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Algebraic Complexity Theory

 lower bounds on the complexity (in algebraic models of 
computation) of concrete problems

 powerful techniques to construct fast algorithms for 
computational problems with an algebraic structure

 Main Achievements:

 Several subareas:

 high degree algebraic complexity: study of high-degree polynomials
 low degree algebraic complexity: linear forms, bilinear forms,…

in particular matrix multiplication 

the main concepts in low degree algebraic complexity theory have been 
introduced for the study of the complexity of matrix multiplication

 Algebraic complexity theory: study of computation using 
algebraic models
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Matrix Multiplication

 computing the transitivity closure of a graph
 computing the all-pairs shortest paths in graphs
 detecting directed cycles in a graph
 exact algorithms for MAX-2SAT
 …

 In several areas of theoretical computer science, the best 
known algorithms use matrix multiplication:

 inverting a matrix
 solving a system of linear equations
 computing a system of linear equations
 computing the determinant
 …

 Many problems in linear algebra have the same complexity as 
matrix multiplication:

 This is one of the most fundamental problems in mathematics 
and computer science



Matrix Multiplication: Trivial Algorithm
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n multiplications and (n-1) additions

Trivial algorithm: n2(2n-1)=O(n3) arithmetic operations

We can do better

cij = �
𝑘𝑘=1

𝑛𝑛

aikbkj for all 1 ≤ i ≤ n and 1 ≤ j ≤ n

Compute the product of two n x n matrices A and B over a field F

aij bij cij
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Algebraic Model of Computation

Compute the product of two n x n matrices A and B over a field F

Model #1: algebraic circuits 

 gates: +,−,×,÷ (operations on two elements of the field)
 inputs: aij, bij (2n2 inputs)
 output: cij = ∑𝑘𝑘=1𝑛𝑛 aikbkj

Model #2: straight-line programs (sequence of instructions)

size of the shortest straight-line program computing the product𝐶𝐶 𝑛𝑛 =

Informally: minimal number of arithmetic operations needed to compute the product

𝐶𝐶 𝑛𝑛 ≤ 𝑛𝑛2(2𝑛𝑛 − 1) using the formulas cij = ∑𝑘𝑘=1𝑛𝑛 aikbkj

Straightforward algorithm:

for instance 𝐶𝐶 2 ≤ 12 (8 multiplications and 4 additions)



The Exponent of Matrix Multiplication

Exponent of matrix multiplication n2 entries need to be computed

Obviously, 2 ≤ ω ≤ 3= inf 𝛼𝛼 𝐶𝐶 𝑛𝑛 = 𝑂𝑂(𝑛𝑛𝛼𝛼)ω

Compute the product of two n x n matrices A and B over a field F

size of the shortest straight-line program computing the product𝐶𝐶 𝑛𝑛 =

𝐶𝐶 𝑛𝑛 ≤ 𝑛𝑛2(2𝑛𝑛 − 1) using the formulas cij = ∑𝑘𝑘=1𝑛𝑛 aikbkj

Straightforward algorithm:

ω = inf 𝛼𝛼 𝐶𝐶 𝑛𝑛 ≤ 𝑛𝑛𝛼𝛼 for all large enough 𝑛𝑛
equivalently:

𝐶𝐶 𝑛𝑛 = 𝑂𝑂(𝑛𝑛3)



The Exponent of Matrix Multiplication

Exponent of matrix multiplication

Obviously, 2 ≤ ω ≤ 3= inf 𝛼𝛼 𝐶𝐶 𝑛𝑛 = 𝑂𝑂(𝑛𝑛𝛼𝛼)ω

Compute the product of two n x n matrices A and B over a field F

size of the shortest straight-line program computing the product𝐶𝐶 𝑛𝑛 =

ω = inf 𝛼𝛼 𝐶𝐶 𝑛𝑛 ≤ 𝑛𝑛𝛼𝛼 for all large enough 𝑛𝑛
equivalently:

Two remarks:

 this is an inf and not a min since the exponent may be achieved by 
an algorithm with complexity of the form “O(nω+ε) for any ε>0”

 ω may depend on the field (but can depend only on its characteristic)



History of the main improvements on the
exponent of square matrix multiplication

Upper bound Year Authors
ω ≤ 3
ω < 2.81                1969      Strassen
ω < 2.79                1979      Pan
ω < 2.78                1979      Bini, Capovani, Romani and Lotti
ω < 2.55                1981      Schönhage
ω < 2.53                1981      Pan
ω < 2.52                1982      Romani
ω < 2.50                1982      Coppersmith and Winograd
ω < 2.48                1986      Strassen
ω < 2.376              1987      Coppersmith and Winograd
ω < 2.374              2010      Stothers
ω < 2.3729            2012      Vassilevska Williams
ω < 2.3728639      2014      LG

What is ω? ω = 2?
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History of the main improvements on the
exponent of square matrix multiplication

Upper bound Year Authors
ω ≤ 3
ω < 2.81                1969      Strassen
ω < 2.79                1979      Pan
ω < 2.78                1979      Bini, Capovani, Romani and Lotti
ω < 2.55                1981      Schönhage
ω < 2.53                1981      Pan
ω < 2.52                1982      Romani
ω < 2.50                1982      Coppersmith and Winograd
ω < 2.48                1986      Strassen
ω < 2.376              1987      Coppersmith and Winograd
ω < 2.374              2010      Stothers
ω < 2.3729            2012      Vassilevska Williams
ω < 2.3728639      2014      LG

Remark: the recent algorithms are not practical

O(n2.55), but with a large constant in the big-O notation

Laser 
method

Asymptotic 
sum 

inequality



The Exponent of Matrix Multiplication

Exponent of matrix multiplication

= inf 𝛼𝛼 𝐶𝐶 𝑛𝑛 = 𝑂𝑂(𝑛𝑛𝛼𝛼)ω

Compute the product of two n x n matrices A and B over a field F

size of the shortest straight-line program computing the product𝐶𝐶 𝑛𝑛 =

In 1969, Strassen gave the first sub-cubic time algorithm for matrix 
multiplication 

Complexity: O(n2.81) arithmetic operations

𝐶𝐶 𝑛𝑛 = O(n2.81)

ω ≤ 2.81



7 multiplications
18 additions/substractions worse than the trivial algorithm

(8 multiplications and 4 additions)

Strassen’s algorithm

A = 𝑎𝑎11 𝑎𝑎12
𝑎𝑎21 𝑎𝑎22

B = 𝑏𝑏11 𝑏𝑏12
𝑏𝑏21 𝑏𝑏22

Goal: compute the product of                        by    

𝐶𝐶 2 ≤ 25

entries of the output matrix

(for the product of two 2×2 matrices)



Strassen’s algorithm (for the product of two 2k×2k matrices)

7 multiplications of two 2k-1 × 2k-1 matrices 

18 additions/substractions of two 2k-1 × 2k-1 matrices 
‣ 22(k-1) scalar operations for each

‣ done recursively using Strassen’s algorithm

A = 𝐴𝐴11 𝐴𝐴12
𝐴𝐴21 𝐴𝐴22

B = 𝐵𝐵11 𝐵𝐵12
𝐵𝐵21 𝐵𝐵22

Goal: compute the product of                        by    

Aij, Bij: matrices of size 2k-1 × 2k-1



Strassen’s algorithm

7 multiplications of two 2k-1 × 2k-1 matrices 

18 additions/substractions of two 2k-1 × 2k-1 matrices 
‣ 22(k-1) scalar operations for each

‣ done recursively using Strassen’s algorithm

Aij, Bij: matrices of size 2k-1 × 2k-1

Complexity of this algorithm
𝑇𝑇 2𝑘𝑘 = 7 × 𝑇𝑇(2𝑘𝑘−1) + 18 × 22(𝑘𝑘−1)

= 𝑂𝑂(7𝑘𝑘)

= 𝑂𝑂 2𝑘𝑘
log27

[Strassen 69]
ω ≤ log27 = 2.807…

Observation: the complexity of Strassen’s algorithm is dominated by 
the number of (scalar) multiplications

A = 𝐴𝐴11 𝐴𝐴12
𝐴𝐴21 𝐴𝐴22

B = 𝐵𝐵11 𝐵𝐵12
𝐵𝐵21 𝐵𝐵22

Goal: compute the product of                        by    

(for the product of two 2k×2k matrices)

Conclusion: C(2k) = O((2k) )log27

Exponent of matrix multiplication

= inf 𝛼𝛼 𝐶𝐶 𝑛𝑛 = 𝑂𝑂(𝑛𝑛𝛼𝛼)ω

Remember:



Bilinear Algorithms 

A bilinear algorithm for matrix multiplication is an algebraic algorithm of the form:
t is the bilinear complexity of the algorithm

bilinear complexity of the best bilinear algorithm 
computing the product of two n × n matrices

𝐶𝐶bil 𝑛𝑛 =



Exponent of matrix multiplication

Bilinear Algorithms 

Corollary

= inf 𝛼𝛼 𝐶𝐶bil 𝑛𝑛 = 𝑂𝑂(𝑛𝑛𝛼𝛼)ω

Example (Strassen’s bound):

“recursion”

⟹ 𝐶𝐶 𝑚𝑚𝑘𝑘 = 𝑂𝑂(𝑡𝑡𝑘𝑘) “complexity dominated by the 
number of multiplications”

= inf 𝛼𝛼 𝐶𝐶 𝑛𝑛 = 𝑂𝑂(𝑛𝑛𝛼𝛼)ω

By generalizing Strassen’s recursive argument we obtain:
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The tensor of matrix multiplication
Definition 1
The tensor corresponding to the multiplication of an m� n matrix by
an n� p matrix is m�

i=1

p�

j=1

n�

k=1

aik � bkj � cij .



The tensor of matrix multiplication
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The tensor of matrix multiplication

intuitive interpretation: ‣ this is a formal sum
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The tensor of matrix multiplication

intuitive interpretation: ‣ this is a formal sum

‣ when the aik and the bkj are replaced by the 
   corresponding entries of matrices, the 
   coefficient of cij  becomes

�n
k=1 aikbkj
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The tensor of matrix multiplication

intuitive interpretation: ‣ this is a formal sum

‣ when the aik and the bkj are replaced by the 
   corresponding entries of matrices, the 
   coefficient of cij  becomes

�n
k=1 aikbkj

why this is useful: ‣ one object instead of mp objects

Definition 1
The tensor corresponding to the multiplication of an m� n matrix by
an n� p matrix is m�
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The tensor of matrix multiplication

intuitive interpretation: ‣ this is a formal sum

‣ when the aik and the bkj are replaced by the 
   corresponding entries of matrices, the 
   coefficient of cij  becomes

�n
k=1 aikbkj

why this is useful: ‣ one object instead of mp objects
‣ shows the symmetries between the two input matrices
  and the output matrix (see later)

Definition 1
The tensor corresponding to the multiplication of an m� n matrix by
an n� p matrix is m�

i=1
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The tensor of matrix multiplication
Definition 1
The tensor corresponding to the multiplication of an m� n matrix by
an n� p matrix is m�

i=1

p�

j=1
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k=1

aik � bkj � cij .�m,n, p� =

Rank (slightly informal definition):
R(�m,n, p�) = minimal t such that �m,n, p� can be written

as the sum of t terms of the form
(lin. comb. of aij) � (lin. comb. of bij) � (lin. comb. of cij).
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The tensor of matrix multiplication
Definition 1
The tensor corresponding to the multiplication of an m� n matrix by
an n� p matrix is m�

i=1

p�

j=1

n�

k=1

aik � bkj � cij .�m,n, p� =

Rank (slightly informal definition): R(�m,n, p�) � mnp

one term

R(�2, 2, 2�) � 7

�2, 2, 2� =a11 � (b12 � b22)� (c12 + c22)
+ (a11 + a12)� b22 � (�c11 + c12)
+ (a21 + a22)� b11 � (c21 � c22)
+ a22 � (b21 � b11)� (c11 + c21)
+ (a11 + a22)� (b11 + b22)� (c11 + c22)
+ (a12 � a22)� (b21 + b22)� c11

+ (a11 � a21)� (b11 + b12)� (�c22)

Strassen’s algorithm gives 

R(�m,n, p�) = minimal t such that �m,n, p� can be written
as the sum of t terms of the form

(lin. comb. of aij) � (lin. comb. of bij) � (lin. comb. of cij).



The tensor of matrix multiplication
Definition 1
The tensor corresponding to the multiplication of an m� n matrix by
an n� p matrix is m�

i=1

p�

j=1
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k=1

aik � bkj � cij .�m,n, p� =

Rank (slightly informal definition): R(�m,n, p�) � mnp

one term
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R(�m,n, p�) = minimal t such that �m,n, p� can be written
as the sum of t terms of the form

(lin. comb. of aij) � (lin. comb. of bij) � (lin. comb. of cij).

1. Compute: m1 = a11 � (b12 � b22),

m2 = (a11 + a12) � b22,

m3 = (a21 + a22) � b11,

m4 = a22 � (b21 � b11),

m5 = (a11 + a22) � (b11 + b22),

m6 = (a12 � a22) � (b21 + b22),

m7 = (a11 � a21) � (b11 + b12).

2. Output: �m2 + m4 + m5 + m6 = c11,

m1 + m2 = c12,

m3 + m4 = c21,

m1 �m3 + m5 �m7 = c22.
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The tensor of matrix multiplication
Definition 1
The tensor corresponding to the multiplication of an m� n matrix by
an n� p matrix is m�

i=1

p�

j=1

n�

k=1

aik � bkj � cij .�m,n, p� =

Rank (slightly informal definition): R(�m,n, p�) � mnp

one term

R(�2, 2, 2�) � 7

�2, 2, 2� =a11 � (b12 � b22)� (c12 + c22)
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� = inf
�

� | R(�n, n, n�) = O(n�)
�



Property (Equation (3.2))

Properties of this tensor
Definition 1
The tensor corresponding to the multiplication of an m� n matrix by
an n� p matrix is m�

i=1

p�

j=1

n�

k=1

aik � bkj � cij .�m,n, p� =

�m,n, p� � �m�, n�, p�� �= �mm�, nn�, pp��



Property (Equation (3.2))

Properties of this tensor
Definition 1
The tensor corresponding to the multiplication of an m� n matrix by
an n� p matrix is m�

i=1
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Properties of this tensor
Definition 1
The tensor corresponding to the multiplication of an m� n matrix by
an n� p matrix is m�

i=1

p�

j=1

n�
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aik � bkj � cij .�m,n, p� =

R(�m,n, p�) = R(�m, p, n�) = · · · = R(�p, n,m�)
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Consequence:

n� n matrix by n� n2 matrix

same (bilinear) complexity!
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n� n2 matrix by n2 � n matrix
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The first Inequality: applications
Theorem 1

R(�m,n, p�) � t =� (mnp)�/3 � t

Strassen 1969:
R(�2, 3, 3�) � 15 =� � < 2.82

Laderman 1976: R(�3, 3, 3�) � 23 =� � < 2.86
Pan 1978: R(�70, 70, 70�) � 143640 =� � < 2.795...

Pan 1979: R(�?, ?, ?�) �? =� � < 2.781...

using “trilinear aggregation”

R(�2, 2, 2�) � 7 =� � < 2.81



History of the main improvements on the
exponent of square matrix multiplication

Upper bound Year Authors
� � 3
� < 2.81 1969 Strassen
� < 2.79 1979 Pan
� < 2.78 1979 Bini, Capovani, Romani and Lotti
� < 2.55 1981 Schönhage
� < 2.53 1981 Pan
� < 2.52 1982 Romani
� < 2.50 1982 Coppersmith and Winograd
� < 2.48 1986 Strassen
� < 2.376 1987 Coppersmith and Winograd
� < 2.373 2010 Stothers
� < 2.3729 2012 Vassilevska Williams
� < 2.3728639 2014 Le Gall

rank and Theorem 1

LG
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�

1 if i = i�, j = j�, k = k�

0 otherwise



The rank of a tensor (Section 3.2)
Definition 2
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Overview of the Lectures
 Fundamental techniques for fast matrix multiplication

 Basics of bilinear complexity theory: exponent of matrix multiplication, 
Strassen’s algorithm, bilinear algorithms

 First technique: tensor rank and recursion
 Second technique: border rank
 Third technique: the asymptotic sum inequality
 Fourth technique: the laser method

 Recent progress on matrix multiplication

 Applications of matrix multiplications, open problems

Lecture 2

Lecture 1

Lecture 3

(1969~1987)

(1987~)

 Laser method on powers of tensors
 Other approaches
 Lower bounds
 Rectangular matrix multiplication



The border rank of a tensor (Section 4.1) 

Definition 3

Let T be a tensor over (U, V,W ). The border rank of T , denoted R(T ),
is the minimal integer t for which there exist an integer c � 0 and
a tensor T �� such that T can be written as

�cT =
t�

s=1

�

�

�

�
dim(U)�

u=1

�suxu

�

��

�

�
dim(V )�

v=1

�svyv

�

��

�

�
dim(W )�

w=1

�swzw

�

�

�

� + �c+1T ��,

for some constants �su,�sv, �sw in F[�].

Let � be an indeterminate

F[�] denotes the ring of polynomials in � with coe�cients in F



The border rank of a tensor (Section 4.1) 

Definition 3

Let T be a tensor over (U, V,W ). The border rank of T , denoted R(T ),
is the minimal integer t for which there exist an integer c � 0 and
a tensor T �� such that T can be written as

�cT =
t�

s=1

�

�

�

�
dim(U)�

u=1

�suxu

�

��

�

�
dim(V )�

v=1

�svyv

�

��

�

�
dim(W )�

w=1

�swzw

�

�

�

� + �c+1T ��,

for some constants �su,�sv, �sw in F[�].

Let � be an indeterminate

F[�] denotes the ring of polynomials in � with coe�cients in F

lin. comb. of the xu’s lin. comb. of the yv’s lin. comb. of the zw’s



The border rank of a tensor (Section 4.1) 

Definition 3

Let T be a tensor over (U, V,W ). The border rank of T , denoted R(T ),
is the minimal integer t for which there exist an integer c � 0 and
a tensor T �� such that T can be written as

�cT =
t�

s=1

�

�

�

�
dim(U)�

u=1

�suxu

�

��

�

�
dim(V )�

v=1

�svyv

�

��

�

�
dim(W )�

w=1

�swzw

�

�

�

� + �c+1T ��,

for some constants �su,�sv, �sw in F[�].

Let � be an indeterminate

F[�] denotes the ring of polynomials in � with coe�cients in F



The border rank of a tensor (Section 4.1) 

Definition 3

Let T be a tensor over (U, V,W ). The border rank of T , denoted R(T ),
is the minimal integer t for which there exist an integer c � 0 and
a tensor T �� such that T can be written as

�cT =
t�

s=1

�

�

�

�
dim(U)�

u=1

�suxu

�

��

�

�
dim(V )�

v=1

�svyv

�

��

�

�
dim(W )�

w=1

�swzw

�

�

�

� + �c+1T ��,

for some constants �su,�sv, �sw in F[�].

Let � be an indeterminate

F[�] denotes the ring of polynomials in � with coe�cients in F

Obviously, R(T ) � R(T ) for any tensor T .



Example
Construction by Bini, Capovani, Romani and Lotti (1979):

TBini =
�

1�i,j,k�2
(i,k) �=(2,2)

aik � bkj � cij

= a11 � b11 � c11 + a12 � b21 � c11 + a11 � b12 � c12

+ a12 � b22 � c12 + a21 � b11 � c21 + a21 � b12 � c22



Example
Construction by Bini, Capovani, Romani and Lotti (1979):

TBini =
�

1�i,j,k�2
(i,k) �=(2,2)

aik � bkj � cij

= a11 � b11 � c11 + a12 � b21 � c11 + a11 � b12 � c12

+ a12 � b22 � c12 + a21 � b11 � c21 + a21 � b12 � c22

same as �2, 2, 2�, but without a22 � b21 � c21 and a22 � b22 � c22



Example
Construction by Bini, Capovani, Romani and Lotti (1979):

TBini =
�

1�i,j,k�2
(i,k) �=(2,2)

aik � bkj � cij

= a11 � b11 � c11 + a12 � b21 � c11 + a11 � b12 � c12

+ a12 � b22 � c12 + a21 � b11 � c21 + a21 � b12 � c22

same as �2, 2, 2�, but without a22 � b21 � c21 and a22 � b22 � c22

a22 = 0



Example
Construction by Bini, Capovani, Romani and Lotti (1979):

TBini =
�

1�i,j,k�2
(i,k) �=(2,2)

aik � bkj � cij

= a11 � b11 � c11 + a12 � b21 � c11 + a11 � b12 � c12

+ a12 � b22 � c12 + a21 � b11 � c21 + a21 � b12 � c22

same as �2, 2, 2�, but without a22 � b21 � c21 and a22 � b22 � c22

a22 = 0

TBini represents

�
a11 a12

a21 0

�
�

�
b11 b12

b21 b22

�



Example
Construction by Bini, Capovani, Romani and Lotti (1979):

TBini =
�

1�i,j,k�2
(i,k) �=(2,2)

aik � bkj � cij

= a11 � b11 � c11 + a12 � b21 � c11 + a11 � b12 � c12

+ a12 � b22 � c12 + a21 � b11 � c21 + a21 � b12 � c22

same as �2, 2, 2�, but without a22 � b21 � c21 and a22 � b22 � c22

a22 = 0

TBini represents

�
a11 a12

a21 0

�
�

�
b11 b12

b21 b22

�
�



Example
Construction by Bini, Capovani, Romani and Lotti (1979):

TBini =
�

1�i,j,k�2
(i,k) �=(2,2)

aik � bkj � cij

= a11 � b11 � c11 + a12 � b21 � c11 + a11 � b12 � c12

+ a12 � b22 � c12 + a21 � b11 � c21 + a21 � b12 � c22

same as �2, 2, 2�, but without a22 � b21 � c21 and a22 � b22 � c22

a22 = 0

TBini represents

�
a11 a12

a21 0

�
�

�
b11 b12

b21 b22

�
�

R(TBini) = 6



Example
Construction by Bini, Capovani, Romani and Lotti (1979):

TBini =
�

1�i,j,k�2
(i,k) �=(2,2)

aik � bkj � cij

= a11 � b11 � c11 + a12 � b21 � c11 + a11 � b12 � c12

+ a12 � b22 � c12 + a21 � b11 � c21 + a21 � b12 � c22

same as �2, 2, 2�, but without a22 � b21 � c21 and a22 � b22 � c22

a22 = 0

TBini represents

�
a11 a12

a21 0

�
�

�
b11 b12

b21 b22

�
�

R(TBini) = 6

R(TBini) = 5Bini et al. showed that



Example
Construction by Bini, Capovani, Romani and Lotti (1979):

TBini = a11 � b11 � c11 + a12 � b21 � c11 + a11 � b12 � c12

+ a12 � b22 � c12 + a21 � b11 � c21 + a21 � b12 � c22

R(TBini) � 5



Example
Construction by Bini, Capovani, Romani and Lotti (1979):

TBini = a11 � b11 � c11 + a12 � b21 � c11 + a11 � b12 � c12

+ a12 � b22 � c12 + a21 � b11 � c21 + a21 � b12 � c22

R(TBini) � 5

�TBini = T � + �2T ��



Example
Construction by Bini, Capovani, Romani and Lotti (1979):

TBini = a11 � b11 � c11 + a12 � b21 � c11 + a11 � b12 � c12

+ a12 � b22 � c12 + a21 � b11 � c21 + a21 � b12 � c22

R(TBini) � 5

�TBini = T � + �2T ��

where T � =(a12 + �a11)� (b12 + �b22)� c12

+ (a21 + �a11)� b11 � (c11 + �c21)
� a12 � b12 � (c11 + c12 + �c22)
� a21 � (b11 + b12 + �b21)� c11

+ (a12 + a21)� (b12 + �b21)� (c11 + �c22)

T �� = a11 � b22 � c12 + a11 � b11 � c21 + (a12 + a21)� b21 � c22.and



Example
Construction by Bini, Capovani, Romani and Lotti (1979):

TBini = a11 � b11 � c11 + a12 � b21 � c11 + a11 � b12 � c12

+ a12 � b22 � c12 + a21 � b11 � c21 + a21 � b12 � c22

R(TBini) � 5

�TBini = T � + �2T ��

where T � =(a12 + �a11)� (b12 + �b22)� c12

+ (a21 + �a11)� b11 � (c11 + �c21)
� a12 � b12 � (c11 + c12 + �c22)
� a21 � (b11 + b12 + �b21)� c11

+ (a12 + a21)� (b12 + �b21)� (c11 + �c22)

T �� = a11 � b22 � c12 + a11 � b11 � c21 + (a12 + a21)� b21 � c22.and

t = 5 rank-one terms

c = 1



Example
Construction by Bini, Capovani, Romani and Lotti (1979):

TBini = a11 � b11 � c11 + a12 � b21 � c11 + a11 � b12 � c12

+ a12 � b22 � c12 + a21 � b11 � c21 + a21 � b12 � c22

R(TBini) � 5

�TBini = T � + �2T �� c = 1   t = 5

Definition 3

Let T be a tensor over (U, V,W ). The border rank of T , denoted R(T ),
is the minimal integer t for which there exist an integer c � 0 and
a tensor T �� such that T can be written as

�cT =
t�

s=1

�

�

�

�
dim(U)�

u=1

�suxu

�

��

�

�
dim(V )�

v=1

�svyv

�

��

�

�
dim(W )�

w=1

�swzw

�

�

�

� + �c+1T ��,

for some constants �su,�sv, �sw in F[�].



Example
Construction by Bini, Capovani, Romani and Lotti (1979):

TBini = a11 � b11 � c11 + a12 � b21 � c11 + a11 � b12 � c12

+ a12 � b22 � c12 + a21 � b11 � c21 + a21 � b12 � c22

R(TBini) � 5

�TBini = T � + �2T �� c = 1   t = 5

Definition 3

Let T be a tensor over (U, V,W ). The border rank of T , denoted R(T ),
is the minimal integer t for which there exist an integer c � 0 and
a tensor T �� such that T can be written as

�cT =
t�

s=1

�

�

�

�
dim(U)�

u=1

�suxu

�

��

�

�
dim(V )�

v=1

�svyv

�

��

�

�
dim(W )�

w=1

�swzw

�

�

�

� + �c+1T ��,

for some constants �su,�sv, �sw in F[�].
T � that can be computed with t multiplications over F[�]



Interpretation of the border rank

Definition 3

Let T be a tensor over (U, V,W ). The border rank of T , denoted R(T ),
is the minimal integer t for which there exist an integer c � 0 and
a tensor T �� such that T can be written as

�cT =
t�

s=1

�

�

�

�
dim(U)�

u=1

�suxu

�

��

�

�
dim(V )�

v=1

�svyv

�

��

�

�
dim(W )�

w=1

�swzw

�

�

�

� + �c+1T ��,

for some constants �su,�sv, �sw in F[�].
T � that can be computed with t multiplications over F[�]



Interpretation of the border rank

Definition 3

Let T be a tensor over (U, V,W ). The border rank of T , denoted R(T ),
is the minimal integer t for which there exist an integer c � 0 and
a tensor T �� such that T can be written as

�cT =
t�

s=1

�

�

�

�
dim(U)�

u=1

�suxu

�

��

�

�
dim(V )�

v=1

�svyv

�

��

�

�
dim(W )�

w=1

�swzw

�

�

�

� + �c+1T ��,

for some constants �su,�sv, �sw in F[�].

T � = �cT � �c+1T ��

T � that can be computed with t multiplications over F[�]



Interpretation of the border rank

Definition 3

Let T be a tensor over (U, V,W ). The border rank of T , denoted R(T ),
is the minimal integer t for which there exist an integer c � 0 and
a tensor T �� such that T can be written as

�cT =
t�

s=1

�

�

�

�
dim(U)�

u=1

�suxu

�

��

�

�
dim(V )�

v=1

�svyv

�

��

�

�
dim(W )�

w=1

�swzw

�

�

�

� + �c+1T ��,

for some constants �su,�sv, �sw in F[�].

T � = �cT � �c+1T ��

with the lowest degree in �
we get T be computing T � and keeping the terms

T � that can be computed with t multiplications over F[�]



Interpretation of the border rank

Definition 3

Let T be a tensor over (U, V,W ). The border rank of T , denoted R(T ),
is the minimal integer t for which there exist an integer c � 0 and
a tensor T �� such that T can be written as

�cT =
t�

s=1

�

�

�

�
dim(U)�

u=1

�suxu

�

��

�

�
dim(V )�

v=1

�svyv

�

��

�

�
dim(W )�

w=1

�swzw

�

�

�

� + �c+1T ��,

for some constants �su,�sv, �sw in F[�].

T � = �cT � �c+1T ��

with the lowest degree in �
we get T be computing T � and keeping the terms

computing ��cT �
one can think of numerically (e.g., for F = R) taking � very small and

T � that can be computed with t multiplications over F[�]



Interpretation of the border rank

Definition 3

Let T be a tensor over (U, V,W ). The border rank of T , denoted R(T ),
is the minimal integer t for which there exist an integer c � 0 and
a tensor T �� such that T can be written as

�cT =
t�

s=1

�

�

�

�
dim(U)�

u=1

�suxu

�

��

�

�
dim(V )�

v=1

�svyv

�

��

�

�
dim(W )�

w=1

�swzw

�

�

�

� + �c+1T ��,

for some constants �su,�sv, �sw in F[�].

T � = �cT � �c+1T ��

with the lowest degree in �
we get T be computing T � and keeping the terms

= T � �T ��computing ��cT �
one can think of numerically (e.g., for F = R) taking � very small and

T � that can be computed with t multiplications over F[�]



Interpretation of the border rank

Definition 3

Let T be a tensor over (U, V,W ). The border rank of T , denoted R(T ),
is the minimal integer t for which there exist an integer c � 0 and
a tensor T �� such that T can be written as

�cT =
t�

s=1

�

�

�

�
dim(U)�

u=1

�suxu

�

��

�

�
dim(V )�

v=1

�svyv

�

��

�

�
dim(W )�

w=1

�swzw

�

�

�

� + �c+1T ��,

for some constants �su,�sv, �sw in F[�].

T � = �cT � �c+1T ��

with the lowest degree in �
we get T be computing T � and keeping the terms

= T � �T �� � Tcomputing ��cT �
one can think of numerically (e.g., for F = R) taking � very small and

T � that can be computed with t multiplications over F[�]



Interpretation of the border rank

Definition 3

Let T be a tensor over (U, V,W ). The border rank of T , denoted R(T ),
is the minimal integer t for which there exist an integer c � 0 and
a tensor T �� such that T can be written as

�cT =
t�

s=1

�

�

�

�
dim(U)�

u=1

�suxu

�

��

�

�
dim(V )�

v=1

�svyv

�

��

�

�
dim(W )�

w=1

�swzw

�

�

�

� + �c+1T ��,

for some constants �su,�sv, �sw in F[�].

T � = �cT � �c+1T ��

with the lowest degree in �
we get T be computing T � and keeping the terms

“border rank = complexity of approximate bilinear algorithms”

= T � �T �� � Tcomputing ��cT �
one can think of numerically (e.g., for F = R) taking � very small and

T � that can be computed with t multiplications over F[�]



Border rank v.s. rank
Obviously, R(T ) � R(T ) for any tensor T .



Border rank v.s. rank
Obviously, R(T ) � R(T ) for any tensor T .

Proposition 2
There exists a constant a such that R(T ) � a�R(T ) for any tensor T .



Border rank v.s. rank
Obviously, R(T ) � R(T ) for any tensor T .

Proposition 2
There exists a constant a such that R(T ) � a�R(T ) for any tensor T .

Remark: 
(for instance: a = 3 for c = 1)
the constant a actually depends on the c in the definition of R(T )



Border rank v.s. rank
Obviously, R(T ) � R(T ) for any tensor T .

Proposition 2
There exists a constant a such that R(T ) � a�R(T ) for any tensor T .

Remark: 
(for instance: a = 3 for c = 1)

Consequence: an approximate bilinear algorithm can be converted into
                         an (usual) bilinear algorithm of “similar” complexity

the constant a actually depends on the c in the definition of R(T )
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History of the main improvements on the
exponent of square matrix multiplication

Upper bound Year Authors
� � 3
� < 2.81 1969 Strassen
� < 2.79 1979 Pan
� < 2.78 1979 Bini, Capovani, Romani and Lotti
� < 2.55 1981 Schönhage
� < 2.53 1981 Pan
� < 2.52 1982 Romani
� < 2.50 1982 Coppersmith and Winograd
� < 2.48 1986 Strassen
� < 2.376 1987 Coppersmith and Winograd
� < 2.373 2010 Stothers
� < 2.3729 2012 Vassilevska Williams
� < 2.3728639 2014 Le Gall

Border rank and Theorem 2 
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Overview of the Lectures
 Fundamental techniques for fast matrix multiplication

 Basics of bilinear complexity theory: exponent of matrix multiplication, 
Strassen’s algorithm, bilinear algorithms

 First technique: tensor rank and recursion
 Second technique: border rank
 Third technique: the asymptotic sum inequality
 Fourth technique: the laser method

 Recent progress on matrix multiplication

 Applications of matrix multiplications, open problems

Lecture 2

Lecture 1

Lecture 3

(1969~1987)

(1987~)

 Laser method on powers of tensors
 Other approaches
 Lower bounds
 Rectangular matrix multiplication
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History of the main improvements on the
exponent of square matrix multiplication

Upper bound Year Authors
� � 3
� < 2.81 1969 Strassen
� < 2.79 1979 Pan
� < 2.78 1979 Bini, Capovani, Romani and Lotti
� < 2.55 1981 Schönhage
� < 2.53 1981 Pan
� < 2.52 1982 Romani
� < 2.50 1982 Coppersmith and Winograd
� < 2.48 1986 Strassen
� < 2.376 1987 Coppersmith and Winograd
� < 2.373 2010 Stothers
� < 2.3729 2012 Vassilevska Williams
� < 2.3728639 2014 Le Gall

Asymptotic sum inequality

LG



The asymptotic sum inequality

Theorem (the asymptotic sum inequality, special case) [Schönhage 1981]

R(�m1, n1, p1� � �m2, n2, p2�) � t =� (m1n1p1)�/3 + (m2n2p2)�/3 � t

Consequence: 9�/3 + 4�/3 � 10 =� � � 2.59...

Using a variant of this construction, Schönhage finally obtained � � 2.54...

Theorem 3 (the asymptotic sum inequality, general form) [Schönhage 1981]

R

�
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�mi, ni, pi�
�
� t =�
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(minipi)�/3 � t
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Proof outline
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History of the main improvements on the
exponent of square matrix multiplication

Upper bound Year Authors
� � 3
� < 2.81 1969 Strassen
� < 2.79 1979 Pan
� < 2.78 1979 Bini, Capovani, Romani and Lotti
� < 2.55 1981 Schönhage
� < 2.53 1981 Pan
� < 2.52 1982 Romani
� < 2.50 1982 Coppersmith and Winograd
� < 2.48 1986 Strassen
� < 2.376 1987 Coppersmith and Winograd
� < 2.373 2010 Stothers
� < 2.3729 2012 Vassilevska Williams
� < 2.3728639 2014 Le Gall

Asymptotic sum inequality

LG



Overview of the Lectures
 Fundamental techniques for fast matrix multiplication

 Basics of bilinear complexity theory: exponent of matrix multiplication, 
Strassen’s algorithm, bilinear algorithms

 First technique: tensor rank and recursion
 Second technique: border rank
 Third technique: the asymptotic sum inequality
 Fourth technique: the laser method

 Recent progress on matrix multiplication

 Applications of matrix multiplications, open problems

Lecture 2

Lecture 1

Lecture 3

(1969~1987)

(1987~)

 Laser method on powers of tensors
 Other approaches
 Lower bounds
 Rectangular matrix multiplication
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