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Learning and Games
Price of Anarchy and Game Dynamics

Lecture 1: 
• What are games, and Nash equilibrium of simple games
• And what is learning



A few simple games:
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Prisoner’s dilemma:
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Coordination: 
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Example: 100 travelers from A to B

time as a function of congestion x or y
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Example: flow equilibrium with 100 travelers

time 1.5 hours



Add a new edge
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Not equilibrium!
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Equilibrium
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Braess’ Paradox

x/100 2 hours

Paradox: players optimize their own flow, yet total not optimal?



Homework (optional)

• What will happen to the weight? 
Goes up or down?

• And what does this have to do 
with what we talked about so far?

Cutting 
middle 
string

weight

Ceiling



Braess paradox in springs (aside)

Cutting 
middle 
string

makes the weight rise

power flow along springs

Flow=power; delay=distance s t
x 1

r=1

x1
0



Single Item Auctions

• Second price = Vickrey auction
• First price
• All pay
Or some mix of these

Winner is the bidder with highest bid. 
Versions determine the payment.

Players

𝑣𝑣1

𝑣𝑣2

𝑣𝑣3

Presenter
Presentation Notes
The auction was first described academically by Columbia University professor William Vickrey in 1961[1] 
though it had been used by stamp collectors since 1893.[2] In 1797 Johann Wolfgang von Goethe sold a manuscript using a sealed-bid, second-price auction.[3]
1996 Nobel Memorial Prize in Economic Sciences 



Multiple items (e.g. unit demand bidders)

i
Value if 𝑖𝑖 gets subset 𝑆𝑆 is 𝑣𝑣𝑖𝑖 𝑆𝑆
for example: 𝑣𝑣𝑖𝑖 𝑆𝑆 = max

𝑗𝑗∈𝑆𝑆
𝑣𝑣𝑖𝑖𝑖𝑖

Optimum is max value matching! 
max
𝑀𝑀∗

∑𝑖𝑖𝑗𝑗∈𝑀𝑀∗ 𝑣𝑣𝑖𝑖𝑗𝑗

Extension also if 𝑣𝑣𝑖𝑖 𝐴𝐴 submodular function of set 𝐴𝐴
Also for diminishing value of added items:  

𝐴𝐴 ⊂ 𝐵𝐵 ⇒ 𝑣𝑣𝑖𝑖 𝐴𝐴 + 𝑥𝑥 − 𝑣𝑣𝑖𝑖 𝐴𝐴 ≥ 𝑣𝑣𝑖𝑖 𝐵𝐵 + 𝑥𝑥 − 𝑣𝑣𝑖𝑖(𝐵𝐵)



Repeated games
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• Assume same game each period
• Player’s value/cost additive over periods



Learning in games

time

Maybe here they don’t 
know how to play, who 
are the other players, …

By here they have a 
better idea…
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Outcome of Learning in Repeated Game

• What is learning?
• Does learning lead to finding Nash equilibrium?

Brown’51 and Robinson’51:
• fictitious play = best respond to past history of other players: 

best response to assumption that the other player will choose a 
random strategy from the past uniformly.

Goal: “pre-play” as a way to learn to play Nash. 
Robinson’51: Two-player 0-sum game, fictitious play does 
converge to Nash



Stable fictitious play: Nash equilibrium
time

Nash equilibrium: Stable actions s with no incentive to switch 
to any  alternate strategy 𝑠𝑠𝑖𝑖′:

𝑐𝑐𝑖𝑖 𝑠𝑠𝑖𝑖′, 𝑠𝑠−𝑖𝑖 ≥ 𝑐𝑐𝑖𝑖(𝑠𝑠)
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No regret

Cost for player i with 
action 𝑠𝑠𝑖𝑖′ for i and s for all 
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action vector s



Fictitious play for Matching Pennies
H T

H
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1
1
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T
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Result: Distribution is Nash
But cycles

G sees (H,T) R sees (H,T) resulting
history              history play
(0,0) (0,2) → (H,H)
(1,0) (1,2) → (H,H)
(2,0) (2,2) → (H,T)
(2,1) (3,2) → (H,T)
(2,2) (4,2) → (T,T)
…

1/2

1/2



Excercises:

If fictitious play converges (in the time average), does this 
imply that the outcome Nash?
a. Suppose fictitious play converges to strategy vector 𝑠𝑠. After a while 

each play i chooses a fixed pure strategy 𝑠𝑠𝑖𝑖. Prove that 𝑠𝑠 is Nash.
b. Suppose in a 2 person game, the history of fictitious play of play i

converges to a mix of 𝜎𝜎𝑖𝑖 (probability distribution of his strategies) for 
both players. Prove that the product of mixed strategies 𝜎𝜎1 × 𝜎𝜎2 is a 
mixed Nash equilibrium.

c. Can you extend this to more players? Depends what we mean. 

yes

yes



Fictitious play in  coordination game

A B
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Start (A,B)
A sees B sees Play
(1,0) (1,0) → (B,A)
(1,1) (1,1) → (A,B)
(2,1) (1,2) → (B,A)
… …

Theorem [Miyasawa’61]: Fictitious play distributions converges  to 
Nash in 2-player 2 strategy games.
d. Suppose the mixed strategy vector 𝜎𝜎 both players (or all players). 
Does this imply that the distribution vector 𝜎𝜎 a Nash equilibrium?

1/2 1/2
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No-regret without stability: learning 
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All players 𝑖𝑖 have not much incentive to switch to any fixed  alternate 
strategy 𝑠𝑠𝑖𝑖′:

In costs: ∑𝑡𝑡 𝑐𝑐𝑖𝑖(𝑠𝑠𝑡𝑡) ≤ ∑𝑡𝑡 𝑐𝑐𝑖𝑖 𝑠𝑠𝑖𝑖′, 𝑠𝑠−𝑖𝑖𝑡𝑡 +small regret
In values: ∑𝑡𝑡 𝑣𝑣𝑖𝑖 𝑠𝑠𝑖𝑖′, 𝑠𝑠−𝑖𝑖𝑡𝑡 ≤ ∑𝑡𝑡 𝑣𝑣𝑖𝑖(𝑠𝑠𝑡𝑡) + small regret



Fictitious play can have large regret!

A B
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Start (A,B)
A sees B sees Play
(1,0) (1,0) → (B,A)
(1,1) (1,1) → (A,B)
(2,1) (1,2) → (B,A)
… …

Resulting payoff for each play is 0!
Regret for player 1:  0 = ∑𝑡𝑡=1𝑇𝑇 𝑣𝑣1 𝑠𝑠𝑡𝑡

1/2 1/2

≪ ∑𝑡𝑡=1𝑇𝑇 𝑣𝑣1 𝐴𝐴, 𝑠𝑠−𝑖𝑖 = 𝑇𝑇
2



Learning in Repeated Game 2

Smoothed fictitious play: randomize between similar payoffs.
• Fictitious play = best respond to past history of other player 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛𝑥𝑥 ∑𝜏𝜏=1𝑡𝑡−1 𝑐𝑐𝑖𝑖(𝑥𝑥, 𝑠𝑠−𝑖𝑖𝜏𝜏 )

• Multiplicative weights: play prob. distribution 𝜎𝜎 𝑥𝑥
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛𝜎𝜎 ∑𝜏𝜏=1𝑡𝑡 𝐸𝐸𝑥𝑥~𝜎𝜎(𝑐𝑐𝑖𝑖(𝑥𝑥, 𝑠𝑠−𝑖𝑖𝜏𝜏 ))

where 𝜈𝜈 > 0 and 𝐻𝐻 𝜎𝜎 = −∑𝑥𝑥 𝜎𝜎 𝑥𝑥 log𝜎𝜎(𝑥𝑥)

• Follow the perturbed leader:  chose a random 𝑟𝑟𝑥𝑥, 
select 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛𝑥𝑥[−𝑟𝑟𝑥𝑥 + ∑𝜏𝜏=1𝑡𝑡−1 𝑐𝑐𝑖𝑖(𝑥𝑥, 𝑠𝑠−𝑖𝑖𝜏𝜏 )]

−𝜈𝜈 H(𝜎𝜎)



Fictitious play and no regret
Fictitious play = best respond to past history of other players

𝑠𝑠𝑖𝑖𝑡𝑡 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛𝑥𝑥 ∑𝜏𝜏=1𝑡𝑡−1 𝑐𝑐𝑖𝑖 𝑥𝑥, 𝑠𝑠−𝑖𝑖𝜏𝜏

Magic enhancement of Fictitious play with response included

𝑠𝑠𝑖𝑖𝑡𝑡 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛𝑥𝑥 ∑𝜏𝜏=1𝑡𝑡 𝑐𝑐𝑖𝑖 𝑥𝑥, 𝑠𝑠−𝑖𝑖𝜏𝜏

Theorem 1: Magic fictitious play has no regret.
Proof: by induction we claim that 

∑𝜏𝜏=1𝑡𝑡 𝑐𝑐𝑖𝑖 𝑠𝑠𝜏𝜏 ≤ ∑𝜏𝜏=1𝑡𝑡 𝑐𝑐𝑖𝑖 𝒔𝒔𝒊𝒊𝒕𝒕, 𝑠𝑠−𝑖𝑖𝜏𝜏

∑𝜏𝜏=1𝑡𝑡 𝑐𝑐𝑖𝑖 𝑠𝑠𝜏𝜏 = ∑𝜏𝜏=1𝑡𝑡−1 𝑐𝑐𝑖𝑖 𝑠𝑠𝜏𝜏 + 𝑐𝑐𝑖𝑖 𝑠𝑠𝑡𝑡

By choice of 𝒔𝒔𝒊𝒊𝒕𝒕

IH      with 𝑥𝑥 = 𝑠𝑠𝑖𝑖𝑡𝑡

QED

≤ ∑𝜏𝜏=1𝑡𝑡−1 𝑐𝑐𝑖𝑖 𝑠𝑠𝑖𝑖𝑡𝑡 , 𝑠𝑠−𝑖𝑖𝜏𝜏 + 𝑐𝑐𝑖𝑖 𝑠𝑠𝑡𝑡

≤ min
𝑥𝑥

∑𝜏𝜏=1𝑡𝑡 𝑐𝑐𝑖𝑖 𝑥𝑥, 𝑠𝑠−𝑖𝑖𝜏𝜏



Follow the perturbed leader has small regret 
(Theorem)

Follow the perturbed leader:  chose a random 𝑟𝑟𝑥𝑥, 
select 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛𝑥𝑥[−𝑟𝑟𝑥𝑥 + ∑𝜏𝜏=1𝑡𝑡−1 𝑐𝑐𝑖𝑖(𝑥𝑥, 𝑠𝑠−𝑖𝑖𝜏𝜏 )]

Step 1: Magic Follow the perturbed leader has regret at most max
𝑥𝑥

𝑟𝑟𝑥𝑥
select 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛𝑥𝑥[−𝑟𝑟𝑥𝑥 + ∑𝜏𝜏=1𝑡𝑡 𝑐𝑐𝑖𝑖(𝑥𝑥, 𝑠𝑠−𝑖𝑖𝜏𝜏 )]

Proof: as before
∑𝜏𝜏=1𝑡𝑡 𝑐𝑐𝑖𝑖 𝑠𝑠𝜏𝜏 − 𝑟𝑟𝑠𝑠𝑖𝑖1 ≤ ∑𝜏𝜏=1𝑡𝑡 𝑐𝑐𝑖𝑖 𝒔𝒔𝒊𝒊𝒕𝒕, 𝑠𝑠−𝑖𝑖𝜏𝜏 − 𝑟𝑟𝑠𝑠𝑖𝑖𝑡𝑡

∑𝜏𝜏=1𝑡𝑡 𝑐𝑐𝑖𝑖 𝑠𝑠𝜏𝜏 − 𝑟𝑟𝑠𝑠𝑖𝑖1 = ∑𝜏𝜏=1𝑡𝑡−1 𝑐𝑐𝑖𝑖 𝑠𝑠𝜏𝜏 − 𝑟𝑟𝑠𝑠𝑖𝑖1 + 𝑐𝑐𝑖𝑖 𝑠𝑠𝑡𝑡
IH

QED

≤ min
𝑥𝑥

∑𝜏𝜏=1𝑡𝑡 𝑐𝑐𝑖𝑖 𝑥𝑥, 𝑠𝑠−𝑖𝑖𝜏𝜏 − 𝑟𝑟𝑥𝑥

≤ ∑𝜏𝜏=1𝑡𝑡−1 𝑐𝑐𝑖𝑖 𝑠𝑠𝑖𝑖𝑡𝑡, 𝑠𝑠−𝑖𝑖𝜏𝜏 −𝑟𝑟𝑠𝑠𝑖𝑖𝑡𝑡 +𝑐𝑐𝑖𝑖 𝑠𝑠𝑡𝑡



Real follow the perturbed leader
Let 𝑟𝑟𝑥𝑥 random: number of coins till you get H, if probability of H is 𝜖𝜖
So 𝐸𝐸 𝑟𝑟𝑥𝑥 = 1

ϵ
Step 2: if max 𝑐𝑐𝑖𝑖 𝑠𝑠 ≤ 1, then in any one step, the probability that magic 
perturbed follow the leader makes  a different choice than real ≤ 𝜖𝜖
Alternate way to flip the coins. 

Start with 𝑟𝑟𝑥𝑥=1 all 𝑥𝑥
While more than one 𝑥𝑥 possible

Take largest 𝑥𝑥, and flips its coin. 
If H: x is eliminated.

When one x left: flip coins for x till H
If ≠H, then adding 𝑐𝑐𝑖𝑖(𝑥𝑥, 𝑠𝑠−𝑖𝑖𝑡𝑡 ) or not makes no difference, prob=1 − 𝜖𝜖

Also, for n strategies  𝐸𝐸(max
𝑥𝑥

𝑟𝑟𝑥𝑥) = 𝑂𝑂(log 𝑛𝑛
𝜖𝜖

)



Follow perturbed leader: small regret

Assuming we always follow magic version: regret at most max
𝑥𝑥

𝑟𝑟𝑥𝑥
• Expected value 𝐸𝐸(max

𝑥𝑥
𝑟𝑟𝑥𝑥) ≤ 𝑂𝑂(log 𝑛𝑛

𝜖𝜖
)

• Cost from a step we don’t follow the magic version at most 1
So expected total cost of such steps at most 𝜖𝜖𝜖𝜖

• Total regret at most
∑𝜏𝜏𝑡𝑡 𝑐𝑐𝑖𝑖 𝑠𝑠𝑡𝑡 ≤ min

𝑥𝑥
∑𝜏𝜏𝑡𝑡 𝑐𝑐𝑖𝑖 𝑥𝑥, 𝑠𝑠𝑖𝑖𝑡𝑡 + 𝜖𝜖𝜖𝜖 + 𝑂𝑂(log 𝑛𝑛

𝜖𝜖
)

Theorem: Select 𝜖𝜖 = log 𝑛𝑛
𝑇𝑇

then resulting regret at most 𝑂𝑂( T log𝑛𝑛 )



Exercise

Improved analysis of follow the perturbed leader
a. Dependence on T is very unfortunate: would much prefer bound of

∑𝜏𝜏𝑡𝑡 𝑐𝑐𝑖𝑖 𝑠𝑠𝑡𝑡 ≤ 1 + 𝜖𝜖 min
𝑥𝑥
∑𝜏𝜏𝑡𝑡 𝑐𝑐𝑖𝑖 𝑥𝑥, 𝑠𝑠𝑖𝑖𝑡𝑡 + 𝑂𝑂(log 𝑛𝑛

𝜖𝜖
)

Is this also true?

b. when strategies are path s to t: there are exponentially 
many path! Can we add randomness 𝑟𝑟𝑒𝑒 on the edges? And have 
𝑟𝑟𝑃𝑃 = ∑𝑒𝑒∈𝑃𝑃 𝑟𝑟𝑒𝑒?



Smoothed fictitious play 2: Multiplicative weight?
• Multiplicative weights: play prob. distribution 𝜎𝜎 𝑥𝑥

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛𝜎𝜎 ∑𝜏𝜏=1𝑡𝑡 𝐸𝐸𝑥𝑥~𝜎𝜎(𝑐𝑐𝑖𝑖(𝑥𝑥, 𝑠𝑠−𝑖𝑖𝜏𝜏 )) − 𝜈𝜈𝜈𝜈(𝜎𝜎)
where 𝜈𝜈 > 0 and 𝐻𝐻 𝜎𝜎 = −∑𝑥𝑥 𝜎𝜎 𝑥𝑥 log𝜎𝜎 𝑥𝑥

Theorem: Multiplicative weight with rewards and 𝛼𝛼 = 1 − 𝜖𝜖
achieves (for a player with n strategies):

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝜎𝜎�
𝜏𝜏=1

𝑡𝑡

𝐸𝐸𝑥𝑥~𝜎𝜎(𝑟𝑟𝑖𝑖(𝑥𝑥, 𝑠𝑠−𝑖𝑖𝜏𝜏 )) + 𝜈𝜈𝜈𝜈(𝜎𝜎)



Multiplicative weights (rewards)’

Reinforcement learning = reinforce actions that worked well in the past
sequence of play 𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑡𝑡

Focus on player i: 
Randomized strategy: weight/value of strategy 𝑥𝑥: 𝑤𝑤𝑥𝑥

probability of playing action 𝑥𝑥 is 𝑝𝑝𝑥𝑥=𝑤𝑤𝑥𝑥/∑𝑠𝑠𝑖𝑖 𝑤𝑤𝑠𝑠𝑖𝑖
Update 𝑤𝑤𝑥𝑥←𝑤𝑤𝑥𝑥𝛼𝛼𝑐𝑐𝑖𝑖 𝑥𝑥,𝑠𝑠−𝑖𝑖

𝑡𝑡
for some 𝛼𝛼 < 1

Multiplicative weight update (MWU) or Hedge [Freund and Schapire’97]



Multiplicative weights and smoothed fictitious play

Theorem 
• Smoothed fictitious play with entropy = Multiplicative weight 

update (with 𝛼𝛼 = 𝑒𝑒−1/𝜈𝜈)

Smoothed Fictitious Play:
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝜎𝜎 ∑𝑡𝑡 𝐸𝐸𝑥𝑥∼𝜎𝜎(𝑐𝑐𝑖𝑖(𝑥𝑥, 𝑠𝑠−𝑖𝑖𝑡𝑡 )) − 𝜈𝜈 H(𝜎𝜎)

Multiplicative weight:
probability of playing action 𝑥𝑥 is 𝑝𝑝𝑥𝑥=𝑤𝑤𝑥𝑥/∑𝑠𝑠𝑖𝑖 𝑤𝑤𝑠𝑠𝑖𝑖
Update 𝑤𝑤𝑥𝑥←𝑤𝑤𝑥𝑥𝛼𝛼𝑐𝑐𝑖𝑖 𝑥𝑥,𝑠𝑠−𝑖𝑖

𝑡𝑡

Proof:



Proof of equivalence (sketch)

Smoothed Fictitious Play:
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝜎𝜎 ∑𝑡𝑡 𝐸𝐸𝑥𝑥∼𝜎𝜎(𝑐𝑐𝑖𝑖(𝑥𝑥, 𝑠𝑠−𝑖𝑖𝑡𝑡 )) − 𝜈𝜈 H(𝜎𝜎)

Let 𝑞𝑞𝑥𝑥 probability of playing x, and use 𝐶𝐶 𝑥𝑥 = ∑𝑡𝑡 𝑐𝑐𝑖𝑖(𝑥𝑥, 𝑠𝑠−𝑖𝑖𝑡𝑡 )
min𝐹𝐹 𝑞𝑞 = ∑𝑥𝑥 𝑞𝑞𝑥𝑥𝐶𝐶 𝑥𝑥 − 𝜈𝜈𝑞𝑞𝑥𝑥 ln 𝑞𝑞𝑥𝑥

Minimized when all partial derivatives are the same

Δ𝑞𝑞𝑥𝑥(𝐹𝐹) = C x − 𝜈𝜈 ln 𝑞𝑞𝑥𝑥 − 𝜈𝜈

So 𝑞𝑞𝑥𝑥 = exp 𝐶𝐶 𝑥𝑥
𝜈𝜈

/exp(const) = 𝛼𝛼𝐶𝐶 𝑥𝑥 ∗ exp(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

𝛼𝛼 = 𝑒𝑒−1/𝜈𝜈

so C x /𝜈𝜈 − ln 𝑞𝑞𝑥𝑥 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐



Detour: Multiplicative weight is no regret

• Use regards not costs with 𝑛𝑛 strategies

∑𝜏𝜏 𝑟𝑟𝑖𝑖 𝑠𝑠𝜏𝜏 ≥ 1 − 𝜖𝜖 max
𝑥𝑥

∑𝜏𝜏 𝑟𝑟𝑖𝑖 𝑥𝑥, 𝑠𝑠−𝑖𝑖𝜏𝜏 − log 𝑛𝑛
𝜖𝜖

• Assume 0 ≤ 𝑟𝑟𝑖𝑖 𝑠𝑠𝜏𝜏 ≤ 1
• Multiplicative weight

• 𝑝𝑝𝑥𝑥=𝑤𝑤𝑥𝑥/∑𝑠𝑠𝑖𝑖 𝑤𝑤𝑠𝑠𝑖𝑖
• Update 𝑤𝑤𝑥𝑥←𝑤𝑤𝑥𝑥𝛼𝛼𝑐𝑐𝑖𝑖 𝑥𝑥,𝑠𝑠−𝑖𝑖

𝑡𝑡
now 𝛼𝛼 > 1, e.g., 𝛼𝛼 = exp 1 + 𝜖𝜖



Detour: Buy and Hold investment

𝑊𝑊 wealth, n stocks to invest in, with return rates 1 + 𝜖𝜖 𝑟𝑟𝑖𝑖
𝑡𝑡

period t with 
0 ≤ 𝑟𝑟𝑖𝑖𝑡𝑡 ≤ 1

• All invested in stock i we get: Wi t = 𝑊𝑊∏𝑡𝑡 1 + 𝜖𝜖 𝑟𝑟𝑖𝑖
𝑡𝑡

= 𝑊𝑊 1 + 𝜖𝜖 ∑𝑡𝑡 𝑟𝑟𝑖𝑖
𝑡𝑡

• Invest equally and hold (𝑊𝑊
𝑛𝑛

, … ,𝑊𝑊
𝑛𝑛

) and hold

• Resulting wealth: W t = ∑𝑖𝑖
𝑊𝑊
𝑛𝑛
∏𝑡𝑡 1 + 𝜖𝜖 𝑟𝑟𝑖𝑖

𝑡𝑡
= 𝑊𝑊

𝑛𝑛
∑𝑖𝑖 1 + 𝜖𝜖 ∑𝑡𝑡 𝑟𝑟𝑖𝑖

𝑡𝑡

≥ max
𝑖𝑖

𝑊𝑊
𝑛𝑛

1 + 𝜖𝜖 ∑𝑡𝑡 𝑟𝑟𝑖𝑖
𝑡𝑡

We get log1+𝜖𝜖 𝑊𝑊 𝑡𝑡 ≥max
𝑖𝑖

log1+𝜖𝜖𝑊𝑊 1 + 𝜖𝜖 ∑𝑡𝑡 𝑟𝑟𝑖𝑖
𝑡𝑡
− log1+𝜖𝜖 𝑛𝑛 =

𝑙𝑙𝑙𝑙𝑔𝑔1+𝜖𝜖(𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖 𝑊𝑊𝑖𝑖 𝑡𝑡 ) − log1+𝜖𝜖 𝑛𝑛



Buy and Hold investment ⇒ learning
Connection: if W=1 and you use 𝑥𝑥1𝑡𝑡 , … , 𝑥𝑥𝑛𝑛𝑡𝑡 to invest at time t you get

log1+𝜖𝜖 𝑊𝑊′ 𝑡𝑡 = log1+𝜖𝜖 (𝑊𝑊′ 𝑡𝑡 − 1 �
𝑖𝑖

𝑥𝑥𝑖𝑖𝑡𝑡 1 + 𝜖𝜖 𝑟𝑟𝑖𝑖
𝑡𝑡
)

= log1+𝜖𝜖 𝑊𝑊′ 𝑡𝑡 − 1 + log1+𝜖𝜖�
𝑖𝑖

𝑥𝑥𝑖𝑖𝑡𝑡 1 + 𝜖𝜖 𝑟𝑟𝑖𝑖
𝑡𝑡

= log1+𝜖𝜖 𝑊𝑊′ 𝑡𝑡 − 1 + log1+𝜖𝜖(1 + 𝜖𝜖 ∑𝑖𝑖 𝑥𝑥𝑖𝑖𝑡𝑡𝑟𝑟𝑖𝑖𝑡𝑡)

≤ log1+𝜖𝜖 𝑊𝑊′ 𝑡𝑡 − 1 +
𝜖𝜖 ∑𝑖𝑖 𝑥𝑥𝑖𝑖𝑡𝑡𝑟𝑟𝑖𝑖𝑡𝑡

ln 1 + 𝜖𝜖

≤ log1+𝜖𝜖 𝑊𝑊′ 𝑡𝑡 − 1 + log1+𝜖𝜖�
𝑖𝑖

𝑥𝑥𝑖𝑖𝑡𝑡(1 + 𝜖𝜖𝑟𝑟𝑖𝑖𝑡𝑡)

= log1+𝜖𝜖 𝑊𝑊′ 𝑡𝑡 − 1 + ln(1+𝜖𝜖 ∑𝑖𝑖 𝑥𝑥𝑖𝑖
𝑡𝑡 𝑟𝑟𝑖𝑖

𝑡𝑡)
ln 1+𝜖𝜖

log1+𝜖𝜖 𝑊𝑊𝑊 is a lower bound on reward of learner!!1 + 𝑥𝑥 ≤ 𝑒𝑒𝑥𝑥

1 + 𝜖𝜖 𝑟𝑟

convex in r

≤
𝜖𝜖

ln(1 + 𝜖𝜖)�
𝑡𝑡

�
𝑖𝑖

𝑥𝑥𝑖𝑖𝑡𝑡𝑟𝑟𝑖𝑖𝑡𝑡



Buy and Hold investment ⇒ learning

Buy all and hold as a learning strategy, so we get 

𝑥𝑥𝑖𝑖𝑡𝑡 =
1 + 𝜖𝜖 ∑𝑡𝑡 𝑟𝑟𝑖𝑖

𝑡𝑡

∑𝑗𝑗 1 + 𝜖𝜖 ∑𝑗𝑗 𝑟𝑟𝑗𝑗
𝑡𝑡

The result:

∑𝑖𝑖 ∑𝑡𝑡 𝑥𝑥𝑖𝑖𝑡𝑡𝑟𝑟𝑖𝑖𝑡𝑡 ≥
𝑙𝑙𝑙𝑙 1+𝜖𝜖

𝜖𝜖
log1+𝜖𝜖 𝑊𝑊 𝑇𝑇 ≥ ln 1+𝜖𝜖

𝜖𝜖
(max

𝑖𝑖
log1+𝜖𝜖 𝑊𝑊𝑖𝑖 𝑇𝑇 − 𝑙𝑙𝑙𝑙𝑔𝑔1+𝜖𝜖 𝑛𝑛)

=
ln(1 + 𝜖𝜖)

𝜖𝜖
(max

𝑖𝑖
�
𝑡𝑡

𝑟𝑟𝑖𝑖𝑡𝑡 − l𝑜𝑜𝑔𝑔1+𝜖𝜖 𝑛𝑛) ≥ 1 − 𝜖𝜖 max
𝑖𝑖
�
𝑖𝑖

𝑟𝑟𝑖𝑖𝑡𝑡 −
ln𝑛𝑛
𝜖𝜖

From 
previous

Good 
investment



Outcome with no-regret learning in games

Limit distribution 𝜎𝜎 of play (strategy vectors s=(𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛))
• all players i have no regret for all strategies x

𝐸𝐸𝑠𝑠∼𝜎𝜎 𝑐𝑐𝑖𝑖 𝑠𝑠 ≤ 𝐸𝐸𝑠𝑠∼𝜎𝜎(𝑐𝑐𝑖𝑖(𝑥𝑥, 𝑠𝑠−𝑖𝑖))

Hart & Mas-Colell: Long term average play is (coarse) correlated 
equilibrium

Players update independently, but correlate on shared history



Correlated equilibrium vs Nash equilibrium

• No-regret learning → coarse correlated equilibrium exists. No need 
for the fixed point proof of Nash…

• Coarse correlated equilibria form a convex set!
𝜋𝜋𝑠𝑠: probability of strategy vector s

𝜋𝜋𝑠𝑠 ≥ 0,∑𝑠𝑠 𝜋𝜋𝑠𝑠 = 1
∑𝑠𝑠 𝜋𝜋𝑠𝑠𝑢𝑢𝑖𝑖 𝑠𝑠 ≥ 𝜋𝜋𝑠𝑠𝑢𝑢𝑖𝑖(𝑠𝑠𝑠𝑖𝑖 , 𝑠𝑠−𝑖𝑖) for all 𝑖𝑖, 𝑠𝑠𝑖𝑖′ ∈ 𝑆𝑆𝑖𝑖 (𝑖𝑖 has no regret)

Poly time computable [Roughgarden-Papadimitriou’05, Jiang &Leyton-
Brown’11]

• Correlated equilibrium where 𝜎𝜎 is a product distribution (players 
choose independently) is a Nash



Plan for today and going forward

• Today: outcome of learning in 0-sum games
• Next: outcome in of learning in congestion games and 

auctions
• Then: what was is learning better than Nash?



Exercises

1. If all players use one of our no-regret learning algorithms (with 
regret <<T (such as Ο( 𝑇𝑇) or just 𝑜𝑜(𝑇𝑇))
and suppose distribution of the history of play converges to a fixed 
strategy vector 𝜎𝜎. 
Does this imply that the distribution vector 𝜎𝜎 a Nash equilibrium?

2. Can probability of play on Cooperate in Prisoner’s dilemma remain 
>0 in a no-regret play?

Yes: if players update independently, reacting to the same history: it 
most be product distribution

No: C is a dominated by D: player would have regret if playing C 



Correlated equilibrium vs Nash equilibrium

• No-regret learning → coarse correlated equilibrium exists. No need 
for the fixed point proof of Nash…

• Coarse correlated equilibria form a convex set!
𝜋𝜋𝑠𝑠: probability of strategy vector s

𝜋𝜋𝑠𝑠 ≥ 0,∑𝑠𝑠 𝜋𝜋𝑠𝑠 = 1
∑𝑠𝑠 𝜋𝜋𝑠𝑠𝑢𝑢𝑖𝑖 𝑠𝑠 ≥ ∑𝑠𝑠 𝜋𝜋𝑠𝑠𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖′, 𝑠𝑠−𝑖𝑖) for all 𝑖𝑖, 𝑠𝑠𝑖𝑖′ ∈ 𝑆𝑆𝑖𝑖 (𝑖𝑖 has no regret)

Poly time computable [Roughgarden-Papadimitriou’05, Jiang &Leyton-
Brown’11]

• Correlated equilibrium where 𝜎𝜎 is a product distribution (players 
choose independently) is a Nash



Simple example:  rock-paper-scissor
R P S

R 0
0

1
-1

-1
1

P -1
1

0
0

1
-1

S 1
-1

-1
1

0
0

Nash equilibrium unique 
mixed: (1

3
, 1
3

, 1
3
) each



Dynamics of  rock-paper-scissor (Shapley)

R P S

R -9
-9

1
-1

-1
1

P -1
1

-9
-9

1
-1

S 1
-1

-1
1

-9
-9

• Doesn’t converge
• correlates on shared history
• Payoff better than any Nash! 

Rock

Scissor

Paper

Nash: 1
3

1
3

1
3

Learning 
dynamic

Payoffs/utility

• Same also with regular RPS



Two person 0-sum games and no-regret learning

𝑝𝑝𝑥𝑥𝑥𝑥 probability distribution that is a coarse correlated equilibrium. 
• Payoff matrix A, then payoff is ∑𝑥𝑥𝑥𝑥 𝑝𝑝𝑥𝑥𝑥𝑥𝐴𝐴𝑥𝑥𝑥𝑥
• Value v = ∑𝑥𝑥𝑥𝑥 𝑝𝑝𝑥𝑥𝑥𝑥𝐴𝐴𝑥𝑥𝑥𝑥

same as Nash
Theorem: Marginal distributions 𝐪𝐪𝐱𝐱 = ∑𝑦𝑦 𝑝𝑝𝑥𝑥𝑥𝑥 and 𝐫𝐫𝐲𝐲 = ∑𝑥𝑥 𝑝𝑝𝑥𝑥𝑥𝑥 for a 
Nash

Note that we didn’t claim: pxy ≠ qx𝑟𝑟𝑦𝑦



Two person 0-sum games (proof)
• Matrix A is first player’s payoff, so with distribution 𝑝𝑝𝑥𝑥𝑥𝑥

• player 1 gets ∑𝑥𝑥𝑥𝑥 𝑝𝑝𝑥𝑥𝑥𝑥𝐴𝐴𝑥𝑥𝑥𝑥 =v
• Player 2 gets −∑𝑥𝑥𝑥𝑥 𝑝𝑝𝑥𝑥𝑥𝑥𝐴𝐴𝑥𝑥𝑥𝑥=-v 

• Marginal distributions 𝐪𝐪𝐱𝐱 = ∑𝑦𝑦 𝑝𝑝𝑥𝑥𝑥𝑥 and 𝐫𝐫𝐲𝐲 = ∑𝑥𝑥 𝑝𝑝𝑥𝑥𝑥𝑥
• Player 1 has no regret: her value= 𝑣𝑣 ≥ max

𝑥𝑥
∑𝑦𝑦 𝐴𝐴𝑥𝑥𝑥𝑥𝒓𝒓𝒚𝒚: 

player 1 getting her best response value to 2’s marginal distribution!
• Player 2 has no regret: his loss= v ≤ min

𝑦𝑦
∑𝑥𝑥 𝒒𝒒𝒙𝒙𝐴𝐴𝑥𝑥𝑥𝑥

• player 2 getting his best response value to 1’s marginal distribution!
𝑣𝑣 ≤ min

𝑦𝑦
∑𝑥𝑥 𝑞𝑞𝑥𝑥𝐴𝐴𝑥𝑥𝑥𝑥

So 𝒒𝒒 and 𝒓𝒓 is Nash, and 𝑣𝑣 is Nash value! … but 𝑝𝑝𝑥𝑥𝑥𝑥 ≠ 𝐫𝐫𝐲𝐲𝐪𝐪𝐱𝐱

≤ ∑𝑥𝑥𝑥𝑥 𝑞𝑞𝑥𝑥𝐴𝐴𝑥𝑥𝑥𝑥𝑟𝑟𝑦𝑦 ≤ 𝑣𝑣≤ max
𝑥𝑥

∑𝑦𝑦 𝐴𝐴𝑥𝑥𝑥𝑥𝑝𝑝𝑥𝑥



Extension to networked 0-sum games

• Two-player 0 sum game on each edge
• Nodes are players, need to play same strategy in each 

game

Theorem [Daskalakis-Papadimitriou ICALP’09] Nash for 
a convex set, no-regret play converges to Nash 
(projection to each player)

Proof idea:  2-person game: add RPS with payoff ±M
Next time? Exercise?



No-regret learning as a behavioral model?

• Er’ev and Roth’96 
lab experiments  with 2 person coordination game

• Fudenberg-Peysakhovich EC’14
lab experiments with seller-buyer game 
recency biased learning

• Nekipelov-Syrgkanis-Tardos EC’15
Bidding data on Bing-Ad-Auctions



Behavior is far from stable

49

Bing search advertisement bid
Bidders use sophisticated bidding tools
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Distribution of smallest rationalizable
multiplicative regret
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Distribution of smallest rationalizable
multiplicative regret
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May be better than 
no-regret Strictly positive regret: 

learning phase

𝝀𝝀



What can we say about learning outcome?

Limit distribution 𝜎𝜎 of play (strategy vectors s=(𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛))
• all players i have no regret for all strategies x

𝐸𝐸𝑠𝑠∼𝜎𝜎 𝑐𝑐𝑖𝑖 𝑠𝑠 ≤ 𝐸𝐸𝑠𝑠∼𝜎𝜎(𝑐𝑐𝑖𝑖(𝑥𝑥, 𝑠𝑠−𝑖𝑖))

Hart & Mas-Colell: Long term average play is (coarse) correlated 
equilibrium

How good are coarse correlated equilibria??



Outcome of learning in games:
cost minimization

• Finite set of players 1,…,n
• strategy sets 𝑆𝑆𝑖𝑖 for player i:  
• Resulting in strategy vector: s=(𝑠𝑠1, … , 𝑠𝑠𝑛𝑛) for each 𝑠𝑠𝑖𝑖 ∈ 𝑆𝑆𝑖𝑖
• Cost of player i: 𝑐𝑐𝑖𝑖 𝑠𝑠 or 𝑐𝑐𝑖𝑖 𝑠𝑠𝑖𝑖 , 𝑠𝑠−𝑖𝑖

Pure Nash equilibrium if 𝑐𝑐𝑖𝑖 𝑠𝑠 ≤ 𝑐𝑐𝑖𝑖(𝑠𝑠𝑖𝑖′, 𝑠𝑠−𝑖𝑖) for all players and all 
alternate strategies 𝑠𝑠𝑠𝑖𝑖 ∈ 𝑆𝑆𝑖𝑖

• Social welfare: cost s = ∑𝑖𝑖 𝑐𝑐𝑖𝑖(𝑠𝑠)
Optimum: 𝑂𝑂𝑂𝑂𝑂𝑂 = min

𝑠𝑠
∑𝑖𝑖 𝑐𝑐𝑖𝑖(𝑠𝑠)



Quality of Learning Outcome

Price of Anarchy [Koutsoupias-
Papadimitriou’99]

𝑃𝑃𝑃𝑃𝑃𝑃 = max
𝑠𝑠 𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠)
𝑂𝑂𝑂𝑂𝑂𝑂

Assuming no-regret learners in fixed 
game: [Blum, Hajiaghayi, Ligett, Roth’08, 
Roughgarden’09]

𝑃𝑃𝑃𝑃𝑃𝑃 = lim
𝑇𝑇→∞

∑𝑡𝑡=1𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠𝑡𝑡)
𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂



Example: Model of Routing Game
• A directed graph G = (V,E)
• source–sink pairs si,ti for i=1,..,k

r1 =1s t
x/100 150

x/1001 50

50

50

•Goal minimum delay: 
delay adds along path
edge-cost/delay is a function ce(•) of the 
load on the edge e



Delay Functions
Assume ce(x) continuous and 

monotone increasing in load x on 
edge

No capacity of edges for now

Example to model capacity u:

x

ce(x)ce(x)= a/(u-x)

u

r1 =1s t
x/100 150

x/1001 50

50

50



Goal’s of the Game: min delay 
Personal objective: minimize

cP(f) = sum of delays of edges along P (wrt. flow f) 
𝐜𝐜𝐏𝐏(𝐟𝐟) = ∑𝒆𝒆∈𝑷𝑷 𝒄𝒄𝒆𝒆(𝒇𝒇𝒆𝒆)

Overall objective:
C(f) = total delay of a flow f:  = ΣP fP•cP(f)

= - social welfare 
or total/average delay

Also:
C(f) = Σe fe•ce(fe) x

Costs         
-----------

Cost         -
----------



Price of Anarchy: proof technique 
[Roughgarden’09]

• What we can work with: 
Optimum 𝑠𝑠∗ = 𝑠𝑠1∗, 𝑠𝑠2∗, … , 𝑠𝑠𝑛𝑛∗

Nash:  𝑠𝑠 = 𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛
• What we know:

𝑐𝑐𝑖𝑖 𝑠𝑠 ≤ 𝑐𝑐𝑖𝑖(𝑠𝑠𝑖𝑖′, 𝑠𝑠−𝑖𝑖) for all i and all 𝑠𝑠𝑖𝑖′ ∈ 𝑆𝑆𝑖𝑖

Use it for all players and sum
𝑐𝑐 𝑠𝑠 = ∑𝑖𝑖 𝑐𝑐𝑖𝑖 𝑠𝑠 ≤ ∑𝑖𝑖 𝑐𝑐𝑖𝑖(𝑠𝑠𝑖𝑖∗, 𝑠𝑠−𝑖𝑖)



Proof smooth games

Nash property gave us (s is Nash, s* optimum)
𝑐𝑐 𝑠𝑠 = ∑𝑖𝑖 𝑐𝑐𝑖𝑖 𝑠𝑠 ≤ ∑𝑖𝑖 𝑐𝑐𝑖𝑖(𝑠𝑠𝑖𝑖∗, 𝑠𝑠−𝑖𝑖)

Game is smooth if for some µ<1 and λ>0 and all s and s* 
∑𝑖𝑖 𝑐𝑐𝑖𝑖 𝑠𝑠𝑖𝑖∗, 𝑠𝑠−𝑖𝑖 ≤ 𝜆𝜆𝜆𝜆 𝑠𝑠∗ + 𝜇𝜇 𝑐𝑐(𝑠𝑠) (λ,µ)-smooth

Theorem: (λ,µ)-smooth game ⇒
Price of anarchy  at most 𝜆𝜆/(1 − 𝜇𝜇)

If Opt <<cost(s), 
some player will 
want to deviate 
to 𝑠𝑠𝑖𝑖∗



Learning and price of anarchy (in smooth games)
Use approx no-regret learning: 
∑𝑡𝑡 𝑐𝑐𝑖𝑖 𝑠𝑠𝑡𝑡 ≤ (1 + 𝜖𝜖)∑𝑡𝑡 𝑐𝑐𝑖𝑖 𝑠𝑠𝑖𝑖∗, 𝑠𝑠−𝑖𝑖𝑡𝑡 + 𝑅𝑅 for all players

A cost minimization game is (λ,μ)-smooth (λ > 0; μ< 1): 
∑𝑡𝑡 ∑𝑖𝑖 𝑐𝑐𝑖𝑖 𝑠𝑠𝑖𝑖∗, 𝑠𝑠−𝑖𝑖𝑡𝑡 ≤ 𝜆𝜆∑𝑡𝑡 𝑂𝑂𝑂𝑂𝑂𝑂 + 𝜇𝜇 ∑𝑡𝑡 𝑐𝑐(𝑠𝑠𝑡𝑡)

A approx. no-regret sequence 𝑠𝑠𝑡𝑡 has

Note the convergence speed! 𝑅𝑅 = log 𝑑𝑑
𝜖𝜖

, so error n
T
⋅ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑
𝜖𝜖(1− 1+𝜖𝜖 𝜇𝜇)

Foster, Li, Lykouris, Sridharan, T, NIPS’16

1
𝑇𝑇
∑𝑡𝑡 𝑐𝑐(𝑠𝑠𝑡𝑡) ≤ (1+𝜖𝜖)𝜆𝜆

1−(1+𝜖𝜖)𝜇𝜇
Opt + n

T 1− 1+𝜖𝜖 𝜇𝜇
R



A B

C

D y/100

1 hour

1 hour

0min100

Equilibrium

x/100 2 hours

Each use must not 
regret not following her 
optimal path

+1 flow: 𝑓𝑓𝑒𝑒 + 1



No regret inequality for flow

• 𝑓𝑓𝑒𝑒 Nash flow on edge 𝑒𝑒, 𝑃𝑃 path used by Nash, 𝑄𝑄 path used by opt

No regret =
∑𝑒𝑒∈𝑃𝑃 𝑐𝑐𝑒𝑒 𝑓𝑓𝑒𝑒 ≤ ∑𝑒𝑒∈𝑃𝑃∩ 𝑄𝑄 𝑐𝑐𝑒𝑒(𝑓𝑓𝑒𝑒) + ∑𝑒𝑒∈𝑄𝑄∖𝑃𝑃 𝑐𝑐𝑒𝑒(𝑓𝑓𝑒𝑒 + 1)

• Without the +1 nonatomic flow: assumes +1 is too small to really 
make a difference

easier to work with…. See more next time
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