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Price of Anarchy and Game Dynamics
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Learning and Games
Price of Anarchy and Game Dynamics

Day 2:
Price of Anarchy on learning outcomes
Can we really learn this well?

Next: what can learning do that Nash cannot?



Summary from yesterday

simple games and variants:
* matching pennies,

e coordination,

e prisoner’s dilemma,

* Rock-paper-scissor

Congestion games, such as traffic routing
Auction games



Summary from yesterday (2)

* Fictitious play, and no-regret learning. Leaning algorithms that get

Yeci(sT) < (1+€) min ¥ ci(x,5:) + 0(ED)

€

Yo (sT) 2 (1 - €) max ¥ u(x,5:) — (=)

€

n=# strategies for player

Comments: Given time T, the best possible € = \/log n/T

* Without knowing T, use variable € = \/log n/t

choose new random r,. each step!



Summary from yesterday (3)

Outcome for learning in games

Coarse correlated equilibrium: a convex set of probability distributions
on strategy vectors p¢ probability that strategy vector s used

Comment: convergence to the set, but may not be to a point
Outcomes in games:
* Fictitious play: can be a mess (such as coordination game)

* No-regret learning in 2 person 0-sum games: converges to Nash both
in value and in marginal distribution (but not in actual play, see RPS)

* Leaning outcome in congestion games to be continued



What can we say about learning outcome?

Limit distribution o of play (strategy vectors s=(sq, S5, ..., S3,))
e all players i have no regret for all strategies x

ES~O‘(Ci (S)) = Es~a(ci (x: S—i))

Hart & Mas-Colell: Long term average play is (coarse) correlated
equilibrium

How good are coarse correlated equilibria??



Dynamics of rock-paper-scissor

Nash:
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 Doesn’t converge

, Coarse Correlated Equilibria: Prob x
e correlates on shared history

on diagonal, and prob (1-3x)/6 off
diagonal, with0 < 1/3 <1



Outcome of learning in games:
cost minimization
* Finite set of players 1,...,n
* strategy sets S; for player i:
* Resulting in strategy vector: s=(sy, ..., S,,) for each s; € §;

* Cost of player i: c;(s) or c;(s;, s_;)
Pure Nash equilibrium if ¢;(s) < ¢;(s;,s_;) for all players and all
alternate strategies s'; € S;

* Social welfare: cost(s) = };; ¢;(s)
Optimum: OPT = min );; ¢;(s)
S



Quality of Learning Outcome

Price of Anarchy [Koutsoupias- | Assuming no-regret learners in fixed
Papadimitriou’99] game: [Blum, Hajiaghayi, Ligett, Roth’08,
Roughgarden’09]

cost(s
PoA = max (s) {=1 cost(s?)

sNash  Opt Pod = M =1 0pt




Example: Model of Routing Game
e Adirected graph G = (V,E)

* source=sink pairs s,t. for i=1,..,k

*Goal minimum delay:
delay adds along path

edge-cost/delay is a function c (*) of the
load on the edge e



Delay Functions

Assume c_(x) continuous and
monotone increasing in load x on
edge

No capacity of edges for now

Example to model capacity u:

c.(x)= a/(u-x)

—=% x/100

Ce(X)




Goal’s of the Game: min delay

Personal objective: minimize

Costs

cp(f) = sum of delays of edges along P (wrt. flow f)
cp(f) = Lecp Ce(fe)

Overall objective:
Cost

C(f) = fotal delay o-f a flow f: =%, fpecp(f)

= - social welfare N

or total/average delay
Also:

C(f) ==, f.-c.(fe)




Equilibrium

Each use must not
regret not following her
optimal path

2 hours

+1 flow: f, + 1



No regret inequality for flow

* f. Nash flow on edge e, P path used by Nash, Q path used by opt

No regret =

ZeEP Ce (fe) = ZeEPn 0 Ce (fe) + ZeEQ\P Ce (fe + 1)

* Without the +1 nonatomic flow: assumes +1 is too small to really
make a difference



No-regret inequality with small flow unit

For flow using path Q and alternate Q we have
ZeEP Ce (fe) < ZeEPn 0 Ce (fe) + ZeEQ\P Ce (fe + 5)

Non-atomic flow, when each user is small, but total flow remains the
same: Limit as sizeas 06— 0

* Nash inequality limit for path P used and alternate !

ZeEP Ce (fe) = ZeEQ Ce (fe)



d.

Exercise

An alternate definition for equilibrium of a non-atomic flow would
be for each path P carrying flow and each alternate path @ if more
a 0 amount of P to Q to get a new flow f then

Dieep Ce(fe) < ZeEQ Ce (ﬁ)

Under what conditions is this equivalent to the definition given.
Nash equilibrium of non-atomic flow is the true optimum of

O(f) = T, 1% co(£)ds.

Note that this is convex if ¢, are monotone increasing



Price of Anarchy: proof technique
[Roughgarden’09]

* What we can work with:
Optimum s* = (s7,55, ..., Sp)
Nash: s = (51, S9, ..., Sp,)
* What we know:
c;(s) < c;(s{,s_;) foralliand all s; € S;

Use it for all players and sum

c(s) = x;ci(s) < X;ci(s;i,s—;)



Proof smooth games

Nash property gave us (s is Nash, s* optimum)

c(s) = y¢i(s) < Xy cilsi,5-1)

Game is smooth if for some p<1 and A>0 and all s and s*

i Ci(s;,5-;) < + u (A,1)-smooth

Theorem: (A,un)-smooth game =
Price of anarchy atmost A/(1 — u)

If Opt <<cost(s),
some player will
want to deviate
to s;



Learning and price of anarchy (in smooth games)

Use approx no-regret learning:
Yici(sH s +e)Y, ci(sf, st;) + R for all players

A cost minimization game is (A,)-smooth (A > 0; p< 1):
Dt hi ci(slf‘, Sfl-) <AY,0pt+u Y,c(sH)

A approx. no-regret sequence s‘ has

1 t (1+e)A n
72 (57 * —aron P 0 aron

€

Note the convergence speed! R = log d, SO error [E : log d ]
T e(1-(1+e)w)
Foster, Li, Lykouris, Sridharan, T, NIPS’16




Proving smoothness for flows

What we need }}; ¢;(s;,s5_;) < Ac(s™) + u c(s)
Nash inequality for s to t user using path P with alternate path Q

ZeEP Ce (fe) < ZeEQ Ce (fe)

Sum over paths Q; = P; in opt with f Nash and f™* optimal

ZP fp ZeEP Ce(fe) = ZQ f(; ZeEQ Ce (fe)

and rearranging sums
> fecelf) < ) fice(£))

We need

YefeCefe) S AXefece(fe) + 1 2e feCe(fe)
Claim: true edge by edge



Linear delay is smooth

Claim: f*eC (f) S f*eC (f*) + % feC (f)
assuming C (f) linear: A =1, u=

c(x
f*c(f)
“h £ ()
c(f*) < %f c(f)

>




Sharper results for non-atomic games

Theorem (Roughgarden-& '02):

In any network with linear cost functions the worst price of anarchy (in non-
atomic games) is at most 4/3

Proof: (1,%)-smoofh implies price of anarchy of /(1 —u)=1/(1—-1/4)=4/3




Sharper results for non-atomic games

Theorem (Roughgarden03):

In any network with any class of convex continuous latency functions the
worst price of anarchy (in non-atomic games) is always on two edge
network

} =X S Corollary:
@ — ’0‘ price of anarchy for
B degree d polynomials is

2 0(d/log d).




Monotone delay is (1,1)-smooth
Claim: f*e(f) < max(f*c(f*),fe(f)) < fc(f) + f c(f)

assuming C (f) monotone: A =1; p=1

¢(x)
f*c(f)

< max(f ¢(f),f*c(f*))

c(f)

c(f*)




High Social Welfare: Price of Anarchy in Routing

Theorem (Roughgarden-T'02):

In any network with continuous, non-decreasing cost and very small users

cost of Nash with
rates r. for all i

Proof if Nash carries % of the flow

<

cost of opt with
rates 2r for all i

Zfeceoz)i S fief) S 5 fel) Y focolfo]

1
Nash smooth
1
A

(1—§u)

Implying c(f) < c(f7),

so (1,1)- smooth implies the theorem!



Exercise

Ae

A popular delay model is ¢, (x) = , modeling

ue_x

capacity u, and delay on empty road %
e

a. Show that for any rates and any capacities, optimal flow has total cost
> Cost of Nash with double capacities u, = 2u,

b. Anything useful follows if capacities u, = «a - u, for some other a > 1



Linear delay atomic flow

Atomic game (players with >0 traffic) with linear delay (5/3,1/3)-smooth
(Awerbuch-Azar-Epstein’05 & Christodoulou-Koutsoupias’05)

—> 2.5 price of anarchy

* Need to prove: for all nonnegative integers x = f*(e) and y = f(e

5 1
x(y+1) < —x% + §y2 That is: 3xy +3x < 5x?% + yz

Theorem: Price of anarchy for polynomials of degree at most d at most
exponential in d: O(2¢ d4*1)

Suri-Toth-Zhou SPAA'04 (special case)
Awerbuch-Azar-Epstein STOC05
Christodoulou-Koutsoupias STOC'05



Homework

Smoothess for value maximization games

» Utility of player i: u;(s) or u;(s;,s_;)
Pure Nash equilibrium if u;(s) = u;(s;, s_;) for all players and all
alternate strategies s'; € S;

* Suppose ), u;i(s;,s_;) = A u;(s*) —uX;u;(s) for
some A, u > 0, an optimal solution vector s* and any
solution s. What does this imply about the price of

anarchy? [Roughgarden’09]

Fiui(s) = 5 ¥iu(s")



A utility game: Auctions as (Bayesian) game

First Example: Single item first price

* Auction sets a price p (full info, pure Nash).

Players

Vi3
vl /1’1“

Uy & .5 ln -

Can win by bidding p*

= At full info Nash player with max v; wins
at the next highest price




First price auction with uncertainty?

* Bayesian game
* Randomized bid

r~ &% )
1 ,1/ ” Players |
) Price p random

,@ ........... Cannot bid p*
o @ *
- 5,
i% .................




Auction games:

* Finite set of players 1,...,n
* strategy sets S; for player i: bid on some items (not a finite set)
* Resulting in strategy vector: s=(s, ..., ) for each s; € §;
o Utility playeri: u;(s) or u;(s;, s_;)
* We assume quasi-linear utility, and no externalities:

* If player wins set if items A; and pays p; her value is
u;(4;,0) = vi(4;) — p;

e Social welfare? (include auctioneer): }.; v;(4;) = X, u;(4;) + Zi};i

Revenue



Bayes Nash analysis

Strategy: bid as a function of value b; (v)
Nash: Ev_l-b [ul(b(v))hzl] = Ev_ib_l.[ui(b{, b_i(v_l-))|vi]

for all b{
by )Players
D)

))
-
N
t/'/u .,
b; .
l -
- 7 )) .......
> ] ..
-
/A‘ \ lllllllllllllllllll
'k./!‘ ........




Example: [0,1] uniform value independent

* Two players:

* Assume both use deterministic, monotone, and identical bidding
functions b(v)
* Person with larger value wins
* Bid must maximize utility:
alternate bid for a player with value v: bid b(z) (pretend to have value z)

v =argmax z (v.— b(z)) — v-b(v)-vb’(v)=0
Z
price

Prob of value Solved by b(v)=v/2

winning



First price single item auction

e Uniform independent [0,1] value n players:
bid b(v)=n7_1v (more competition bid more aggressively)

* Independent identical distributions ‘F and n players:
bid b(v)= E(max of n-1 draws from F|each < v)

BTW, Second price auction: bid your value,
first price bid = expected payment
revenue equivalence (Meyerson)
If distribution not identical and independent: big mess!!!



Smoothness for auctions

Auction game is A-smooth if for some A>0 and some strategy s* and all
s we have

2 u;(s;,s_;) = Aopt — Rev(s)
i
R(s) = revenue at bid vector s
Theorem: [Syrgkanis-T’13] A-smooth auction game =

NP

Price of anarchy for any <

Social welfare: },; u;(s) + R(s)



Robust Analysis: first price auction

1 1
No regret: u;(b) =  w;|=v;,b_; | ==v; —p,0

2 2
. o . 1
either i wins or price above p > > Vi

By~ o.Players

X - Apply this to the top value

1 1 ! . .
b =5 ) S + winner doesn’t regret paying
JEe ,

@ Zuleba) > ax(G)mpyey
n "~ Al . .

.. 1l —>auction is 1/2- smooth

—>a price of anarchy of 2

(actually... (e — 1)/e = 0.63)



Bayes Nash analysis: Bayesian extension (l)

Strategy: bid as a function of value b; (v)

Nash: E,_j [ui(b(v))|vi] > Ev_ib_i[ui(bf;b—i(”—i))hfi]
for all b;

o

{91 )Players

Same bound on price of anarchy,
same prof (take expectation)

® . / EoQ) () = ) Ey(ui(5b:)) = AE,(0pt(v)) - uEy (Rev(b)
7 i i

No need to bid %just don’t regret it!



Smoothness and Bayesian games

We had b; (v) = %, 0.5-smooth: Bid depends only on the
players own value!

Theorem: Auction is A-smooth and b; is a function of v; only,
then price of anarchy bounded by 1/A for arbitrary (private
value) type distributions

Proof: just take expectations!



Price of anarchy in multi-item

* First price is auction Hassidim, Kaplan, Mansour, Nisan EC'11)

Price of anarchy 1.58...
 All pay auction price of anarchy 2
* First position auction (GFP) is price of anarchy 2
* Variants with second price (see also Christodoulou, Kovacs, Schapira
ICALP’08) price of anarchy 2
Other applications include:
- public goods

- Fair sharing (Kelly, Johari-Tsitsiklis) price of anarchy 1.33
- Walrasian Mechanism (Babaioff, Lucier, Nisan, and Paes Leme EC’13)



All pay auction (example) Trouble: b *(v)

Claim: all pay auction is 1/2-smooth depends on
Max value player: b;*(v) uniform random [0,v]. | other player’s
All others: bid b.*(v)=0 valuation!

i not the top value: u;(b;,b_;) =0

| is the top value, and suppose max other bid is b.

If b>v; we are set: ); u;(b;,b_;) = —= > 0pt —b
Else expected value for player i

E(u;(bj,b_)) = =2 +v; vih ~v;— b

‘Ul'_




Bayesian extension theorem

Theorem [Syrgkanis-T’'13] Auction game is A-auction smooth, and
values are drawn from independent distribution, than the Price of
anarchy in the Bayesian game is at most 1 /A

Extension theorem: OK to only think about the full information game!

Proof idea: bid b*(v)....

Trouble: depends on other players and hence we don’t know



Bayesian extension theorem

Notation v=(v4, ... 1,;) value vector and use b; (v) = b; (v;, v_;)

Idea: random sample opponent w_;, and bid b; (v;, w_;)

Any fixed value v, and any player i we get
EW_ib_i(ui (b;k (Ui, W—i): b—i |vi) < Eb_i(ui (b)lvl)

Rename w_; = v_;, and also take expectation over v;
Evb (ui (bf (77): b—i) = Evb (ui(b))



Bayesian extension theorem (cont.)

Epp(ui(b; (v),b_;) < Epp(uy(b))

Recall smoothness: for all fixed vand b
> (b (v), b_i|v:) = 1 0pt(v) — uRev(b)

l
Combine and take expectation over b and v (these are independent in the

abovel!ll)

Eup () (b)) = Eup() wi(b; (@),b_1)) = AE,(Opt(v) — p Ey(R(b))



Multiple items (e.g. unit demand bidders)

Value if i gets subset S is v;(S)
for example: v;(S) I})gsxvu
Optimum is max value matching!

M ZijEM* Vij

Extension also if ; (A) submodular function of set A
Also for diminishing value of added items:

AcB= vi(A+x)—v;(4) =2 v;(B+x)—v;(B)



Multi-item first prize auction
with unit demand bidders

g!{g;’ 4 ¢ Optimal solution max 2ijem* Vij
ﬁ - A bid vector b" inducing optimal solution i bids
ﬁ ﬁ v;;/2 onitem j; assignediniinopt ((i,j;) € M)

* Smoothness?

* Ziui(bzk;b—i) 21/221121]* —Z]maxbu — %OPT — Rev
l l

* True item by item!



Trouble: bidding is very hard!

e Special case: unit demand buyer, all items has the vale value v > 0
* There are n items

* Opponents bid 1 on some items, and h > v on all others

* Possible set that they bid 1 on: 54, 55, ..., S uniformly likely

* Use 2" price or assume you can bid 1, and will win (and pay 1) if max other
bid is 1

v > nkimplies,
* optimal bid always wins some item
* Wanted: Ts.t. S; NT # @ foralliand );; |S; N T| as small as possible



Fining optimal strategy NP-complete

* Given sets 54,55, ..., Sk
* Wanted: Ts.t. S; NT # @ forall i and ),; |S; N T| as small as possible

Assume: every s the number #{i:s € S;} = ris the same
Then },;|S; N T| =r|T|
Wanted: Ts.t. S; NT # @ forall i and |T| minimal
This is hitting set
Still NP-complete (= set-cover with equal size sets)
in fact, hard to approximate within = logr



What is possible to do?

Why is no-regret so hard? So many bids to consider (b4, b, ..., by,) all
possible bids on all items
Simplifications:
* Do not bid b; > vy, still bid space is [ ][0, vj]
* Discretize, only bid multiples of €, being off my an € can only cause €
regret! Only Hj v /€ options
e Assume (k-1)e < b < ke

* If b wins: so does ke and pays too much by €
* |f ke wins and b looses ke is better off.

* Bid on a single item only? Regret can be huge!



Bidding options that are possible to not regret
[Daskalakis-Syrgkanis’16]

* |[dea: strategy space names set S of items to buy, regardless of price

* If no regret:
2.7 Vi(sT) —pi(s™) = (1 — E)H}S,QXZT vi(Si,sL;) — 2 p(S;,5L;) — Regret

ltems in j € §; are evaluated against their average price! |T|v; — X p*(j)



Choosing sets, versus bidding for a set

* Second price:

selected set S: bid v; for j € S and O elsewhere. This is strictly
better!

* Is no regret for this good enough for social welfare?

Let Sl-*be set awarded to i in optimum. We get

2 ui(8T) = Tvi(S;) — X Rev® (S))

Sum over all players

Y2 ui(sH) =2TY;vi(5) — X2, Rev™(S;) =T OPT — ), Rev*



Choosing sets, versus bidding for a set

First price:
selected set S: bid = S Vj for j € § and O elsewhere.
If no regret:
2. Vi(s') —pi(s*) = %maXZr vi(Si,s2;) — 2. 0(Si,sL;) — Regret

Si

Is this no regret for this good enough for social welfare?
Let S;'be set awarded to [ in optimum. We get

Zru (%) =- Tvl(S ) — Lo Rev® (5))
Sum over all players )
Draiui(st) = ETZivi(Si*) — 22 Rev®(S)) = T OPT — Y., Rev®



Magic Fictitious play and no regret

Fictitious play = best respond to past history of other players

st = argmax, Yzt u;(x, s%)

Magic enhancement of Fictitious play with response included

si = argming Yoy wi(x, %))

Theorem 1: Magic fictitious play has no regret.

. . . . t
Proof: by induction we claim that By choice of s;
t t t t T
=1 Ui (ST) = Xioq ui(si, Sfi)z r;lax r=1Ui(x,82;)
IHﬂ with x = s}

Yo ui(sT) = Xt wi(sT) + w; (5= Tz uy (8, sT;) + wi(st)

QED



Follow the perturbed leader has small regret
(Theorem)

Follow the perturbed leader: chose a random 7;, for all items |
select argmin, (Y. e, 17 + X7=7 ¢i(x, %))
Step 1: Magic Follow the perturbed leader has regret at most max Zjexrj
X
select argmin,[Y i, 17 + Xe=q ¢i(x,5%;)]
Proof: as before
£ C(ST)—T1<Z C(S st —rt<m1n2 c;(x,sL) —r
=1 %1 T=1*1\Pir°—i T=1 %1 X

|H\§

t
ro1ci(sT) =1 st = roici(s™) — Tt c;(sH= Vi Cl(SuS—z) Tt +c;(s%)

QED



Real follow the perturbed leader

Let r; random: number of coins till you get H, if probability of H is €
So E(r,) = Xl Also, for n strategies E(m??xzjexrj) = 0(2)

€

Step 2: if maxu;(s) < 1, then in any one step, the probability that magic
perturbed follow the leader makes a different choice than real < €

Alternate way to flip the coins.
Start with =1 all x
While more than one x possible

Take largest x, and flip a coin for ajin x.
If all coins already H: x eliminated

When one x left: flip coins for x till H
If #H, then adding u;(x, s%,) or not makes no difference, prob=1 — €



Follow perturbed leader: small regret

Assuming we always follow magic version: regret at most maxr,

X

* Expected value E(maxr,) = g
X

* expected total utility loss when not following the magic leader is at
most an € fraction

* Total regret at most

Yiu(sh) < (1 —e)maxYic(x,sf) — =
X €

Theorem: Select € = \/g then resulting regret at most O(v/Tn)



Valuations beyond unit demand

* Unit demand v;(S) = r?gsxvij

 Additive v;(S) = ZjeS Vij

k

XOS = mix of the two v;(S) = mI?X ZjeS Vij

k —

Fact: unit demand is XOS: v;;

v;; if k = j, and 0 otherwise

Submodular: A € B we have v;(A+j) —v;(A) =2 v;(B+j) — b(B)

Lemma: Submodular is XOS: for any order ™ we have v;; = marginal value
of j in this order



Plans for next two lectures: things that
earning can do beyond getting to CCE

So far we had: learning outcome is as good as Price of Anarchy
proven via smoothness arguments (and almost all POA proofs are
smoothness arguments)

Things we hope learning can do:
e Adjust to changing environments (churn)
* Do better than the worst case Nash (or better than any Nash?)
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