Learning and Games, day 2 Price of Anarchy and Game Dynamics

Éva Tardos, Cornell

Learning and Games Price of Anarchy and Game Dynamics

Day 2:

- Price of Anarchy on learning outcomes
- Can we really learn this well?

Next: what can learning do that Nash cannot?

Summary from yesterday

simple games and variants:

- matching pennies,
- coordination,
- prisoner's dilemma,
- Rock-paper-scissor

Congestion games, such as traffic routing Auction games

Summary from yesterday (2)

• Fictitious play, and no-regret learning. Leaning algorithms that get

$$\sum_{\tau} c_i(s^{\tau}) \le (1 + \epsilon) \min_{x} \sum_{\tau} c_i(x, s_i) + O(\frac{\log n}{\epsilon})$$

$$\sum_{\tau} u_i(s^{\tau}) \ge (1 - \epsilon) \max_{x} \sum_{\tau} u_i(x, s_i) - O(\frac{\log n}{\epsilon})$$

n=# strategies for player

Comments: Given time T, the best possible $\epsilon = \sqrt{\log n/T}$

• Without knowing T, use variable $\epsilon = \sqrt{\log n/t}$

choose new random r_{χ} each step!

Summary from yesterday (3)

Outcome for learning in games

Coarse correlated equilibrium: a convex set of probability distributions

on strategy vectors p_s probability that strategy vector s used

Comment: convergence to the set, but may not be to a point

Outcomes in games:

- Fictitious play: can be a mess (such as coordination game)
- No-regret learning in 2 person 0-sum games: converges to Nash both in value and in marginal distribution (but not in actual play, see RPS)
- Leaning outcome in congestion games to be continued

What can we say about learning outcome?

Limit distribution σ of play (strategy vectors $s=(s_1, s_2, ..., s_n)$)

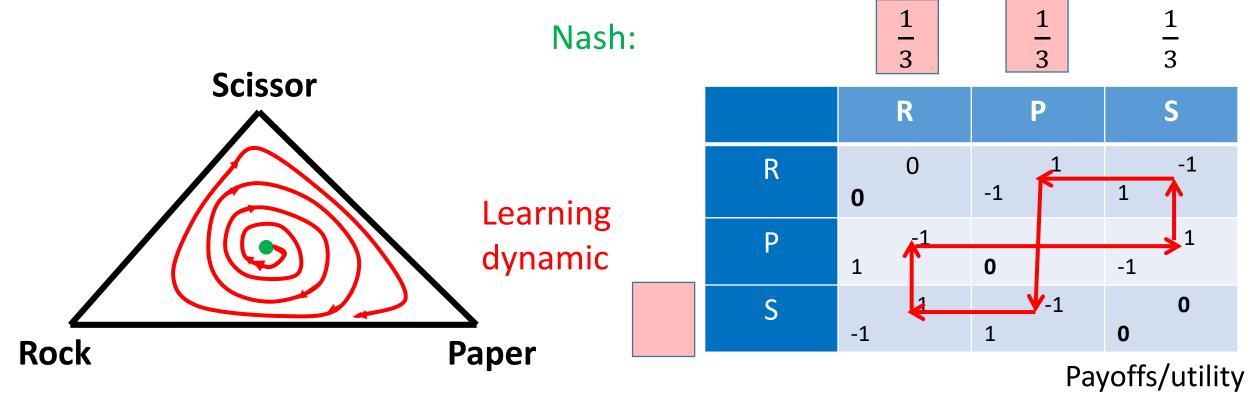
all players i have no regret for all strategies x

$$E_{s \sim \sigma}(c_i(s)) \leq E_{s \sim \sigma}(c_i(x, s_{-i}))$$

Hart & Mas-Colell: Long term average play is (coarse) correlated equilibrium

How good are coarse correlated equilibria??

Dynamics of rock-paper-scissor



- Doesn't converge
- correlates on shared history

Coarse Correlated Equilibria: Prob x on diagonal, and prob (1-3x)/6 off diagonal, with $0 \le 1/3 \le 1$

Outcome of learning in games: cost minimization

- Finite set of players 1,...,n
- strategy sets S_i for player i:
- Resulting in strategy vector: $s=(s_1, ..., s_n)$ for each $s_i \in S_i$
- Cost of player i: $c_i(s)$ or $c_i(s_i, s_{-i})$ Pure Nash equilibrium if $c_i(s) \le c_i(s_i', s_{-i})$ for all players and all alternate strategies $s_i' \in S_i$
- Social welfare: $cost(s) = \sum_i c_i(s)$ Optimum: $OPT = \min_s \sum_i c_i(s)$

Quality of Learning Outcome

Price of Anarchy [Koutsoupias-Papadimitriou'99]

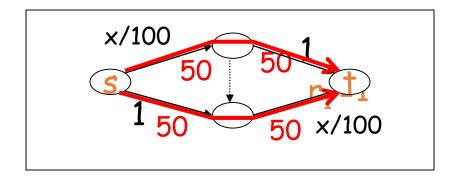
$$PoA = \max_{s \ Nash} \frac{cost(s)}{Opt}$$

Assuming **no-regret learners** in fixed game: [Blum, Hajiaghayi, Ligett, Roth'08, Roughgarden'09]

$$PoA = \lim_{T \to \infty} \frac{\sum_{t=1}^{T} cost(s^{t})}{T Opt}$$

Example: Model of Routing Game

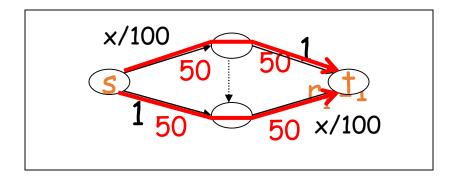
- A directed graph G = (V,E)
- source—sink pairs s_i,t_i for i=1,...,k



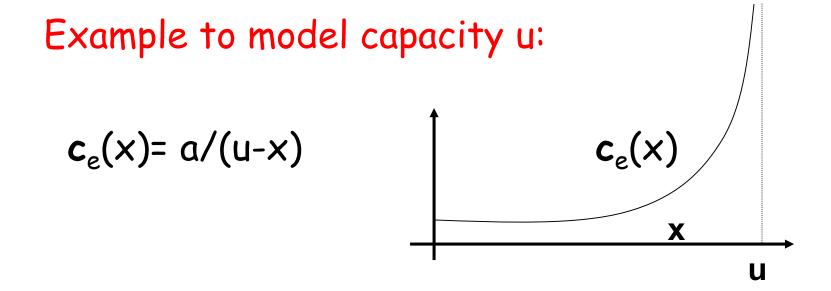
•Goal minimum delay: delay adds along path edge-cost/delay is a function $c_e(\cdot)$ of the load on the edge e

Delay Functions

Assume $c_e(x)$ continuous and monotone increasing in load x on edge



No capacity of edges for now



Goal's of the Game: min delay

Personal objective: minimize

 $c_P(f)$ = sum of delays of edges along P (wrt. flow f) $c_P(f) = \sum_{e \in P} c_e(f_e)$

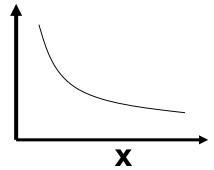
Overall objective: Cost

 $C(f) = \text{total } \frac{\text{delay}}{\text{delay}} \text{ of a flow } f: = \sum_{P} f_{P} \cdot c_{P}(f)$

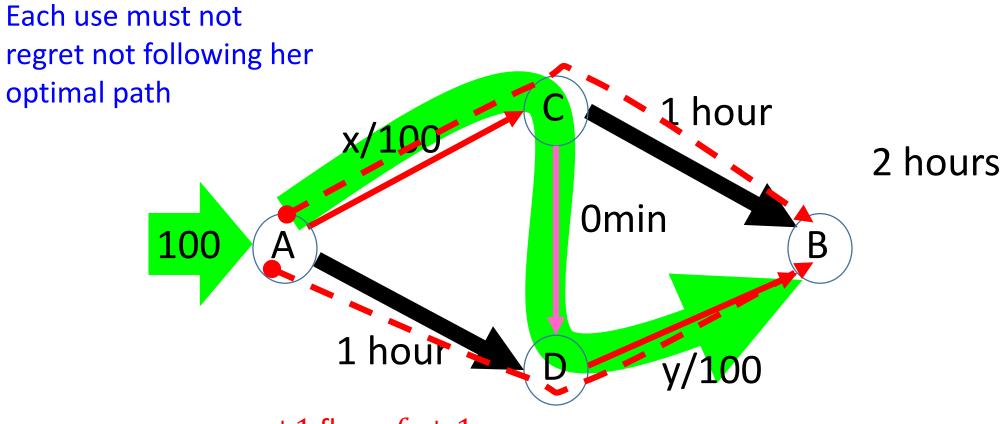
= - social welfare or total/average delay

Also:

$$C(f) = \Sigma_e f_e \cdot c_e(f_e)$$



Equilibrium



+1 flow: f_e + 1

No regret inequality for flow

• f_e Nash flow on edge e, P path used by Nash, Q path used by opt

No regret =
$$\sum_{e \in P} c_e(f_e) \le \sum_{e \in P \cap Q} c_e(f_e) + \sum_{e \in Q \setminus P} c_e(f_e + 1)$$

 Without the +1 nonatomic flow: assumes +1 is too small to really make a difference

No-regret inequality with small flow unit

For flow using path Q and alternate Q we have

$$\sum_{e \in P} c_e(f_e) \le \sum_{e \in P \cap Q} c_e(f_e) + \sum_{e \in Q \setminus P} c_e(f_e + \delta)$$

Non-atomic flow, when each user is small, but total flow remains the same: Limit as size as $\delta \rightarrow 0$

Nash inequality limit for path P used and alternate!

$$\sum_{e \in P} c_e(f_e) \le \sum_{e \in Q} c_e(f_e)$$

Exercise

a. An alternate definition for equilibrium of a non-atomic flow would be for each path P carrying flow and each alternate path Q if more a δ amount of P to Q to get a new flow \tilde{f} then $\sum_{e \in P} c_e(f_e) \leq \sum_{e \in Q} c_e(\tilde{f}_e)$

Under what conditions is this equivalent to the definition given.

b. Nash equilibrium of non-atomic flow is the true optimum of $\Phi(f) = \sum_{e} \int_{0}^{f_{e}} c_{e}(\xi) d\xi.$

Note that this is convex if c_e are monotone increasing

Price of Anarchy: proof technique [Roughgarden'09]

What we can work with:

Optimum
$$s^* = (s_1^*, s_2^*, ..., s_n^*)$$

Nash:
$$s = (s_1, s_2, ..., s_n)$$

What we know:

$$c_i(s) \le c_i(s'_i, s_{-i})$$
 for all i and all $s'_i \in S_i$

Use it for all players and sum

$$c(s) = \sum_{i} c_{i}(s) \leq \sum_{i} c_{i}(s_{i}^{*}, s_{-i})$$

Proof smooth games

Nash property gave us (s is Nash, s* optimum)

$$c(s) = \sum_{i} c_{i}(s) \leq \sum_{i} c_{i}(s_{i}^{*}, s_{-i})$$

Game is smooth if for some μ <1 and λ >0 and all s and s*

$$\sum_{i} c_i(s_i^*, s_{-i}) \le \lambda c(s^*) + \mu c(s) \qquad (\lambda, \mu)\text{-smooth}$$

If Opt <<cost(s), some player will want to deviate to s_i^*

Theorem: (λ, μ) -smooth game \Rightarrow

Price of anarchy at most $\lambda/(1-\mu)$

Learning and price of anarchy (in smooth games)

Use approx no-regret learning:

$$\sum_{t} c_i(s^t) \le (1+\epsilon) \sum_{t} c_i(s_i^*, s_{-i}^t) + R$$
 for all players

A cost minimization game is (λ,μ) -smooth $(\lambda > 0; \mu < 1)$:

$$\sum_{t} \sum_{i} c_{i}(s_{i}^{*}, s_{-i}^{t}) \leq \lambda \sum_{t} Opt + \mu \sum_{t} c(s^{t})$$

A approx. no-regret sequence s^t has

$$\frac{1}{T} \sum_{t} c(s^{t}) \leq \frac{(1+\epsilon)\lambda}{1-(1+\epsilon)\mu} \operatorname{Opt} + \frac{n}{T(1-(1+\epsilon)\mu)} R$$

Note the convergence speed! $R = \frac{\log d}{\epsilon}$, so error $\left[\frac{n}{T} \cdot \frac{\log d}{\epsilon(1 - (1 + \epsilon)\mu)} \right]$ Foster, Li, Lykouris, Sridharan, T, NIPS'16

$$\frac{\mathrm{n}}{\mathrm{T}} \cdot \frac{\log d}{\epsilon (1 - (1 + \epsilon)\mu)}$$

Proving smoothness for flows

What we need $\sum_i c_i(s_i^*, s_{-i}) \le \lambda c(s^*) + \mu c(s)$

Nash inequality for s to t user using path P with alternate path Q

$$\sum_{e \in P} c_e(f_e) \le \sum_{e \in Q} c_e(f_e)$$

Sum over paths $Q_i = P_i^*$ in opt with f Nash and f^* optimal

$$\sum_{P} f_p \sum_{e \in P} c_e(f_e) \le \sum_{Q} f_Q^* \sum_{e \in Q} c_e(f_e)$$

and rearranging sums

$$\sum_{e} f_e c_e(f_e) \le \sum_{e} f_e^* c_e(f_e))$$

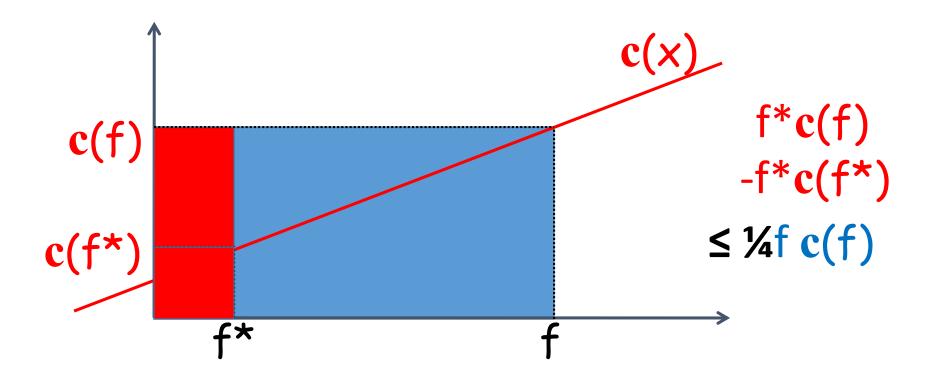
We need

$$\sum_{e} f_e^* c_e(f_e) \le \lambda \sum_{e} f_e^* c_e(f_e^*) + \mu \sum_{e} f_e c_e(f_e)$$

Claim: true edge by edge

Linear delay is smooth

Claim: $f^* \cdot \mathbf{C}$ (f) $\leq f^* \cdot \mathbf{C}$ (f*) + $\frac{1}{4} f \cdot \mathbf{C}$ (f) assuming \mathbf{C} (f) linear: $\lambda = 1$; $\mu = \frac{1}{4}$

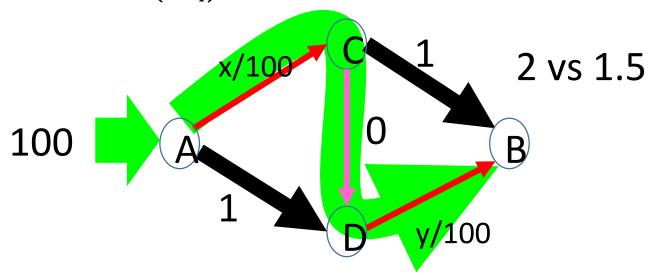


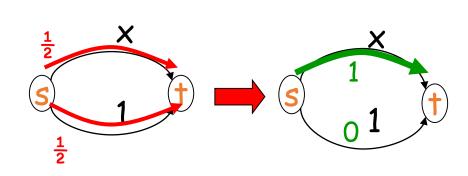
Sharper results for non-atomic games

Theorem (Roughgarden-& '02):

In any network with linear cost functions the worst price of anarchy (in non-atomic games) is at most 4/3

Proof: $\left(1, \frac{1}{4}\right)$ -smooth implies price of anarchy of $\lambda/(1-\mu)$ = 1/(1-1/4)=4/3

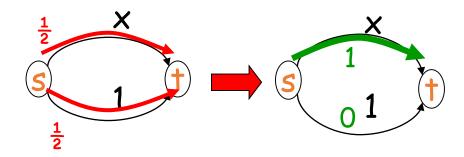




Sharper results for non-atomic games

Theorem (Roughgarden'03):

In any network with any class of convex continuous latency functions the worst price of anarchy (in non-atomic games) is always on two edge network

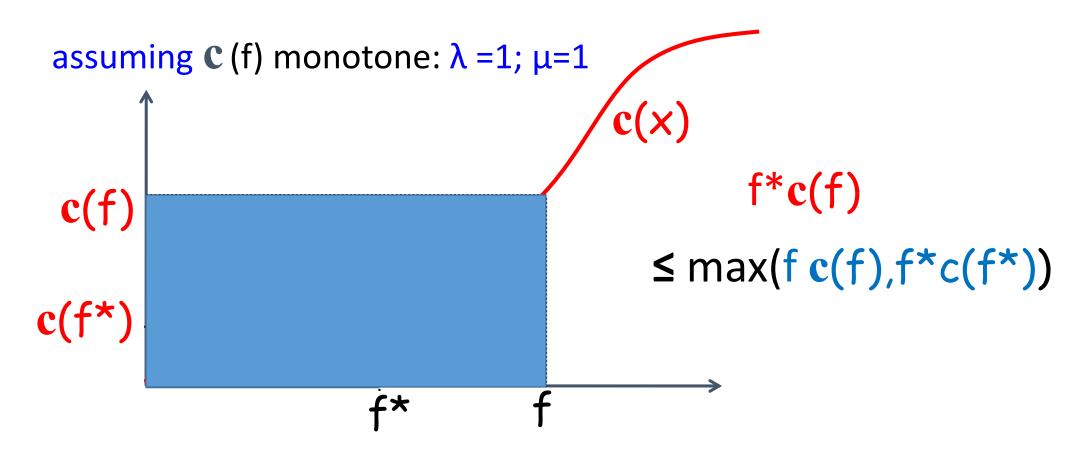


Corollary:

price of anarchy for degree d polynomials is $O(d/\log d)$.

Monotone delay is (1,1)-smooth

Claim:
$$f^*c(f) \le max(f^*c(f^*), fc(f)) \le f^*c(f^*) + fc(f)$$



High Social Welfare: Price of Anarchy in Routing

Theorem (Roughgarden-T'02):

In any network with continuous, non-decreasing cost and very small users

cost of Nash with rates
$$r_i$$
 for all i

 \leq cost of opt with rates $2r_i$ for all i

Proof if Nash carries ½ of the flow

$$\sum_{e} f_e c_e(f_e) \le \sum_{e} \frac{1}{2} f_e^* c_e(f_e) \le \frac{1}{2} [\lambda \sum_{e} f_e^* c_e(f_e^*) + \mu \sum_{e} f_e c_e(f_e)]$$
Nash smooth

Implying
$$c(f) \le \frac{\frac{1}{2}\lambda}{(1-\frac{1}{2}\mu)} c(f^*)$$
,

so (1,1)- smooth implies the theorem!

Exercise

A popular delay model is $c_e(x) = \frac{a_e}{u_e - x}$, modeling capacity u_e and delay on empty road $\frac{a_e}{u_e}$

- a. Show that for any rates and any capacities, optimal flow has total cost \geq Cost of Nash with double capacities $u_e' = 2u_e$
- b. Anything useful follows if capacities $u'_e = \alpha \cdot u_e$ for some other $\alpha > 1$

Linear delay atomic flow

Atomic game (players with >0 traffic) with linear delay (5/3,1/3)-smooth (Awerbuch-Azar-Epstein'05 & Christodoulou-Koutsoupias'05)

$$\Rightarrow$$
 2.5 price of anarchy

• Need to prove: for all nonnegative integers
$$x = f^*(e)$$
 and $y = f(e)$
$$x(y+1) \le \frac{5}{3}x^2 + \frac{1}{3}y^2$$
 That is: $3xy + 3x \le 5x^2 + y^2$

Theorem: Price of anarchy for polynomials of degree at most d at most exponential in d: O(2d dd+1)

Suri-Toth-Zhou SPAA'04 (special case) Awerbuch-Azar-Epstein STOC'05 Christodoulou-Koutsoupias STOC'05

Homework

Smoothess for value maximization games

- Utility of player i: $u_i(s)$ or $u_i(s_i, s_{-i})$ Pure Nash equilibrium if $u_i(s) \ge u_i(s_i', s_{-i})$ for all players and all alternate strategies $s_i' \in S_i$
- Suppose $\sum_i u_i(s_i^*, s_{-i}) \ge \lambda \sum_i u_i(s^*) \mu \sum_i u_i(s)$ for some $\lambda, \mu > 0$, an optimal solution vector s^* and any solution s. What does this imply about the price of anarchy?

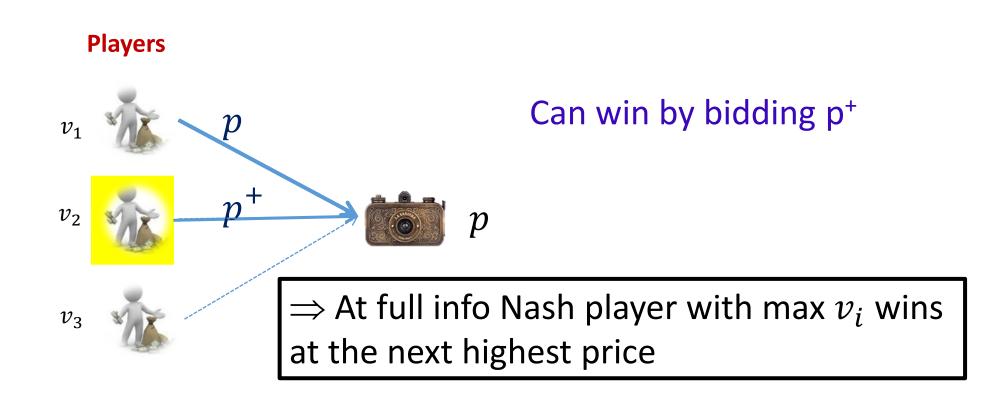
 [Roughgarden'09]

$$\sum_{i} u_{i}(s) \geq \frac{\lambda}{\mu + 1} \sum_{i} u_{i}(s^{*})$$

A utility game: Auctions as (Bayesian) game

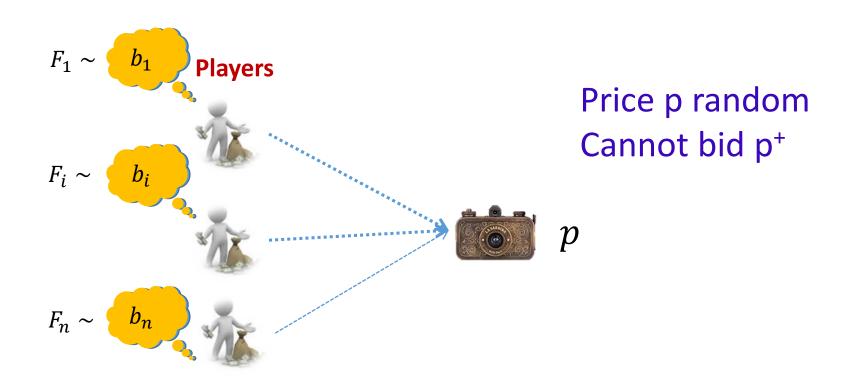
First Example: Single item first price

Auction sets a price p (full info, pure Nash).



First price auction with uncertainty?

- Bayesian game
- Randomized bid



Auction games:

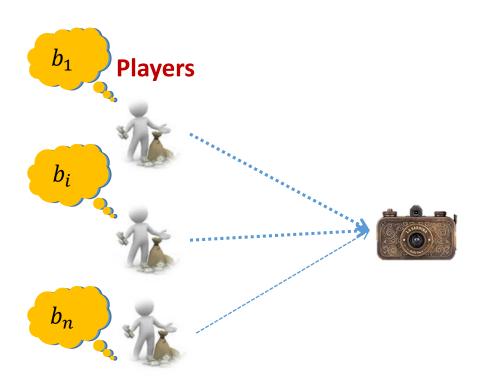
- Finite set of players 1,...,n
- strategy sets S_i for player i: bid on some items (not a finite set)
- Resulting in strategy vector: $s=(s_1, ..., s_n)$ for each $s_i \in S_i$
- Utility player i: $u_i(s)$ or $u_i(s_i, s_{-i})$
 - We assume quasi-linear utility, and no externalities:
 - If player wins set if items A_i and pays p_i her value is $u_i(A_i, p_i) = v_i(A_i) p_i$
- Social welfare? (include auctioneer): $\sum_i v_i(A_i) = \sum_i u_i(A_i) + \sum_i p_i$

Revenue

Bayes Nash analysis

Strategy: bid as a function of value $b_i(v)$

Nash:
$$E_{v_{-i}b}[u_i(b(v))|v_i] \ge E_{v_{-i}b_{-i}}[u_i(b'_i, b_{-i}(v_{-i}))|v_i]$$
 for all b'_i



Example: [0,1] uniform value independent

- Two players:
- Assume both use deterministic, monotone, and identical bidding functions b(v)
 - Person with larger value wins
 - Bid must maximize utility:
 alternate bid for a player with value v: bid b(z) (pretend to have value z)

$$v = \underset{z}{\operatorname{argmax}} z (v - b(z))$$
 $\rightarrow v-b(v)-vb'(v)=0$

Prob of value winning Solved by $b(v)=v/2$

First price single item auction

- Uniform independent [0,1] value n players:
 - bid b(v)= $\frac{n-1}{n}v$ (more competition bid more aggressively)
- Independent identical distributions \mathcal{F} and n players: bid b(v)= E(max of n-1 draws from \mathcal{F} | each $\leq v$)
- BTW, Second price auction: bid your value,
 first price bid = expected payment
 revenue equivalence (Meyerson)

 If distribution not identical and independent: big mess!!!

Smoothness for auctions

Auction game is λ -smooth if for some λ >0 and some strategy s* and all s we have

$$\sum_{i} u_{i}(s_{i}^{*}, s_{-i}) \geq \lambda opt - Rev(s)$$

R(s) = revenue at bid vector s

Theorem: [Syrgkanis-T'13] λ -smooth auction game \Rightarrow

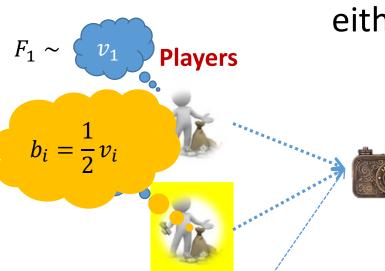
Price of anarchy for any $\leq \frac{1}{\lambda}$

Social welfare: $\sum_i u_i(s) + R(s)$

Robust Analysis: first price auction

No regret:
$$u_i(b) \ge u_i(\frac{1}{2}v_i, b_{-i}) \ge \frac{1}{2}v_i - p$$
,0

either i wins or price above $p \ge \frac{1}{2}v_i$



- Apply this to the top value
- + winner doesn't regret paying

$$\sum_{i} u_{i} \left(\frac{v_{i}}{2}, b_{-i} \right) \ge \left(\max \left(\frac{v_{i}}{2} \right) - p \right) + \sum_{i} 0$$

 \Rightarrow auction is 1/2- smooth

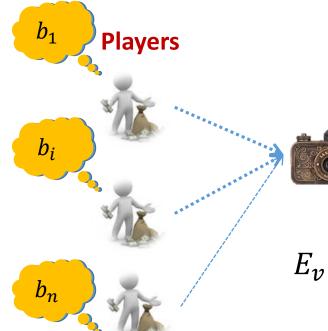
 \Rightarrow a price of anarchy of 2

(actually...
$$(e-1)/e \approx 0.63$$
)

Bayes Nash analysis: Bayesian extension (I)

Strategy: bid as a function of value $b_i(v)$

Nash:
$$E_{v_{-i}b}[u_i(b(v))|v_i] \ge E_{v_{-i}b_{-i}}[u_i(b'_i, b_{-i}(v_{-i}))|v_i]$$
 for all b'_i



Same bound on price of anarchy, same prof (take expectation)

$$E_v(\sum_i u_i(b)) \ge \sum_i E_v(u_i\left(\frac{v_i}{2}, b_i\right)) \ge \lambda E_v(Opt(v)) - \mu E_v(Rev(b))$$

No need to bid $\frac{v_i}{2}$ just don't regret it!

Smoothness and Bayesian games

We had $b_i^*(v) = \frac{v_i}{2}$, 0.5-smooth: Bid depends only on the players own value!

Theorem: Auction is λ -smooth and b_i^* is a function of v_i only, then price of anarchy bounded by $1/\lambda$ for arbitrary (private value) type distributions

Proof: just take expectations!

Price of anarchy in multi-item

First price is auction Hassidim, Kaplan, Mansour, Nisan EC'11)

Price of anarchy 1.58...

All pay auction price of anarchy 2

First position auction (GFP) is price of anarchy 2

 Variants with second price (see also Christodoulou, Kovacs, Schapira ICALP'08)
 price of anarchy 2

Other applications include:

- public goods
- Fair sharing (Kelly, Johari-Tsitsiklis) price of anarchy 1.33
- Walrasian Mechanism (Babaioff, Lucier, Nisan, and Paes Leme EC'13)

All pay auction (example)

Claim: all pay auction is 1/2-smooth

Max value player: $b_i^*(v)$ uniform random [0,v].

All others: bid $b_i^*(v)=0$

i not the top value: $u_i(b_i^*, b_{-i}) = 0$

i is the top value, and suppose max other bid is b.

If b> v_i we are set: $\sum_i u_i(b_i^*, b_{-i}) \ge -\frac{v_i}{2} \ge \frac{1}{2}Opt - b$

Else expected value for player i

$$E(u_i(b_i^*, b_{-i})) = -\frac{v_i}{2} + v_i \frac{v_i - b}{v_i} \ge \frac{1}{2}v_i - b$$

Trouble: b_i*(v)
depends on
other player's
valuation!

Bayesian extension theorem

Theorem [Syrgkanis-T'13] Auction game is λ -auction smooth, and values are drawn from independent distribution, than the Price of anarchy in the Bayesian game is at most $1/\lambda$

Extension theorem: OK to only think about the full information game!

Proof idea: bid b*(v)....

Trouble: depends on other players and hence we don't know......

Bayesian extension theorem

Notation $v=(v_1, ... v_n)$ value vector and use $b_i^*(v) = b_i^*(v_i, v_{-i})$

Idea: random sample opponent w_{-i} , and bid $b_i^*(v_i, w_{-i})$

Any fixed value v_i , and any player i we get $E_{w_{-i}b_{-i}}(u_i(b_i^*(v_i, w_{-i}), b_{-i}|v_i) \le E_{b_{-i}}(u_i(b)|v_i)$

Rename $w_{-i} = v_{-i}$, and also take expectation over v_i $E_{vb}(u_i(b_i^*(v), b_{-i}) \le E_{vb}(u_i(b))$

Bayesian extension theorem (cont.)

$$E_{vb}(u_i(b_i^*(v), b_{-i}) \le E_{vb}(u_i(b))$$

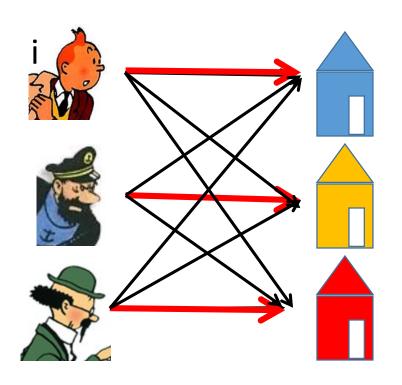
Recall smoothness: for all fixed v and b

$$\sum_{i} u_i(b_i^*(v), b_{-i} | v_i) \ge \lambda \ Opt(v) - \mu Rev(b)$$

Combine and take expectation over b and v (these are independent in the above!!!)

$$E_{vb}(\sum_{i} u_{i}(b)) \geq E_{vb}(\sum_{i} u_{i}(b_{i}^{*}(v), b_{-i})) \geq \lambda E_{v}(Opt(v) - \mu E_{b}(R(b)))$$

Multiple items (e.g. unit demand bidders)



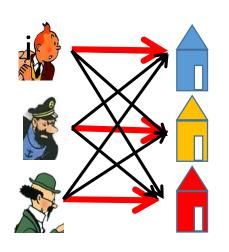
Value if i gets subset S is $v_i(S)$ for example: $v_i(S) = \max_{j \in S} v_{ij}$ Optimum is max value matching! $\max_{M^*} \sum_{ij \in M^*} v_{ij}$

Extension also if $v_i(A)$ submodular function of set A

Also for diminishing value of added items:

$$A \subset B \Rightarrow v_i(A+x) - v_i(A) \ge v_i(B+x) - v_i(B)$$

Multi-item first prize auction with unit demand bidders



- Optimal solution $\max_{M^*} \sum_{ij \in M^*} v_{ij}$
- A bid vector b^* inducing optimal solution i bids $v_{ij}/2$ on item j_i^* assigned in i in opt $((i, j_i^*) \in M^*)$

- Smoothness?
- $\sum_{i} u_{i}(b_{i}^{*}, b_{-i}) \ge 1/2 \sum_{i} v_{i} j_{i}^{*} \sum_{j} \max_{i} b_{ij} = \frac{1}{2}OPT Rev$
- True item by item!

Trouble: bidding is very hard!

- Special case: unit demand buyer, all items has the vale value $v\gg 0$
- There are n items
- Opponents bid 1 on some items, and h > v on all others
- Possible set that they bid 1 on: $S_1, S_2, ..., S_k$ uniformly likely
- Use 2nd price or assume you can bid 1, and will win (and pay 1) if max other bid is 1
- v > nk implies,
- optimal bid always wins some item
- Wanted: T s.t. $S_i \cap T \neq \emptyset$ for all i and $\sum_i |S_i \cap T|$ as small as possible

Fining optimal strategy NP-complete

- Given sets S_1, S_2, \dots, S_k
- Wanted: T s.t. $S_i \cap T \neq \emptyset$ for all i and $\sum_i |S_i \cap T|$ as small as possible

Assume: every s the number $\#\{i: s \in S_i\} = r$ is the same

Then $\sum_{i} |S_i \cap T| = r|T|$

Wanted: T s.t. $S_i \cap T \neq \emptyset$ for all i and |T| minimal This is hitting set

Still NP-complete (= set-cover with equal size sets) in fact, hard to approximate within $\approx \log r$

What is possible to do?

Why is no-regret so hard? So many bids to consider $(b_1, b_2, ..., b_n)$ all possible bids on all items

Simplifications:

- Do not bid $b_j > v_j$, still bid space is $\prod_j [0, v_j]$
- Discretize, only bid multiples of ϵ , being off my an ϵ can only cause ϵ regret! Only $\prod_i v_i/\epsilon$ options
 - Assume $(k-1)\epsilon < b < k\epsilon$
 - If b wins: so does $k\epsilon$ and pays too much by ϵ
 - If $k\epsilon$ wins and b looses $k\epsilon$ is better off.
- Bid on a single item only? Regret can be huge!

Bidding options that are possible to not regret [Daskalakis-Syrgkanis'16]

• Idea: strategy space names set S of items to buy, regardless of price

• If no regret:

$$\sum_{\tau} v_{i}(s^{\tau}) - p_{i}(s^{\tau}) \ge (1 - \epsilon) \max_{S_{i}} \sum_{\tau} v_{i}(S_{i}, s_{-i}^{\tau}) - \sum_{\tau} p(S_{i}, s_{-i}^{\tau}) - Regret$$

Items in $j \in S_i$ are evaluated against their average price! $|T|v_j - \sum_{\tau} p^{\tau}(j)$

Choosing sets, versus bidding for a set

Second price:

selected set S: bid v_j for $j \in S$ and 0 elsewhere. This is strictly better!

Is no regret for this good enough for social welfare?

Let S_i^* be set awarded to i in optimum. We get

$$\sum_{\tau} u_i(S^{\tau}) \ge T v_i(S_i^*) - \sum_{\tau} Rev^{\tau} (S_i^*)$$

Sum over all players

$$\sum_{\tau} \sum_{i} u_{i}(s^{\tau}) \geq T \sum_{i} v_{i}(S_{i}^{*}) - \sum_{\tau} \sum_{i} Rev^{\tau}(S_{i}^{*}) = T OPT - \sum_{\tau} Rev^{\tau}$$

Choosing sets, versus bidding for a set

First price:

selected set S: bid $\frac{1}{2}v_j$ for $j \in S$ and 0 elsewhere.

If no regret:

$$\sum_{\tau} v_{i}(s^{\tau}) - p_{i}(s^{\tau}) \ge \frac{1}{2} \max_{S_{i}} \sum_{\tau} v_{i}(S_{i}, s_{-i}^{\tau}) - \sum_{\tau} p(S_{i}, s_{-i}^{\tau}) - Regret$$

Is this no regret for this good enough for social welfare?

Let S_i^* be set awarded to i in optimum. We get

$$\sum_{\tau} u_i(S^{\tau}) \ge \frac{1}{2} T v_i(S_i^*) - \sum_{\tau} Rev^{\tau}(S_i^*)$$

Sum over all players

$$\sum_{\tau} \sum_{i} u_{i}(s^{\tau}) \geq \frac{1}{2} T \sum_{i} v_{i}(S_{i}^{*}) - \sum_{\tau} \sum_{i} Rev^{\tau}(S_{i}^{*}) = \frac{1}{2} T OPT - \sum_{\tau} Rev^{\tau}$$

Magic Fictitious play and no regret

Fictitious play = best respond to past history of other players

$$s_{i}^{t} = argmax_{x} \sum_{\tau=1}^{t-1} u_{i}(x, s_{-i}^{\tau})$$

Magic enhancement of Fictitious play with response included

$$s_i^t = argmin_x \sum_{\tau=1}^t u_i(x, s_{-i}^{\tau})$$

Theorem 1: Magic fictitious play has no regret.

Proof: by induction we claim that

By choice of
$$s_i^t$$

$$\sum_{\tau=1}^{t} u_{i}(s^{\tau}) \geq \sum_{\tau=1}^{t} u_{i}(s_{i}^{t}, s_{-i}^{\tau}) = \max_{x} \sum_{\tau=1}^{t} u_{i}(x, s_{-i}^{\tau})$$

$$\text{iii.} \quad \text{with } x = s_{i}^{t}$$

$$\sum_{\tau=1}^{t} u_i(s^{\tau}) = \sum_{\tau=1}^{t-1} u_i(s^{\tau}) + u_i(s^{t}) \ge \sum_{\tau=1}^{t-1} u_i(s^{t}, s^{\tau}) + u_i(s^{t})$$

Follow the perturbed leader has small regret (Theorem)

Follow the perturbed leader: chose a random r_j , for all items j

select
$$argmin_{x}[\sum_{j \in x} r_{j} + \sum_{\tau=1}^{t-1} c_{i}(x, s_{-i}^{\tau})]$$

Step 1: Magic Follow the perturbed leader has regret at most $\max_{x} \sum_{j \in x} r_j$

select
$$argmin_x[\sum_{j \in x} r_j + \sum_{\tau=1}^t c_i(x, s_{-i}^{\tau})]$$

Proof: as before

$$\sum_{\tau=1}^{t} c_{i}(s^{\tau}) - r_{s_{i}^{1}} \leq \sum_{\tau=1}^{t} c_{i}(s_{i}^{t}, s_{-i}^{\tau}) - r_{s_{i}^{t}} \leq \min_{x} \sum_{\tau=1}^{t} c_{i}(x, s_{-i}^{\tau}) - r_{x}$$

$$\sum_{\tau=1}^{t} c_i(s^{\tau}) - r_{s_i^1} = \sum_{\tau=1}^{t-1} c_i(s^{\tau}) - r_{s_i^1} + c_i(s^t) \leq \sum_{\tau=1}^{t-1} c_i(s_i^t, s_{-i}^{\tau}) - r_{s_i^t} + c_i(s^t)$$

Real follow the perturbed leader

Let r_j random: number of coins till you get H, if probability of H is ϵ

So
$$E(r_x) = \frac{|x|}{\epsilon}$$
 Also, for n strategies $E(\max_x \sum_{j \in x} r_j) = O(\frac{n}{\epsilon})$

Step 2: if $\max u_i(s) \le 1$, then in any one step, the probability that magic perturbed follow the leader makes a different choice than real $\le \epsilon$

Alternate way to flip the coins.

Start with r_x =1 all x

While more than one x possible

Take largest x, and flip a coin for a j in x.

If all coins already H: x eliminated

When one x left: flip coins for x till H

If \neq H, then adding $u_i(x, s_{-i}^t)$ or not makes no difference, prob=1 $-\epsilon$

Follow perturbed leader: small regret

Assuming we always follow magic version: regret at most $\max_{x} r_{x}$

- Expected value $E(\max_{x} r_{x}) = \frac{n}{\epsilon}$
- expected total utility loss when not following the magic leader is at most an ϵ fraction
- Total regret at most

$$\sum_{\tau}^{t} u_i(s^t) \le (1 - \epsilon) \max_{x} \sum_{\tau}^{t} c_i(x, s_i^t) - \frac{n}{\epsilon}$$

Theorem: Select $\epsilon = \sqrt{\frac{n}{T}}$ then resulting regret at most $O(\sqrt{Tn})$

Valuations beyond unit demand

- Unit demand $v_i(S) = \max_{j \in S} v_{ij}$
- Additive $v_i(S) = \sum_{j \in S} v_{ij}$

XOS = mix of the two $v_i(S) = \max_k \sum_{j \in S} v_{ij}^k$

Fact: unit demand is XOS: $v_{ij}^k = v_{ij}$ if k = j, and 0 otherwise

Submodular: $A \subset B$ we have $v_i(A+j) - v_i(A) \ge v_i(B+j) - b(B)$

Lemma: Submodular is XOS: for any order π we have $v_{ij}=$ marginal value of j in this order

Plans for next two lectures: things that learning can do beyond getting to CCE

So far we had: learning outcome is as good as Price of Anarchy proven via smoothness arguments (and almost all PoA proofs are smoothness arguments)

Things we hope learning can do:

- Adjust to changing environments (churn)
- Do better than the worst case Nash (or better than any Nash?)