Chapter 2. OMv Lower Bounds

Danupon Nanongkai KTH, Sweden

Part 1

THE CONJECTURES

OMv Conjecture

(Online Matrix-Vector Multiplication) [Henzinger, Krinninger, N, Saranurak, STOC'15]

Input: $n \times n$ Boolean matrix M

Then: n Boolean vectors v_i Output: $v_1 \ v_2 \ v_n$ M M MAnswer Mv_i before getting v_{i+1}

Conjecture: No algorithms with **total** time $O(n^{3-\epsilon})$

Current Best: $O(n^3/2^{\sqrt{\log n}})$ [Larsen-Williams SODA'17]

OuMv Conjecture (Matrix Form)

Input: $n \times n$ Boolean matrix M

Then: n pairs of Boolean vectors (u_i, v_i)

Output: $u_i^T M v_i$

Answer $\mathbf{u}_{i}^{\mathrm{T}} M v_{i}$ before getting $(\mathbf{u}_{i+1}, v_{i+1})$

Conjecture: No algorithms with **total** time $O(n^{3-\epsilon})$

even with polynomial time to process M!

OuMv as Independent set

Preprocess:

poly(n) time e.g. n^{100}

Input: (L_1, R_1)

 (L_n, R_n)

yes

No

Output: Any edge linking L_1 and R_1 ?

•••

Any edge linking L_n and R_n ?

Output before next input arrives

OuMv Conj \rightarrow No $n^{3-\epsilon}$ time

 $L_1 \cup R_1$ is independent set?

Write on board

y-OuMv Conjecture (or just a "free-form" of OuMv)

Input: $n_1 \times n_2$ Boolean matrix M, $n_1 = n_2^{\gamma}$, $\gamma > 0$.

Then: n_3 pairs of Boolean vectors (u_i, v_i)

Output: $u_i^T M v_i$

Conjecture: No algorithms with total time $O((n_1n_2n_3)^{1-\epsilon})$ even with polynomial time to process M!

Formal Statements

OMv Conjecture: For any constant $\epsilon > 0$, there is no $O(n^{3-\epsilon})$ -time algorithm that solves OMv with an error probability of at most 1/3.

<u> γ -OuMv Conjecture</u>: For any constant $\gamma > 0$, $\epsilon > 0$, there is no algorithm for γ -OuMv with parameters n_1, n_2, n_3 using preprocessing time $poly(n_1, n_2)$ and computational time $O((n_1n_2n_3)^{1-\epsilon})$ that has error probability of at most 1/3.

Theorem: OMv implies γ -OuMv

<u>Plan</u>

- Some lower bounds from OuMv
- Prove above Theorem

Part 2

Some Update Time Bounds

Example set 1: Fully-Dynamic Graphs

After each edge insertions/deletion check:

- 1. st-reachability
- 2. undirected st-shortest paths
 - Unweighted/weighted
- 3. strong edge-connectivity

These bounds hold against amortization & randomization!

Main reason: γ -OuMv allows arbitrary (polynomial) preprocessing time and number of updates.

Example 1.1

st-Reachability

Dynamic st-Reachability Problem

Input: Update in G		insert(1,3)	delete(3,t)	insert(2,t)
Picture	(3) (3) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(s) (1) (3) (t)	1 3 2 t	1 3 2 t
Output: s reach t?	No	Yes	No	Yes

Known Results for st-Reach

- Incremental: O(1) amortized update time
- $\Omega(n)$ lower bound assuming OuMv
 - Hold against randomized and amortized algorithms
 - ... even with oblivious-adversary & empty-start assumptions
 - Higher lower bound for a related problem called #SSR
 - $\Omega(n^2)$ lower bound for "combinatorial" algorithms
- ullet Fully-dynamic: $oldsymbol{\Theta}(n^{1.407})$ worst-case update time
 - Lower bound assumes a variant of OuMv

Will show...

st-Reach

- Preprocess: poly(n)
- Update: $n^{1-\epsilon}$ (amortized)

So this cannot exist

Independent Set

- Preprocess: poly(n)
- Time (for n queries): $n^{3-\epsilon}$

Impossible! assuming OMv

Preprocess

Independent Set

st-Reach

Thanks Thatchaphol Saranurak for slides

Edge(L_1 , R_1)?

Independent Set

st-Reach

 \exists an edge linking L_1 and R_1

After O(n) updates...

s can reach t

Edge(L_1, R_1)?

Edge(L_1 , R_1)?

Independent Set

st-Reach

Use O(n) updates.

$Edge(L_2, R_2)$? (another example)

Independent Set

st-Reach

Not \exists an edge linking L_2 and R_2

After O(n) updates...

s can not reach t

Check: The lower bound hold for amortized update time?

- Suppose that an algorithm A for st-reach takes $O(n^{0.9}t)$ time after t updates, when start from an empty graph.
- Setting up the original bipartite graph: Take ${\it O}(n^{2.9})$ time to insert n^2 edges.
- Handling one pair of (u_i, v_i) : Take $O(n^{1.9})$ time to insert n edges.
- ightharpoonup Take $O(n^{2.9})$ time to handle all pairs of vectors

Check: The lower bound hold against randomized algorithms?

- The conjecture was also for randomized algorithms.
- The reduction is between decision problems. There is no difference between oblivious and non-oblivious adversary.
 - Must be more careful for, e.g. approximation algorithms.

Example 1.2

st-Distance

(Undirected)

Dynamic st-Distance Problem

Input: Update in G		insert(1,3)	delete(3,t)	insert(1,t)
Picture	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(3) (t)	(S) (2) (t)	(S) (2) (t)
Output: st-distance	∞	3	∞	2

- Easy: $\Omega(n)$ lower bound for exact version
- How about approximate version?

$\Omega(n)$ for unweighted (5/3- ϵ)-approximation

Same reduction as st-Reachability

Output number x s.t.

$$dist(s,t) \le x \le \left(\frac{5}{3} - \epsilon\right) dist(s,t)$$

$$uMv = 1 \rightarrow dist(s,t) = 3$$

Algorithm's output
$$\leq \left(\frac{5}{3} - \epsilon\right) 3 < 5$$

$$uMv = 0 \rightarrow dist(s,t) \ge 5$$

Algorithm's output ≥ 5

$\Omega(n)$ for weighted (3- ϵ)-approximation

Same reduction as st-Reachability

$$uMv = 1 \rightarrow dist(s,t)=1$$

$$uMv = 0 \rightarrow dist(s,t) \ge 3$$

Known Results

Fully-dynamic

- $\Omega(n)$ lower bound assuming OuMv for $(5/3-\epsilon)$ -approx
 - Hold against randomized and amortized algorithms
 - ... even with oblivious-adversary & empty-start assumptions
 - Hold against (small-)approximation algorithms
- $\mathbf{O}(n^{1.724})$ worst-case update time for $(1+\epsilon)$ -approx

Incremental/decremental:

- Exact: $\Theta(n)$ amortized update time, $\Theta(m)$ worst-case
- $(1 + \epsilon)$ -approx: $O(n^{o(1)})$ amortized

Example 1.3

Strong Edge-Connectivity

Dynamic Strong Edge-Connectivity Problem

Input	Update	Output
A directed graph	Edge insertions/deletions	Is the graph strongly connected? (Every s can reach every t)

$\Omega(n)$ for strong edge-connectivity

- Reduce from st-Reachability by adding
 - edges E_1 from **t** to every node, and
 - edges E_2 from every node to **s.**
- <u>Observe</u>: Adding edges pointing to s and from t does not change streachability.
- If **t** is **not** reachable from **s**, this remains the case.
- If **t** is reachable from **s**, then
 - **s** can reach all nodes via E_1 , and
 - all nodes can reach **s** via E_2
- Easy: Extend to $\Omega(\sqrt{m})$ lower bound

Example set 2: Non-Graph Problems

- 1. Erickson's Problem
- 2. Pagh's Problem

These bounds hold against amortization & randomization!

Example 2.1

Erickson's problem

Erickson's problem

Name	Input	Update	Query
Erickson's Problem	A matrix of integers of size $n \times n$	Increment all values in a specified row or column	Find the maximum value in the matrix

Reduction

Example 2.2

Pagh's problem

Pagh's problem (a variant)

- Input: k subsets $X_1, X_2, ..., X_k$ over a universe $U = \{1, ..., k\}$
- **Update:** Given a pointer to two subsets X_i and X_j , create a new subset $X_i \cap X_j$
- Output: After each update outputs whether the new subset is empty or not.

Pagh's problem -- Reduction

1	1
	1

M

Pagh's problem -- Reduction

Pagh's problem -- Reduction

Questions?

Thanks to co-authors:

Sayan Bhattacharya, Jan van den Brand, Deeparnab Chakraborty, Sebastian Forster, Monika Henzinger, Christian Wulff-Nilsen, Thatchaphol Saranurak

