{2} n_{2} p_{2}\right)^{\omega / 3} \leq t$

## Proof outline

Take the $N$-th power, for some large $N$ :

$$
\begin{aligned}
t^{N} & \geq \underline{R}\left(\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right)^{\otimes N}\right) \\
& =\underline{R}\left(\sum_{a=0}^{N}\binom{N}{a}\left\langle m_{1}, n_{1}, p_{1}\right\rangle^{\otimes a} \otimes\left\langle m_{2}, n_{2}, p_{2}\right\rangle^{\otimes(N-a)}\right) \\
& =\underline{R}\left(\sum_{a=0}^{N}\binom{N}{a}\left\langle m_{1}^{a} m_{2}^{(N-a)}, n_{1}^{a} n_{2}^{(N-a)}, p_{1}^{a} p_{2}^{(N-a)}\right\rangle\right)
\end{aligned}
$$

## The asymptotic sum inequality

## Theorem (the asympotic sum inequality, special case)

$\underline{R}\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right) \leq t \Longrightarrow\left(m_{1} n_{1} p_{1}\right)^{\omega / 3}+\left(m_{2} n_{2} p_{2}\right)^{\omega / 3} \leq t$

## Proof outline

Take the $N$-th power, for some large $N$ :

$$
\begin{aligned}
t^{N} & \geq \underline{R}\left(\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right)^{\otimes N}\right) \\
& =\underline{R}(\sum_{a=0}^{N} \underbrace{a}_{\text {direct sum of }\binom{N}{a} \text { copies of }\left\langle m_{1}, n_{1}, p_{1}\right\rangle^{\otimes a} \otimes\left\langle m_{2}, n_{2}, p_{2}\right\rangle^{\otimes(N-a)}})^{\otimes(N-a)}\left\langle m_{1}, n_{1}, p_{1}\right\rangle^{\otimes a} \otimes\left\langle m_{2}, n_{2}, p_{2}\right\rangle^{\otimes(N-a)}) \\
& =\underline{R}\left(\sum_{a=0}^{N} \mathrm{~T}_{a}\binom{N}{a}\left\langle m_{1}^{a} m_{2}^{(N-a)}, n_{1}^{a} n_{2}^{(N-a)}, p_{1}^{a} p_{2}^{(N-a)}\right\rangle\right)
\end{aligned}
$$

## The asymptotic sum inequality

## Theorem (the asympotic sum inequality, special case)

$\underline{R}\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right) \leq t \Longrightarrow\left(m_{1} n_{1} p_{1}\right)^{\omega / 3}+\left(m_{2} n_{2} p_{2}\right)^{\omega / 3} \leq t$

## Proof outline

Take the $N$-th power, for some large $N$ :

$$
\begin{aligned}
t^{N} & \geq \underline{R}\left(\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right)^{\otimes N}\right) \\
& =\underline{R}(\sum_{a=0}^{N} \underbrace{a}_{\text {direct sum of }\binom{N}{a} \text { copies of }\left\langle m_{1}, n_{1}, p_{1}\right\rangle^{\otimes a} \otimes\left\langle m_{2}, n_{2}, p_{2}\right\rangle^{\otimes(N-a)}})\left\langle m_{1}, n_{1}, p_{1}\right\rangle^{\otimes a} \otimes\left\langle m_{2}, n_{2}, p_{2}\right\rangle^{\otimes(N-a)}) \\
& =\underline{R}\left(\sum_{a=0}^{N} \mathrm{~T}_{a}\binom{N}{a}\left\langle m_{1}^{a} m_{2}^{(N-a)}, n_{1}^{a} n_{2}^{(N-a)}, p_{1}^{a} p_{2}^{(N-a)}\right\rangle\right)
\end{aligned}
$$

By definition of $\omega$ we have $\binom{N}{a} \geq \underline{R}\left(\left\langle\binom{ N}{a}^{1 / \omega},\binom{N}{a}^{1 / \omega},\binom{N}{a}^{1 / \omega}\right\rangle\right)$.

## The asymptotic sum inequality

## Theorem (the asympotic sum inequality, special case)

$\underline{R}\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right) \leq t \Longrightarrow\left(m_{1} n_{1} p_{1}\right)^{\omega / 3}+\left(m_{2} n_{2} p_{2}\right)^{\omega / 3} \leq t$

## Proof outline

Take the $N$-th power, for some large $N$ :

$$
\begin{aligned}
& t^{N} \geq \underline{R}\left(\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right)^{\otimes N}\right) \\
&=\underline{R}\left(\sum_{a=0}^{N}\left(\binom{N}{a}\left\langle m_{1}, n_{1}, p_{1}\right\rangle^{\otimes a} \otimes\left\langle m_{2}, n_{2}, p_{2}\right\rangle^{\otimes(N-a)}\right)\right. \\
&=\underline{R}(\sum_{a=0}^{N} \underbrace{\binom{N}{a}\left\langle m_{1}^{a} m_{2}^{(N-a)}, k^{\omega} \geq \underline{R}(\langle k, k, k\rangle)\right.}_{\text {dire }} \\
& \mathrm{T}_{a} \sqrt{\left.\left.n_{2}^{(N-a)}, p_{1}^{a} p_{2}^{(N-a)}\right\rangle\right)}
\end{aligned}
$$

By definition of $\omega$ we have $\binom{N}{a} \geq \underline{R}\left(\left\langle\binom{ N}{a}^{1 / \omega},\binom{N}{a}^{1 / \omega},\binom{N}{a}^{1 / \omega}\right\rangle\right)$.

## The asymptotic sum inequality

## Theorem (the asympotic sum inequality, special case)

$\underline{R}\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right) \leq t \Longrightarrow\left(m_{1} n_{1} p_{1}\right)^{\omega / 3}+\left(m_{2} n_{2} p_{2}\right)^{\omega / 3} \leq t$

## Proof outline

Take the $N$-th power, for some large $N$ :

$$
\begin{aligned}
& t^{N} \geq \underline{R}\left(\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right)^{\otimes N}\right) \\
&=\underline{R}\left(\sum_{a=0}^{N}\binom{N}{a}\left\langle m_{1}, n_{1}, p_{1}\right\rangle^{\otimes a} \otimes\left\langle m_{2}, n_{2}, p_{2}\right\rangle^{\otimes(N-a)}\right) \\
&=\underline{R}(\sum_{a=0}^{N} \underbrace{\binom{N}{a}\left\langle m_{1}^{a} m_{2}^{(N-a)},\right.}_{\text {dire }} k^{\omega+\varepsilon} \geq \underline{R}(\langle k, k, k\rangle) \text { for a small } \varepsilon>0 \\
&\left.\left.\mathrm{T}_{a}^{(N-a)}, p_{1}^{a} p_{2}^{(N-a)}\right\rangle\right)
\end{aligned}
$$

By definition of $\omega$ we have $\binom{N}{a} \geq \underline{R}\left(\left\langle\binom{ N}{a}^{1 / \omega},\binom{N}{a}^{1 / \omega},\binom{N}{a}^{1 / \omega}\right\rangle\right)$.

## The asymptotic sum inequality

## Theorem (the asympotic sum inequality, special case)

$\underline{R}\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right) \leq t \Longrightarrow\left(m_{1} n_{1} p_{1}\right)^{\omega / 3}+\left(m_{2} n_{2} p_{2}\right)^{\omega / 3} \leq t$

## Proof outline

Take the $N$-th power, for some large $N$ :

$$
\begin{aligned}
& t^{N} \geq \underline{R}\left(\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right)^{\otimes N}\right) \\
&=\underline{R}\left(\sum_{a=0}^{N}\binom{N}{a}\left\langle m_{1}, n_{1}, p_{1}\right\rangle^{\otimes a} \otimes\left\langle m_{2}, n_{2}, p_{2}\right\rangle^{\otimes(N-a)}\right) \\
&=\underline{R}(\sum_{a=0}^{N} \underbrace{\binom{N}{a}\left\langle m_{1}^{a} m_{2}^{(N-a)}, k^{\omega+\varepsilon} \geq \underline{R}(\langle k, k, k\rangle) \text { for a small } \varepsilon>0\right.}_{\text {dire }} \\
& \mathrm{T}_{a}
\end{aligned}
$$

By definition of $\omega$ we have $\binom{N}{a} \geq \underline{R}\left(\left\langle\binom{ N}{a}^{1 / \omega},\binom{N}{a}^{1 / \omega},\binom{N}{a}^{1 / \omega}\right\rangle\right)$.

$$
\underline{R}\left(T_{a}\right) \geq \underline{R}\left(\left\langle\binom{ N}{a}^{1 / \omega} m_{1}^{a} m_{2}^{(N-a)},\binom{N}{a}^{1 / \omega} n_{1}^{a} n_{2}^{(N-a)},\binom{N}{a}^{1 / \omega} p_{1}^{a} p_{2}^{(N-a)}\right\rangle\right)
$$

$\binom{N}{a}$ multiplications "give" $\left\langle\binom{ N}{a}^{1 / \omega},\binom{N}{a}^{1 / \omega},\binom{N}{a}^{1 / \omega}\right\rangle$

$$
\mid 3 \leq t
$$

Take the $N$-t power, for some large $N$ :

By definition of $\omega$ we have $\binom{N}{a} \geq \underline{R}\left(\left\langle\binom{ N}{a}^{1 / \omega},\binom{N}{a}^{1 / \omega},\binom{N}{a}^{1 / \omega}\right\rangle\right)$.

$$
\underline{R}\left(T_{a}\right) \geq \underline{R}\left(\left\langle\binom{ N}{a}^{1 / \omega} m_{1}^{a} m_{2}^{(N-a)},\binom{N}{a}^{1 / \omega} n_{1}^{a} n_{2}^{(N-a)},\binom{N}{a}^{1 / \omega} p_{1}^{a} p_{2}^{(N-a)}\right\rangle\right)
$$

$\binom{N}{a}$ multiplications "give" $\left\langle\binom{ N}{a}^{1 / \omega},\binom{N}{a}^{1 / \omega},\binom{N}{a}^{1 / \omega}\right\rangle$
$\binom{N}{a}$ copies of $\left\langle m_{1}^{a} m_{2}^{(N-a)}, n_{1}^{a} n_{2}^{(N-a)}, p_{1}^{a} p_{2}^{(N-a)}\right\rangle$ "give"

$$
\left\langle\binom{ N}{a}^{1 / \omega},\binom{N}{a}^{1 / \omega},\binom{N}{a}^{1 / \omega}\right\rangle \otimes\left\langle m_{1}^{a} m_{2}^{(N-a)}, n_{1}^{a} n_{2}^{(N-a)}, p_{1}^{a} p_{2}^{(N-a)}\right\rangle
$$

Take the $N$-t power, for some large $N$ :

By definition of $\omega$ we have $\binom{N}{a} \geq \underline{R}\left(\left\langle\binom{ N}{a}^{1 / \omega},\binom{N}{a}^{1 / \omega},\binom{N}{a}^{1 / \omega}\right\rangle\right)$.

$$
\underline{R}\left(T_{a}\right) \geq \underline{R}\left(\left\langle\binom{ N}{a}^{1 / \omega} m_{1}^{a} m_{2}^{(N-a)},\binom{N}{a}^{1 / \omega} n_{1}^{a} n_{2}^{(N-a)},\binom{N}{a}^{1 / \omega} p_{1}^{a} p_{2}^{(N-a)}\right\rangle\right)
$$

$\binom{N}{a}$ multiplications "give" $\left\langle\binom{ N}{a}^{1 / \omega},\binom{N}{a}^{1 / \omega},\binom{N}{a}^{1 / \omega}\right\rangle$

Take the $N$-t power, for some large $N$ :

By definition $h$ of $\omega$ we have $\binom{N}{a} \geq \underline{R}\left(\left\langle\binom{ N}{a}^{1 / \omega},\binom{N}{a}^{1 / \omega},\binom{N}{a}^{1 / \omega}\right\rangle\right)$.

$$
\underline{R}\left(\underline{T_{a}}\right) \geq \underline{R}\left(\left\langle\binom{ N}{a}^{1 / \omega} m_{1}^{a} m_{2}^{(N-a)},\binom{N}{a}^{1 / \omega} n_{1}^{a} n_{2}^{(N-a)},\binom{N}{a}^{1 / \omega} p_{1}^{a} p_{2}^{(N-a)}\right\rangle\right)
$$

$\binom{N}{a}$ multiplications "give" $\left\langle\binom{ N}{a}^{1 / \omega},\binom{N}{a}^{1 / \omega},\binom{N}{a}^{1 / \omega}\right\rangle$
$\mathrm{T}_{a}$

Take the $N-\mathrm{t}$ power, for some large $N$ :

$$
\begin{aligned}
& \begin{aligned}
& t^{N} \geq=\left\{\begin{array}{l}
\left(\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right)^{\otimes N}\right) \\
\\
\end{array}=\begin{array}{l}
\left.\left(\begin{array}{l}
N \\
\sum_{a=0}^{N} \\
a
\end{array}\right)\left\langle m_{1}, n_{1}, p_{1}\right\rangle^{\otimes a} \otimes\left\langle m_{2}, n_{2}, p_{2}\right\rangle^{\otimes(N-a)}\right)
\end{array}\right. \\
& \text { Use } k^{\omega+\varepsilon} \geq \underline{R}(\langle k, k, k\rangle) \text { for a small } \varepsilon>0
\end{aligned} \\
& =\underline{n}(\sum_{a=0}^{\sum_{a}^{N}} \underbrace{\binom{N}{a}\left\langle m_{1}^{a} m_{2}^{(N-a)},\right.}\left|n_{2}^{(N-a)}, p_{1}^{a} p_{2}^{(N-a)}\right\rangle)
\end{aligned}
$$

By definition of $\omega$ we have $\binom{N}{a} \geq \underline{R}\left(\left\langle\binom{ N}{a}^{1 / \omega},\binom{N}{a}^{1 / \omega},\binom{N}{a}^{1 / \omega}\right\rangle\right)$.

$$
\underline{R}\left(\underline{T_{a}}\right) \geq \underline{R}\left(\left\lfloor\binom{ N}{a}^{1 / \omega} m_{1}^{a} m_{2}^{(N-a)},\binom{N}{a}^{1 / \omega} n_{1}^{a} n_{2}^{(N-a)},\binom{N}{a}^{1 / \omega} p_{1}^{a} p_{2}^{(N-a)}\right\rangle\right)
$$

$\binom{N}{a}$ multiplications "give" $\left\langle\binom{ N}{a}^{1 / \omega},\binom{N}{a}^{1 / \omega},\binom{N}{a}^{1 / \omega}\right\rangle$
$\mathrm{T}_{a}$

Take the $N-\mathrm{t}$ power, for some large $N$ :

$$
\begin{aligned}
& \begin{aligned}
t^{N} & \geq=\left\{\begin{array}{l}
\left(\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right)^{\otimes N}\right) \\
\\
\end{array}=\underline{\sum_{\text {dire }}^{N} \sum_{a=0}^{N} k^{N} k^{\omega+\varepsilon} \geq \underline{R}(\langle k, k, k\rangle) \text { for a small } \varepsilon>0}\left\langle m_{1}, n_{1}, p_{1}\right\rangle^{\otimes a} \otimes\left\langle m_{2}, n_{2}, p_{2}\right\rangle^{\otimes(N-a)}\right)
\end{aligned} \\
& =\underline{R}((\left.\sum_{a=0}^{N} \underbrace{\binom{N}{a}\left\langle m_{1}^{a} m_{2}^{(N-a)},\right.}_{a} \right\rvert\, \sqrt{\left.n_{2}^{(N-a)}, p_{1}^{a} p_{2}^{(N-a)}\right\rangle})
\end{aligned}
$$

By definition of $\omega$ we have $\binom{N}{a} \geq \underline{R}\left(\left\langle\binom{ N}{a}^{1 / \omega},\binom{N}{a}^{1 / \omega},\binom{N}{a}^{1 / \omega}\right\rangle\right)$.

$$
t^{N} \geq \underline{R}\left(\underline{T_{a}}\right) \geq \underline{R}\left(\left\lfloor\binom{ N}{a}^{1 / \omega} m_{1}^{a} m_{2}^{(N-a)},\binom{N}{a}^{1 / \omega} n_{1}^{a} n_{2}^{(N-a)},\binom{N}{a}^{1 / \omega} p_{1}^{a} p_{2}^{(N-a)}\right\rangle\right)
$$

## The asymptotic sum inequality

## Theorem (the asymptotic sum inequality, special case)

$$
\underline{R}\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right) \leq t \Longrightarrow\left(m_{1} n_{1} p_{1}\right)^{\omega / 3}+\left(m_{2} n_{2} p_{2}\right)^{\omega / 3} \leq t
$$

$$
t^{N} \geq \underline{R}(\sum_{a=0}^{N} \underbrace{\binom{N}{a}\left\langle m_{1}^{a} m_{2}^{(N-a)}, n_{1}^{a} n_{2}^{(N-a)}, p_{1}^{a} p_{2}^{(N-a)}\right\rangle}_{\mathrm{T}_{a}})
$$

For any $a: t^{N} \geq \underline{R}\left(T_{a}\right) \geq \underline{R}\left(\left\langle\binom{ N}{a}^{1 / \omega} m_{1}^{a} m_{2}^{(N-a)},\binom{N}{a}^{1 / \omega} n_{1}^{a} n_{2}^{(N-a)},\binom{N}{a}^{1 / \omega} p_{1}^{a} p_{2}^{(N-a)}\right\rangle\right)$

## The asymptotic sum inequality

## Theorem (the asymptotic sum inequality, special case)

$\underline{R}\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right) \leq t \Longrightarrow\left(m_{1} n_{1} p_{1}\right)^{\omega / 3}+\left(m_{2} n_{2} p_{2}\right)^{\omega / 3} \leq t$


For any $a: t^{N} \geq \underline{R}\left(T_{a}\right) \geq \underline{R}\left(\left\langle\binom{ N}{a}^{1 / \omega} m_{1}^{a} m_{2}^{(N-a)},\binom{N}{a}^{1 / \omega} n_{1}^{a} n_{2}^{(N-a)},\binom{N}{a}^{1 / \omega} p_{1}^{a} p_{2}^{(N-a)}\right\rangle\right)$

$$
\xlongequal{\text { Th1 }} t^{N} \geq\left(\binom{N}{a}^{3 / \omega}\left(m_{1} n_{1} p_{1}\right)^{a}\left(m_{2} n_{2} p_{2}\right)^{N-a}\right)^{\omega / 3}
$$

## The asymptotic sum inequality

## Theorem (the asymptotic sum inequality, special case)

$\underline{R}\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right) \leq t \Longrightarrow\left(m_{1} n_{1} p_{1}\right)^{\omega / 3}+\left(m_{2} n_{2} p_{2}\right)^{\omega / 3} \leq t$


For any $a: t^{N} \geq \underline{R}\left(T_{a}\right) \geq \underline{R}\left(\left\langle\binom{ N}{a}^{1 / \omega} m_{1}^{a} m_{2}^{(N-a)},\binom{N}{a}^{1 / \omega} n_{1}^{a} n_{2}^{(N-a)},\binom{N}{a}^{1 / \omega} p_{1}^{a} p_{2}^{(N-a)}\right\rangle\right)$

$$
\stackrel{\text { Th1 }}{\Longrightarrow} t^{N} \geq\left(\binom{N}{a}^{3 / \omega}\left(m_{1} n_{1} p_{1}\right)^{a}\left(m_{2} n_{2} p_{2}\right)^{N-a}\right)^{\omega / 3}=\binom{N}{a}\left(\left(m_{1} n_{1} p_{1}\right)^{a}\left(m_{2} n_{2} p_{2}\right)^{N-a}\right)^{\omega / 3}
$$

## The asymptotic sum inequality

## Theorem (the asymptotic sum inequality, special case)

$\underline{R}\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right) \leq t \Longrightarrow\left(m_{1} n_{1} p_{1}\right)^{\omega / 3}+\left(m_{2} n_{2} p_{2}\right)^{\omega / 3} \leq t$

$$
t^{N} \geq \underline{R}(\sum_{a=0}^{N} \underbrace{\binom{N}{a}\left\langle m_{1}^{a} m_{2}^{(N-a)}, n_{1}^{a} n_{2}^{(N-a)}, p_{1}^{a} p_{2}^{(N-a)}\right\rangle}_{\mathrm{T}_{a}})
$$

For any $a: t^{N} \geq \underline{R}\left(T_{a}\right) \geq \underline{R}\left(\left\langle\binom{ N}{a}^{1 / \omega} m_{1}^{a} m_{2}^{(N-a)},\binom{N}{a}^{1 / \omega} n_{1}^{a} n_{2}^{(N-a)},\binom{N}{a}^{1 / \omega} p_{1}^{a} p_{2}^{(N-a)}\right\rangle\right)$

$$
\stackrel{\text { Th1 }}{\Longrightarrow} t^{N} \geq\left(\binom{N}{a}^{3 / \omega}\left(m_{1} n_{1} p_{1}\right)^{a}\left(m_{2} n_{2} p_{2}\right)^{N-a}\right)^{\omega / 3}=\binom{N}{a}\left(\left(m_{1} n_{1} p_{1}\right)^{a}\left(m_{2} n_{2} p_{2}\right)^{N-a}\right)^{\omega / 3}
$$

Summing over all $a \in\{0, \ldots, N\}$ :

$$
(N+1) \times t^{N} \geq\left(\left(m_{1} n_{1} p_{1}\right)^{\omega / 3}+\left(m_{2} n_{2} p_{2}\right)^{\omega / 3}\right)^{N}
$$

## The asymptotic sum inequality

## Theorem (the asymptotic sum inequality, special case)

$\underline{R}\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right) \leq t \Longrightarrow\left(m_{1} n_{1} p_{1}\right)^{\omega / 3}+\left(m_{2} n_{2} p_{2}\right)^{\omega / 3} \leq t$

$$
t^{N} \geq \underline{R}(\sum_{a=0}^{N} \underbrace{\binom{N}{a}\left\langle m_{1}^{a} m_{2}^{(N-a)}, n_{1}^{a} n_{2}^{(N-a)}, p_{1}^{a} p_{2}^{(N-a)}\right\rangle}_{\mathrm{T}_{a}})
$$

For any $a: t^{N} \geq \underline{R}\left(T_{a}\right) \geq \underline{R}\left(\left\langle\binom{ N}{a}^{1 / \omega} m_{1}^{a} m_{2}^{(N-a)},\binom{N}{a}^{1 / \omega} n_{1}^{a} n_{2}^{(N-a)},\binom{N}{a}^{1 / \omega} p_{1}^{a} p_{2}^{(N-a)}\right\rangle\right)$

$$
\stackrel{\text { Th1 }}{\Longrightarrow} t^{N} \geq\left(\binom{N}{a}^{3 / \omega}\left(m_{1} n_{1} p_{1}\right)^{a}\left(m_{2} n_{2} p_{2}\right)^{N-a}\right)^{\omega / 3}=\binom{N}{a}\left(\left(m_{1} n_{1} p_{1}\right)^{a}\left(m_{2} n_{2} p_{2}\right)^{N-a}\right)^{\omega / 3}
$$

Summing over all $a \in\{0, \ldots, N\}$ :

$$
(N+1) \times t^{N} \geq\left(\left(m_{1} n_{1} p_{1}\right)^{\omega / 3}+\left(m_{2} n_{2} p_{2}\right)^{\omega / 3}\right)^{N}
$$

Taking power $1 / N: \quad t \geq\left(m_{1} n_{1} p_{1}\right)^{\omega / 3}+\left(m_{2} n_{2} p_{2}\right)^{\omega / 3} \quad$ QED

## The asymptotic sum inequality

## Theorem (the asymptotic sum inequality, special case)

## $\underline{R}\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right) \leq t \Longrightarrow\left(m_{1} n_{1} p_{1}\right)^{\omega / 3}+\left(m_{2} n_{2} p_{2}\right)^{\omega / 3} \leq t$

here we used $(N+1)^{1 / N} \rightarrow 1$

Summing over all $a \in\{0, \ldots, N\}$ :

$$
(N+1) \times t^{N} \| \geq\left(\left(m_{1} n_{1} p_{1}\right)^{\omega / 3}+\left(m_{2} n_{2} p_{2}\right)^{\omega / 3}\right)^{N}
$$

Taking power $1 / N: \quad t \geq\left(m_{1} n_{1} p_{1}\right)^{\omega / 3}+\left(m_{2} n_{2} p_{2}\right)^{\omega / 3} \quad$ QED

## The asymptotic sum inequality

## Theorem (the asymptotic sum inequality, special case)

$$
\underline{R}\left(\left\langle m_{1}, n_{1}, p_{1}\right\rangle \oplus\left\langle m_{2}, n_{2}, p_{2}\right\rangle\right) \leq t \Longrightarrow\left(m_{1} n_{1} p_{1}\right)^{\omega / 3}+\left(m_{2} n_{2} p_{2}\right)^{\omega / 3} \leq t
$$

here we used $(N+1)^{1 / N} \rightarrow 1$
this is the major source of inefficiency in the asymptotic sum inequality
For any $a: t^{N} \geq \underline{R}\left(T_{a}\right)$

$$
\begin{aligned}
& t^{N} \geq \underline{R}\left(T_{a}\right) \sqrt{\underline{R}\left(\left(\binom{N}{a}^{1 / \omega} m_{1}^{a} m_{2}^{(N-a)},\binom{N}{a}^{1 / \omega} n_{1}^{a} n_{2}^{(N-a)},\binom{N}{a}^{1 / \omega} p_{1}^{a} p_{2}^{(N-a)}\right\rangle\right)} \\
& \left.\xlongequal{N} t^{N / \omega} \geq\left(m_{1} n_{1} p_{1}\right)^{a}\left(m_{2} n_{2} p_{2}\right)^{N-a}\right)^{\omega / 3}=\binom{N}{a}\left(\left(m_{1} n_{1} p_{1}\right)^{a}\left(m_{2} n_{2} p_{2}\right)^{N-a}\right)^{\omega / 3}
\end{aligned}
$$

Summing over all $a \in\{0, \ldots, N\}$ :

$$
(N+1) \times t^{N} \| \geq\left(\left(m_{1} n_{1} p_{1}\right)^{\omega / 3}+\left(m_{2} n_{2} p_{2}\right)^{\omega / 3}\right)^{N}
$$

Taking power $1 / N: \quad t \geq\left(m_{1} n_{1} p_{1}\right)^{\omega / 3}+\left(m_{2} n_{2} p_{2}\right)^{\omega / 3} \quad$ QED

## History of the main improvements on the exponent of square matrix multiplication

| Upper bound | Year | Authors |
| :--- | :--- | :--- |
| $\omega \leq 3$ |  |  |
| $\omega<2.81$ | 1969 | Strassen |
| $\omega<2.79$ | 1979 | Pan |
| $\omega<2.78$ | 1979 | Bini, Capovani, Romani and Lotti |
| $\omega<2.55$ | 1981 | Schönhage Asymptotic sum inequality |
| $\omega<2.53$ | 1981 | Pan |
| $\omega<2.52$ | 1982 | Romani |
| $\omega<2.50$ | 1982 | Coppersmith and Winograd |
| $\omega<2.48$ | 1986 | Strassen |
| $\omega<2.376$ | 1987 | Coppersmith and Winograd |
| $\omega<2.373$ | 2010 | Stothers |
| $\omega<2.3729$ | 2012 | Vassilevska Williams |
| $\omega<2.3728639$ | 2014 | LG |

## Overview of the Lectures

Fundamental techniques for fast matrix multiplication (1969~1987)
> Basics of bilinear complexity theory: exponent of matrix multiplication, Strassen's algorithm, bilinear algorithms
> First technique: tensor rank and recursion
$>$ Second technique: border rank
$>$ Third technique: the asymptotic sum inequality
$>$ Fourth technique: the laser method

Recent progress on matrix multiplication (1987~)
$>$ Laser method on powers of tensors
Lecture 2
> Other approaches
> Lower bounds
$>$ Rectangular matrix multiplication

