Chapter 3 Lower Bounds from SETH

Danupon Nanongkai KTH, Sweden

Summary

OMv conjecture

- Usually refutes $n^{1-\epsilon}$ update time on **dense** graph, or $m^{\frac{1}{2}-\epsilon}$ in general.
- This helps refute polylogarithmic time, but might not be tight.

SETH

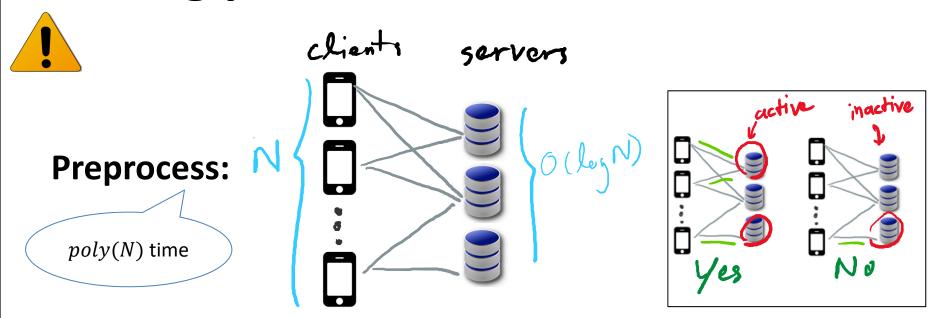
- **SETH** refutes $n^{1-\epsilon}$ time for **sparse** graph, refuting $m^{1-\epsilon}$ in general.
- To start from SETH, reduce from dynamic OV, a.k.a. dynamic client-server.
- For some problem (e.g. diameter), SETH even refutes $n^{2-\epsilon}$ bound (but need **30V**)!

Part 1

SETH and Dynamic OV

(a.k.a. Dynamic Client-Server Problem)

Starting point: Client-Server Problem



Updates: A server becomes active/inactive

Output: All clients are connected to active servers?

Naïve algorithm takes O(N) update time

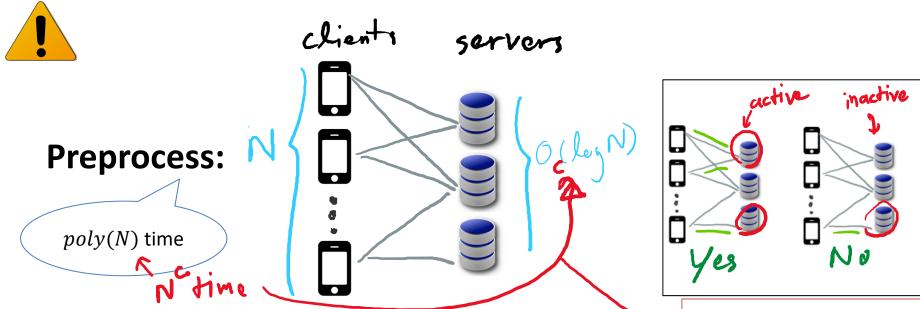
<u>SETH→</u>

No $N^{1-\epsilon}$ amortized per server update

Sparsity:

 $\#edges = O(N \log N)$

Starting point: Client-Server Problem



Updates: A server becomes active/inactive

<u>Details</u>: #Servers depends on preprocessing time

Output: All clients are **connected** to active servers?

Naïve algorithm takes O(N) update time

<u>SETH→</u>

No $N^{1-\epsilon}$ amortized per server update

Sparsity:

 $\#edges = O(N \log N)$

Details: #servers depends on preprocessing time

- Otherwise, you can prepare for all $2^{\#servers} = n^{O(1)}$ possible sets of active servers during the preprocessing time.
- The claim should be interpreted as: If someone claims to have an algorithm with N^c preprocessing time, then we can pick the number of servers to be $f(c) \log N$. Then, SETH implies that there is no algorithm with N^c preprocessing time and $N^{1-\epsilon}$ update time.

Motivation: OuMv can be viewed as Client-Server with #clients=#server²

Optional Not connected to servers $OMv \rightarrow$ No $N^{1/2-\epsilon}$ amortized time per node recolor with polynomial preprocess

<u>Claim</u>: SETH implies no $N^{1-\epsilon}$ amortized per server update

Proof (sketched):

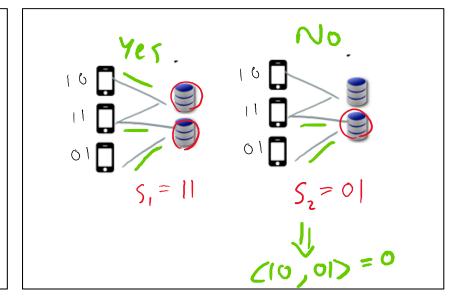
<u>OV</u>: Given sets **A** and **B** of vectors, exists $u \in A$, $v \in B$ s.t. $\langle u, v \rangle = 0$?

- SETH implies no $(|A||B|)^{1-\epsilon}$ time.
- Hold for: |A| = N, |B| = poly(N) and dimension=n=O(log N)

Reduction:

- 1. Vectors in A \rightarrow Clients.
- 2. Coordinates \rightarrow Servers.
- 3. Each vector in B → Each set of active servers

Example: A={10,11,01}, B={11, 01}



<u>Claim</u>: SETH implies no $N^{1-\epsilon}$ amortized per server update

Proof (sketched):

<u>OV</u>: Given sets **A** and **B** of vectors, exists $u \in A$, $v \in B$ s.t. $\langle u, v \rangle = 0$?

- SETH implies no $(|A||B|)^{1-\epsilon}$ time.
- Hold for: |A| = N, |B| = poly(N) and dimension=n=O(log N)

Reduction:

- 1. Vectors in A \rightarrow Clients.
- 2. Coordinates \rightarrow Servers.
- 3. Each vector in B → Each set of active servers

Example: A={10,11,01}, B={11, 01}

Analysis:

- Preprocessing time = $poly(|A|) < (|A||B|)^{1-\epsilon}$ if |B| is big enough compared to |A|.
- Assume time per server update is $N^{1-\epsilon}$. Then, time per vector $v \in B$ is $(N)^{1-\epsilon}n$.
- So total time is $|B|(Nn)^{1-\epsilon} = |A|^{1-\epsilon}|B| = (|A||B|)^{1-\epsilon}$

Another form: Dynamic OV

- Preprocess: Set A of Boolean vectors
 - Let N=|A|. Vectors have dimension $O(\log N)$.
- Update: A Boolean vector v
- Output: Exists $u \in A$ s.t. $\langle u, v \rangle = 0$?

<u>Naïve</u> algorithm takes O(N log N) time per v.

Claim: SETH \rightarrow No $N^{1-\epsilon}$ -time algorithm with polynomial preprocessing time.

Part 2

Some Reductions from Dynamic OV (Client-Server)

Plan

- Single-Source Reachability Count (#SSR):
 Counting number of nodes reachable from s
- Strongly-Connected Component Count (#SCC): Counting number of strongly connected components

Lesson: SETH may give higher lower bounds (than OMv) in **m** for **counting** versions.

Intuition: The client-server problem is about the number of connected clients.

Example 1

Reachability - #SSR

st-Reachability (recall)

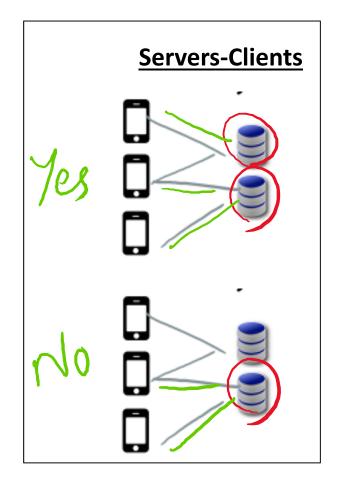
- Exists directed path from s to t?
- No $n^{1-\epsilon}$ update time (on dense graph) assuming OMv
 - Hold against randomized and amortized algorithms
 - Implies $m^{1/2-\epsilon}$ lower bound
- Open: Higher lower bound*?

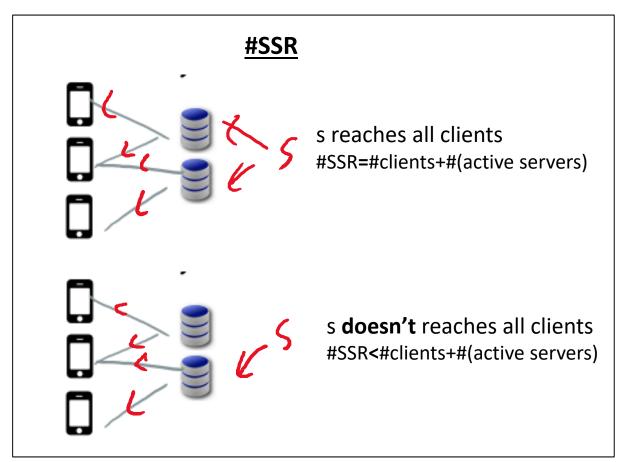
Single-Source Reachability Count (#SSR)

- How many nodes are reachable from s?
- No $m^{1-\epsilon}$ update time assuming **SETH**
 - Hold against randomized and amortized algorithms

<u>Later</u>: **SSR** with $n^{o(1)}$ query time also has $no m^{1-\epsilon}$ update time assuming **OMv**.

Claim: No $m^{1-\epsilon}$ update time assuming SETH Reduction: Add edges from s to all active servers





SETH \rightarrow No $n^{1-\epsilon}$ time per **server** update

ightarrow No $n^{1-\epsilon}$ time per **edge** update for #SSR ightarrow No $m^{1-\epsilon}$ time since graph is **sparse**!

Example 2

Strong Connectivity- #SCC

Strong Connectivity (recall)

- Exists directed path from every s to every t?
- No $n^{1-\epsilon}$ update time assuming OMv
 - Hold against randomized and amortized algorithms
 - Implies $m^{1/2-\epsilon}$ lower bound
- Open: Higher lower bound?

Strongly Connected Components Count (#SCC)

- How many strongly connected components are there?
- No $m^{1-\epsilon}$ update time assuming SETH

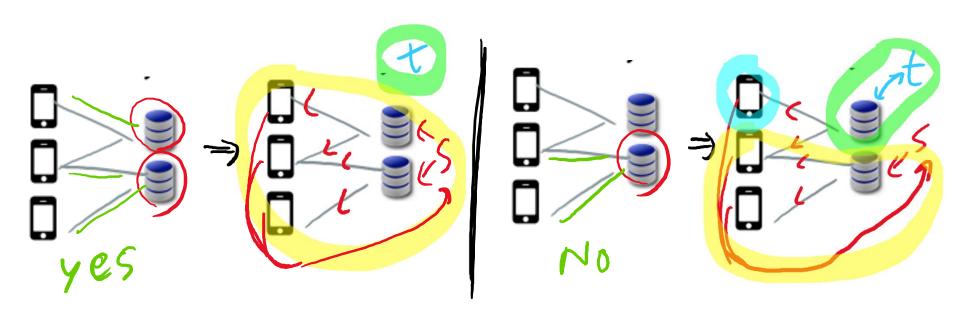
Claim: No $m^{1-\epsilon}$ update time assuming SETH

Reduction:

- Add edges from all clients to s to all active servers
- Add edges between t and all inactive servers

Observe: Yes for clients-servers $\leftarrow \rightarrow$ #SCC ≤ 2 .

- All active servers and adjacent clients form one component with s.
- Other clients are not in any connected components.
- Inactive servers form another component with y.



Part 3

Diameter from dynamic 30V

Dynamic Diameter: Output the diameter of an **undirected** graph **Algorithms**

- Naïve algorithm: O(mn) per update.
- **Best** (via APSP): $O(n^2)$ amortized update time and $O(n^{2\frac{2}{3}})$ worst-case.

Lower Bounds

- No $n^{1-\epsilon}$ update time assuming OMv [Thanks to a participant!]
 - Implies $m^{1/2-\epsilon}$ lower bound
- No $n^{2-\epsilon}$ update time assuming **SETH**
 - Not known how to prove this from dynamic OV (client-server)
 - Instead, reduce from dynamic 3-OV

Both hold against randomized and amortized algorithms

Lesson: Dynamic 3-OV might be useful for problems that involve **many** pairs of nodes.

Dynamic 3-OV

- Preprocess: Set A, B of Boolean vectors
 - Let N=|A|=|B|. Vectors have dimension $O(\log N)$.
- Update: A Boolean vector w
- Output: Exists $u \in A, v \in B$ s.t. entrywise multiplication of $u \circ v \circ w = 0$?

```
u = (1,0, 1)

v = (0,1, 1)

w = (1,1, 1)

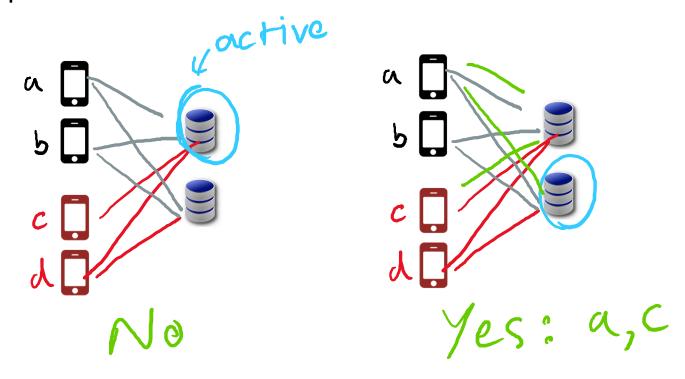
u \circ v \circ w = (0,0, 1)
```

Naïve algorithm takes O(N 2 log N) time per v (Keep track of all pairs)

Claim: SETH \rightarrow No $N^{2-\epsilon}$ -time algorithm with polynomial preprocessing time Proof: Omitted.

Client-Server Form of dynamic 3OV

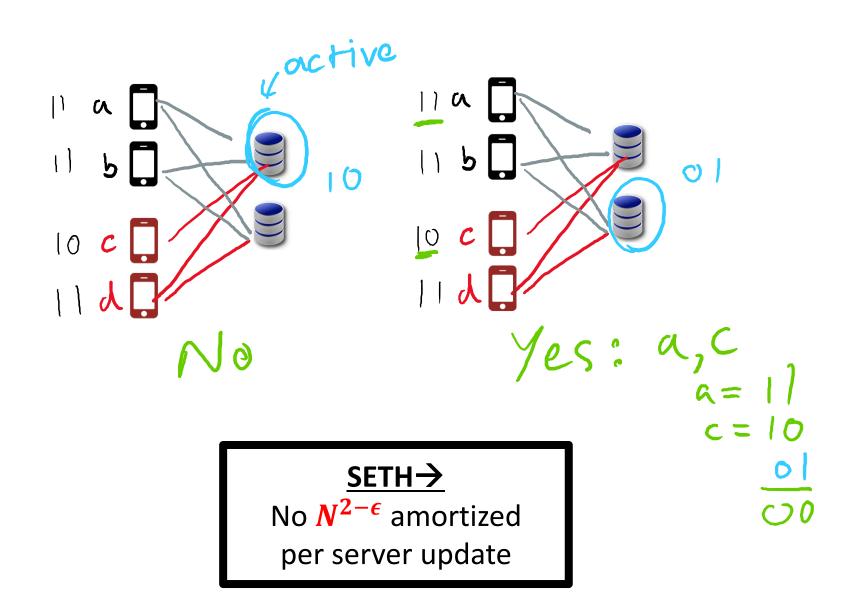
Exists pair of red-black client that doesn't share active server?



<u>SETH→</u>

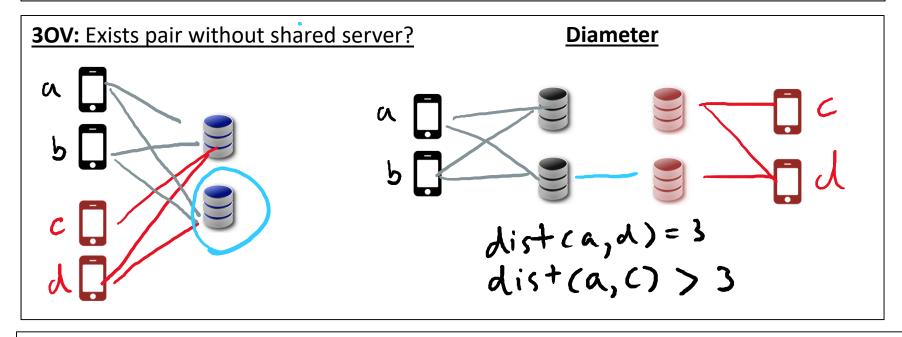
No $N^{2-\epsilon}$ amortized per server update

Example of how it's related to 30V



Reduction to Diameter (partial)

- 1. Create copies of servers.
- 2. Connect black and red clients to different copies.
- 3. If a server is active, connect its two copies.



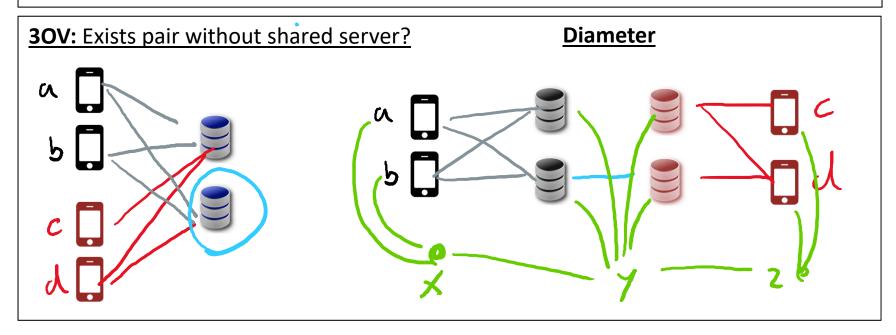
Intuition: Red-Black clients that share active servers has distance 3.

(Otherwise distance will be more.)

Problem: How about black-black clients, etc?

Reduction to Diameter (full)

- 1. Create copies of servers.
- 2. Connect black and red clients to different copies.
- 3. If a server is active, connect its two copies.
- 4. Add edges between black clients and x, servers and y, red clients and z.



Claim (Tedious to check): Diameter > 3 **iff** exists pair without shared server

Questions?

Thanks to co-authors:

Sayan Bhattacharya, Jan van den Brand, Deeparnab Chakraborty, Sebastian Forster, Monika Henzinger, Christian Wulff-Nilsen, Thatchaphol Saranurak

