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THE CONJECTURES



OMyv Conjecture

(Online MatrIX-VeCtOF MUIt|p||Cat|0n) [Henzinger, Krinninger, N, Saranurak, STOC'15]

V1 DUy Un

Input: n X n Boolean matrix M
Then: n Boolean vectors v; M

(OR,AND)-mult.
not (4,X)-mult.

Output:

Answer Mv; before
getting v; 41

le M'Uz Mvn
Conjecture: No algorithms with total time 0 (n>~¢)

Current Best: O (n3/2\/1°g n) [Larsen-Williams SODA’17]

Example on board?



OuMv Conjecture (Matrix Form)

Input: n X n Boolean matrix M
Then: n pairs of Boolean vectors (u;, v;)

Answer ul Mv; before
getting (W41, Viy1)

Output: u; Mv;

Conjecture: No algorithms with total time 0(n>~¢)
even with polynomial time to process M!

Example on board?



OuMyv as Independent set

poly(n) time
e.g. n'%

Preprocess:

Output before

] next input arrives
Input: (L, Rq) L R, L i g R,
(L, Ry) OuMVv Conj =
@ @ Bl Non®~€time

Output: Any edge linking L, and R,?

L1 U R1 is
independent set?

Any edge linking L,, and R,,?

Write on board



Y'OU Myv Co njECtU '€ (or just a “free-form” of OuMv)

Input: n; X n, Boolean matrix M, n; = n’zl, y > 0.
Then: n; pairs of Boolean vectors (u;, v;)

VT a0 41
Output: u; Mv; m ° 0 Y
i L A
(C)) I S
et

Conjecture: No algorithms with total time O((nyn,n3;)*~¢)
even with polynomial time to process M!

Example on board?



Formal Statements

OMpyv Conjecture: For any constant € > 0, there
is no 0(n>~¢)-time algorithm that solves OMv
with an error probability of at most 1/3.

Y-OuMv Conjecture: For any constanty > 0,e > 0,
there is no algorithm for y-OuMv with parameters
N4, Ny, N3 USiNg preprocessing time poly(nq{,n,)
and computational time 0((n;n,n3)17¢) that has
error probability of at most 1/3.




Theorem: OMv implies y-OuMv

Plan

e Some lower bounds
from OuMv

* Prove above
Theorem

Fully dynamic problams
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Tight Bounds

Subsumed by OMv
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Partially dynamic problems

Shortest Fath

Appro, Shortest Fath
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“Tight” means
Improve X = worse ¥
X, ¥ € {Update/Query/Approx. ratio}




Some Update Time Bounds



Example set 1: Fully-Dynamic Graphs

After each edge insertions/deletion check:
1. st-reachability
2. undirected st-shortest paths
— Unweighted/weighted
3. strong edge-connectivity

These bounds hold against amortization &
randomization!

Main reason: y-OuMyv allows arbitrary (polynomial)
preprocessing time and number of updates.

n = # of nodes, m=# of edges

What lower bound can you prove under OMv?



st-Reachability



Dynamic st-Reachability Problem

Input:

Update in G insert(1,3) delete(3,t) insert(2,t)
(D—>(3) (D=3 (D=>(3)
Picture ‘ o
crehey | s o e

Thanks Thatchaphol Saranurak for slides
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Known Results for st-Reach

* Incremental: O(1) amortized update time

* O(n) lower bound assuming OuMv

* Hold against randomized and amortized algorithms
* ... even with oblivious-adversary & empty-start assumptions

* Higher lower bound for a related problem called #SSR
* O (n?) lower bound for “combinatorial” algorithms

* Fully-dynamic: ©(n14%7) worst-case update time
* Lower bound assumes a variant of OuMyv

22

n = # of nodes, m=# of edges



Will show...

st-Reach So this cannot exist
- Preprocess: poly(n)

- Update: Tll_e (amortized)

!

Independent Set Impossible!
- Preprocess: pOly(Tl) assuming OMv
€

- Time (for n queries): n3-

n = # of nodes, m=# of edges

Thanks Thatchaphol Saranurak for slides



Preprocess

Independent Set st-Reach

Same graph
but directed

Thanks Thatchaphol Saranurak for slides



Edge(L{, R{)?
Independent Set st-Reach

To L4 From R4
Ly R4
S t

After O(n) updates...

3 an edge linking "
L, and R, s canreach t

Thanks Thatchaphol Saranurak for slides




Edge(L{, R{)?
Independent Set st-Reach

™~/ N/

-
After knowing “Edge(L, R1)?”, UNDO.

B U B

Thanks Thatchaphol Saranurak for slides



Edge(L{, R{)?
Independent Set st-Reach

To L4 From R4
Ly R4
S t

Use O(n) updates.

Thanks Thatchaphol Saranurak for slides



EdgE(Lz, 1'22)—P (another example)
Independent Set st-Reach

ToL, From
LZ RZ R,
S t

After O(n) updates...

Not 3 an edge linking
L, and R, s can not reach t

Thanks Thatchaphol Saranurak for slides




Check: The lower bound hold for amortized
update time?

* Suppose that an algorithm A for st-reach takes O(no'gt) time after t
updates, when start from an empty graph.

* Setting up the original bipartite graph: Take 0(n2.9) time to insert n?
edges.

* Handling one pair of (u;, v;): Take O(nl'g) time to insert n edges.

- Take O(nz'g) time to handle all pairs of vectors



Check: The lower bound hold against
randomized algorithms?

* The conjecture was also for randomized algorithms.

* The reduction is between decision problems. There is no difference
between oblivious and non-oblivious adversary.
* Must be more careful for, e.g. approximation algorithms.



st-Distance
(Undirected)



Dynamic st-Distance Problem

:;‘F?(;‘:;e - insert(1,3) delete(3,t) insert(L,t)
sz} 1 1 % 5
Picture
S S &
@ @®© @ ® @ ©
Output:
st-distance 0 3 = 2

* Easy: (0(n) lower bound for exact version
 How about approximate version?
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(A(n) for unweighted (5/3-€)-approximation

. . Output number x s.t.
Same reduction as st-Reachability

5
dist(s,t) < x < (§ — E) dist(s,t)

uMv = 1 =» dist(s,t)=3

Algorithm’s output < (2 — E) 3<5 ]

uMv = 0 = dist(s,t)=5

Algorithm’s output = 5 ]
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n = # of nodes, m=# of edges



(A(n) for weighted (3-€)-approximation
Same reduction as st-Reachability

uMv = 1 =» dist(s,t)=1

uMv = 0 = dist(s,t)= 3

n = # of nodes, m=# of edges
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Known Results

Fully-dynamic

* O(n) lower bound assuming OuMv for (5/3-€)-approx

* Hold against randomized and amortized algorithms
* ... even with oblivious-adversary & empty-start assumptions
* Hold against (small-)approximation algorithms

« 0(n!72%) worst-case update time for (1 + €)-approx

Incremental/decremental:
* Exact: ©(n) amortized update time, ®(m) worst-case

* (1 + €)-approx: 0(n°Y)) amortized

n = # of nodes, m=# of edges
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Strong Edge-Connectivity



Dynamic Strong Edge-Connectivity Problem

N N

A directed graph Edge insertions/deletions Is the graph strongly

connected?
(Every s can reach every t)
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(0(n) for strong edge-connectivity

* Reduce from st-Reachability by adding
* edges E; from t to every node, and
* edges E, from every node to s.

* Observe: Adding edges pointing to s and from t does not change st-
reachability.

* If tis not reachable from s, this remains the case.

* If tis reachable from s, then
* s can reach all nodes via E;, and
* all nodes can reach s via E,

* Easy: Extend to Q(1/m) lower bound



Example set 2: Non-Graph Problems

1. Erickson’s Problem
2. Pagh’s Problem

These bounds hold against amortization & randomization!

n = # of nodes, m=# of edges What lower bound can you prove under OMv?



Erickson’s problem



Erickson’s problem

Name Input Update Query
Efl’ni'i)kbsl((:?ns A matrix of integers of size Increment all values in a Find the maximum value in the

nxn specified row or column matrix
Reduction
W [0 0o o | | v
—)
I S e TR
1 1 1 1
__;) 0 41
v +!
1 JU Y -l-l,'”
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Pagh’s problem



Pagh’s problem (a variant)

* Input: k subsets X;, X5, ..., X} over a universe U = {1, ..., k}
* Update: Given a pointer to two subsets X; and X}, create a new
subset X; N X;

e Output: After each update outputs whether the new subset is empty
or not.
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Pagh’s problem -- Reduction

—N X,:
1 1 0 0 X_z:
x
1 0 >‘3
4 -



Pagh’s problem -- Reduction

W\
. o x,;
1 1 0 0 0 X,z
O
1 g
| / § -
M |




Pagh’s problem -- Reduction

\A]"ﬁo IjV

| _ax, 12,54
1 1 9) 0 0 (l 5G
Q )(3:1,‘,2,3,'q-§
- | : >‘4’:"/l13$




Questions?
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