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Learning and Games
Price of Anarchy and Game Dynamics

Day 2: 
• Price of Anarchy on learning outcomes
• Can we really learn this well?
Next: what can learning do that Nash cannot?



Summary from yesterday
simple games and variants: 
• matching pennies, 
• coordination, 
• prisoner’s dilemma, 
• Rock-paper-scissor

Congestion games, such as traffic routing
Auction games



Summary from yesterday (2)
• Fictitious play, and no-regret learning. Leaning algorithms that get

∑𝜏𝜏 𝑐𝑐𝑖𝑖 𝑠𝑠𝜏𝜏 ≤ 1 + 𝜖𝜖 min
𝑥𝑥
∑𝜏𝜏 𝑐𝑐𝑖𝑖( 𝑥𝑥, 𝑠𝑠𝑖𝑖) + 𝑂𝑂(log 𝑛𝑛

𝜖𝜖
)

∑𝜏𝜏 𝑢𝑢𝑖𝑖 𝑠𝑠𝜏𝜏 ≥ 1 − 𝜖𝜖 max
𝑥𝑥

∑𝜏𝜏 𝑢𝑢𝑖𝑖( 𝑥𝑥, 𝑠𝑠𝑖𝑖) − 𝑂𝑂(log 𝑛𝑛
𝜖𝜖

)

n=# strategies for player

Comments: Given time T, the best possible 𝜖𝜖 = log𝑛𝑛/𝑇𝑇
• Without knowing T, use variable  𝜖𝜖 = log𝑛𝑛/𝒕𝒕

choose new random 𝑟𝑟𝑥𝑥 each step!



Summary from yesterday (3)

Outcome for learning in games
Coarse correlated equilibrium: a convex set of probability distributions 
on strategy vectors 𝑝𝑝𝑠𝑠 probability that strategy vector 𝑠𝑠 used
Comment: convergence to the set, but may not be to  a point
Outcomes in games:
• Fictitious play: can be a mess (such as coordination game)
• No-regret learning in 2 person 0-sum games: converges to Nash both 

in value and in marginal distribution (but not in actual play, see RPS)
• Leaning outcome in congestion games to be continued



What can we say about learning outcome?

Limit distribution 𝜎𝜎 of play (strategy vectors s=(𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛))
• all players i have no regret for all strategies x

𝐸𝐸𝑠𝑠∼𝜎𝜎 𝑐𝑐𝑖𝑖 𝑠𝑠 ≤ 𝐸𝐸𝑠𝑠∼𝜎𝜎(𝑐𝑐𝑖𝑖(𝑥𝑥, 𝑠𝑠−𝑖𝑖))

Hart & Mas-Colell: Long term average play is (coarse) correlated 
equilibrium

How good are coarse correlated equilibria??



Dynamics of  rock-paper-scissor
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• Doesn’t converge
• correlates on shared history
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Learning 
dynamic

Payoffs/utility

Coarse Correlated Equilibria: Prob x 
on diagonal, and prob (1-3x)/6 off 
diagonal, with 0 ≤ 1/3 ≤ 1



Outcome of learning in games:
cost minimization

• Finite set of players 1,…,n
• strategy sets 𝑆𝑆𝑖𝑖 for player i:  
• Resulting in strategy vector: s=(𝑠𝑠1, … , 𝑠𝑠𝑛𝑛) for each 𝑠𝑠𝑖𝑖 ∈ 𝑆𝑆𝑖𝑖
• Cost of player i: 𝑐𝑐𝑖𝑖 𝑠𝑠 or 𝑐𝑐𝑖𝑖 𝑠𝑠𝑖𝑖 , 𝑠𝑠−𝑖𝑖

Pure Nash equilibrium if 𝑐𝑐𝑖𝑖 𝑠𝑠 ≤ 𝑐𝑐𝑖𝑖(𝑠𝑠𝑖𝑖′, 𝑠𝑠−𝑖𝑖) for all players and all 
alternate strategies 𝑠𝑠𝑠𝑖𝑖 ∈ 𝑆𝑆𝑖𝑖

• Social welfare: cost s = ∑𝑖𝑖 𝑐𝑐𝑖𝑖(𝑠𝑠)
Optimum: 𝑂𝑂𝑂𝑂𝑂𝑂 = min

𝑠𝑠
∑𝑖𝑖 𝑐𝑐𝑖𝑖(𝑠𝑠)



Quality of Learning Outcome

Price of Anarchy [Koutsoupias-
Papadimitriou’99]

𝑃𝑃𝑃𝑃𝑃𝑃 = max
𝑠𝑠 𝑁𝑁𝑁𝑁𝑁𝑁𝑁

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠)
𝑂𝑂𝑂𝑂𝑂𝑂

Assuming no-regret learners in fixed 
game: [Blum, Hajiaghayi, Ligett, Roth’08, 
Roughgarden’09]

𝑃𝑃𝑃𝑃𝑃𝑃 = lim
𝑇𝑇→∞

∑𝑡𝑡=1𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠𝑡𝑡)
𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂



Example: Model of Routing Game
• A directed graph G = (V,E)
• source–sink pairs si,ti for i=1,..,k

r1 =1s t
x/100 150

x/1001 50

50

50

•Goal minimum delay: 
delay adds along path
edge-cost/delay is a function ce(•) of the 
load on the edge e



Delay Functions
Assume ce(x) continuous and 

monotone increasing in load x on 
edge

No capacity of edges for now

Example to model capacity u:

x

ce(x)ce(x)= a/(u-x)

u

r1 =1s t
x/100 150

x/1001 50

50

50



Goal’s of the Game: min delay 
Personal objective: minimize

cP(f) = sum of delays of edges along P (wrt. flow f) 
𝐜𝐜𝐏𝐏(𝐟𝐟) = ∑𝒆𝒆∈𝑷𝑷 𝒄𝒄𝒆𝒆(𝒇𝒇𝒆𝒆)

Overall objective:
C(f) = total delay of a flow f:  = ΣP fP•cP(f)

= - social welfare 
or total/average delay

Also:
C(f) = Σe fe•ce(fe) x

Costs         
-----------

Cost         -
----------



A B

C

D y/100

1 hour

1 hour

0min100

Equilibrium

x/100 2 hours

Each use must not 
regret not following her 
optimal path

+1 flow: 𝑓𝑓𝑒𝑒 + 1



No regret inequality for flow

• 𝑓𝑓𝑒𝑒 Nash flow on edge 𝑒𝑒, 𝑃𝑃 path used by Nash, 𝑄𝑄 path used by opt

No regret =
∑𝑒𝑒∈𝑃𝑃 𝑐𝑐𝑒𝑒 𝑓𝑓𝑒𝑒 ≤ ∑𝑒𝑒∈𝑃𝑃∩ 𝑄𝑄 𝑐𝑐𝑒𝑒(𝑓𝑓𝑒𝑒) + ∑𝑒𝑒∈𝑄𝑄∖𝑃𝑃 𝑐𝑐𝑒𝑒(𝑓𝑓𝑒𝑒 + 1)

• Without the +1 nonatomic flow: assumes +1 is too small to really 
make a difference



No-regret inequality with small flow unit

For flow using path Q and alternate Q we have
∑𝑒𝑒∈𝑃𝑃 𝑐𝑐𝑒𝑒 𝑓𝑓𝑒𝑒 ≤ ∑𝑒𝑒∈𝑃𝑃∩ 𝑄𝑄 𝑐𝑐𝑒𝑒(𝑓𝑓𝑒𝑒) + ∑𝑒𝑒∈𝑄𝑄∖𝑃𝑃 𝑐𝑐𝑒𝑒(𝑓𝑓𝑒𝑒 + 𝛿𝛿)

Non-atomic flow, when each user is small, but total flow remains the 
same: Limit as size as 𝛿𝛿→ 0
• Nash inequality limit for path P used and alternate !

∑𝑒𝑒∈𝑃𝑃 𝑐𝑐𝑒𝑒 𝑓𝑓𝑒𝑒 ≤ ∑𝑒𝑒∈𝑄𝑄 𝑐𝑐𝑒𝑒(𝑓𝑓𝑒𝑒)



Exercise 

a. An alternate definition for equilibrium of a non-atomic flow would 
be for each path 𝑃𝑃 carrying flow and each alternate path 𝑄𝑄 if more 
a 𝛿𝛿 amount of 𝑃𝑃 to 𝑄𝑄 to get a new flow 𝑓𝑓 then  
∑𝑒𝑒∈𝑃𝑃 𝑐𝑐𝑒𝑒 𝑓𝑓𝑒𝑒 ≤ ∑𝑒𝑒∈𝑄𝑄 𝑐𝑐𝑒𝑒(�𝑓𝑓𝑒𝑒)

Under what conditions is this equivalent to the definition given.
b. Nash equilibrium of non-atomic flow is the true optimum of 

Φ 𝑓𝑓 = ∑𝑒𝑒 ∫0
𝑓𝑓𝑒𝑒 𝑐𝑐𝑒𝑒 𝜉𝜉 𝑑𝑑𝑑𝑑.  

Note that this is convex if 𝑐𝑐𝑒𝑒 are  monotone increasing



Price of Anarchy: proof technique 
[Roughgarden’09]

• What we can work with: 
Optimum 𝑠𝑠∗ = 𝑠𝑠1∗, 𝑠𝑠2∗, … , 𝑠𝑠𝑛𝑛∗

Nash:  𝑠𝑠 = 𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛
• What we know:

𝑐𝑐𝑖𝑖 𝑠𝑠 ≤ 𝑐𝑐𝑖𝑖(𝑠𝑠𝑖𝑖′, 𝑠𝑠−𝑖𝑖) for all i and all 𝑠𝑠𝑖𝑖′ ∈ 𝑆𝑆𝑖𝑖

Use it for all players and sum
𝑐𝑐 𝑠𝑠 = ∑𝑖𝑖 𝑐𝑐𝑖𝑖 𝑠𝑠 ≤ ∑𝑖𝑖 𝑐𝑐𝑖𝑖(𝑠𝑠𝑖𝑖∗, 𝑠𝑠−𝑖𝑖)



Proof smooth games

Nash property gave us (s is Nash, s* optimum)
𝑐𝑐 𝑠𝑠 = ∑𝑖𝑖 𝑐𝑐𝑖𝑖 𝑠𝑠 ≤ ∑𝑖𝑖 𝑐𝑐𝑖𝑖(𝑠𝑠𝑖𝑖∗, 𝑠𝑠−𝑖𝑖)

Game is smooth if for some µ<1 and λ>0 and all s and s* 
∑𝑖𝑖 𝑐𝑐𝑖𝑖 𝑠𝑠𝑖𝑖∗, 𝑠𝑠−𝑖𝑖 ≤ 𝜆𝜆𝜆𝜆 𝑠𝑠∗ + 𝜇𝜇 𝑐𝑐(𝑠𝑠) (λ,µ)-smooth

Theorem: (λ,µ)-smooth game ⇒
Price of anarchy  at most 𝜆𝜆/(1 − 𝜇𝜇)

If Opt <<cost(s), 
some player will 
want to deviate 
to 𝑠𝑠𝑖𝑖∗



Learning and price of anarchy (in smooth games)
Use approx no-regret learning: 
∑𝑡𝑡 𝑐𝑐𝑖𝑖 𝑠𝑠𝑡𝑡 ≤ (1 + 𝜖𝜖)∑𝑡𝑡 𝑐𝑐𝑖𝑖 𝑠𝑠𝑖𝑖∗, 𝑠𝑠−𝑖𝑖𝑡𝑡 + 𝑅𝑅 for all players

A cost minimization game is (λ,μ)-smooth (λ > 0; μ< 1): 
∑𝑡𝑡 ∑𝑖𝑖 𝑐𝑐𝑖𝑖 𝑠𝑠𝑖𝑖∗, 𝑠𝑠−𝑖𝑖𝑡𝑡 ≤ 𝜆𝜆∑𝑡𝑡 𝑂𝑂𝑂𝑂𝑂𝑂 + 𝜇𝜇 ∑𝑡𝑡 𝑐𝑐(𝑠𝑠𝑡𝑡)

A approx. no-regret sequence 𝑠𝑠𝑡𝑡 has

Note the convergence speed! 𝑅𝑅 = log 𝑑𝑑
𝜖𝜖

, so error n
T
⋅ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑
𝜖𝜖(1− 1+𝜖𝜖 𝜇𝜇)

Foster, Li, Lykouris, Sridharan, T, NIPS’16

1
𝑇𝑇
∑𝑡𝑡 𝑐𝑐(𝑠𝑠𝑡𝑡) ≤ (1+𝜖𝜖)𝜆𝜆

1−(1+𝜖𝜖)𝜇𝜇
Opt + n

T 1− 1+𝜖𝜖 𝜇𝜇
R



Proving smoothness for flows

What we need ∑𝑖𝑖 𝑐𝑐𝑖𝑖 𝑠𝑠𝑖𝑖∗, 𝑠𝑠−𝑖𝑖 ≤ 𝜆𝜆𝜆𝜆 𝑠𝑠∗ + 𝜇𝜇 𝑐𝑐(𝑠𝑠)
Nash inequality for 𝑠𝑠 to 𝑡𝑡 user using path 𝑃𝑃 with alternate path 𝑄𝑄

∑𝑒𝑒∈𝑃𝑃 𝑐𝑐𝑒𝑒 𝑓𝑓𝑒𝑒 ≤ ∑𝑒𝑒∈𝑄𝑄 𝑐𝑐𝑒𝑒(𝑓𝑓𝑒𝑒)
Sum over paths 𝑄𝑄𝑖𝑖 = 𝑃𝑃𝑖𝑖∗ in opt with 𝑓𝑓 Nash and 𝑓𝑓∗ optimal

∑𝑃𝑃 𝑓𝑓𝑝𝑝 ∑𝑒𝑒∈𝑃𝑃 𝑐𝑐𝑒𝑒 𝑓𝑓𝑒𝑒 ≤ ∑𝑄𝑄 𝑓𝑓𝑄𝑄∗ ∑𝑒𝑒∈𝑄𝑄 𝑐𝑐𝑒𝑒(𝑓𝑓𝑒𝑒)
and rearranging sums

�
𝑒𝑒

𝑓𝑓𝑒𝑒𝑐𝑐𝑒𝑒 𝑓𝑓𝑒𝑒 ≤�
𝑒𝑒

𝑓𝑓𝑒𝑒∗𝑐𝑐𝑒𝑒(𝑓𝑓𝑒𝑒))

We need
∑𝑒𝑒 𝑓𝑓𝑒𝑒∗𝑐𝑐𝑒𝑒 𝑓𝑓𝑒𝑒 ≤ 𝜆𝜆∑𝑒𝑒 𝑓𝑓𝑒𝑒∗𝑐𝑐𝑒𝑒 𝑓𝑓𝑒𝑒∗ + 𝜇𝜇 ∑𝑒𝑒 𝑓𝑓𝑒𝑒𝑐𝑐𝑒𝑒(𝑓𝑓𝑒𝑒)

Claim: true edge by edge



Linear delay is smooth
Claim: f*•c (f) ≤ f*•c (f*) + ¼ f•c (f)

assuming c (f) linear: λ =1; μ=¼

f* f

c(x)

c(f*)

c(f) f*c(f)
-f*c(f*)

≤ ¼f c(f)



Sharper results for non-atomic games

Theorem   (Roughgarden-& ‘02):
In any network with linear cost functions the worst price of anarchy (in non-
atomic games) is at most 4/3

Proof: 1, 1
4

-smooth implies price of anarchy of 𝜆𝜆/(1 − 𝜇𝜇)= 1/(1 − 1/4)=4/3

s t

x

1 s t

x

1
1

0

½ 

½
A B

C

D y/100

1

1

0100

x/100 2 vs 1.5



Sharper results for non-atomic games

Theorem (Roughgarden’03):
In any network with any class of convex continuous latency functions the 
worst price of anarchy (in non-atomic games) is always on two edge 
network

s t

x

1 s t

x

1
1

0

½ 

½

Corollary:
price of anarchy for 
degree d polynomials is 
O(d/log d).



Monotone delay is (1,1)-smooth
Claim: 𝐟𝐟∗𝒄𝒄 𝒇𝒇 ≤ 𝒎𝒎𝒎𝒎𝒎𝒎 𝒇𝒇∗𝒄𝒄 𝒇𝒇∗ ,𝒇𝒇𝒇𝒇 𝒇𝒇 ≤ 𝒇𝒇∗𝒄𝒄 𝒇𝒇∗ + 𝒇𝒇 𝒄𝒄 𝒇𝒇

assuming c (f) monotone: λ =1; μ=1

f* f

c(x)

c(f*)

c(f) f*c(f)

≤ max(f c(f),f*c(f*))



High Social Welfare: Price of Anarchy in Routing

Theorem  (Roughgarden-T’02):
In any network with continuous, non-decreasing cost and very small users

cost of Nash with 
rates ri for all i

cost of opt with 
rates 2ri for all i≤

Proof if Nash carries ½ of the flow

�
𝑒𝑒

𝑓𝑓𝑒𝑒𝑐𝑐𝑒𝑒 𝑓𝑓𝑒𝑒 ≤�
𝑒𝑒

1
2
𝑓𝑓𝑒𝑒∗𝑐𝑐𝑒𝑒 𝑓𝑓𝑒𝑒

Nash smooth

≤
1
2

[𝜆𝜆�
𝑒𝑒

𝑓𝑓𝑒𝑒∗𝑐𝑐𝑒𝑒(𝑓𝑓𝑒𝑒∗) + 𝜇𝜇�
𝑒𝑒

𝑓𝑓𝑒𝑒𝑐𝑐𝑒𝑒(𝑓𝑓𝑒𝑒)]

Implying 𝑐𝑐 𝑓𝑓 ≤
1
2𝜆𝜆

(1−12𝜇𝜇)
𝑐𝑐(𝑓𝑓∗), so (1,1)- smooth implies the theorem!



Exercise

A popular delay model is 𝑐𝑐𝑒𝑒 𝑥𝑥 = 𝑎𝑎𝑒𝑒
𝑢𝑢𝑒𝑒−𝑥𝑥

, modeling 

capacity 𝑢𝑢𝑒𝑒 and delay on empty road 𝑎𝑎𝑒𝑒
𝑢𝑢𝑒𝑒

a. Show that for any rates and any capacities, optimal flow has total cost 
≥ Cost of Nash with double capacities  𝑢𝑢𝑒𝑒′ = 2𝑢𝑢𝑒𝑒

b. Anything useful follows if capacities 𝑢𝑢𝑒𝑒′ = 𝛼𝛼 ⋅ 𝑢𝑢𝑒𝑒 for some other 𝛼𝛼 > 1



Linear delay atomic flow
Atomic game (players with >0 traffic) with linear delay (5/3,1/3)-smooth 
(Awerbuch-Azar-Epstein’05 & Christodoulou-Koutsoupias’05)

⇒ 2.5 price of anarchy
• Need to prove: for all nonnegative integers 𝑥𝑥 = 𝑓𝑓∗(𝑒𝑒) and 𝑦𝑦 = 𝑓𝑓 𝑒𝑒

𝑥𝑥 𝑦𝑦 + 1 ≤
5
3
𝑥𝑥2 +

1
3
𝑦𝑦2

Theorem: Price of anarchy for polynomials of degree at most d at most 
exponential in d: O(2d dd+1)

Suri-Toth-Zhou SPAA’04 (special case) 
Awerbuch-Azar-Epstein STOC’05
Christodoulou-Koutsoupias STOC’05

That is: 3xy +3x ≤ 5𝑥𝑥2 + 𝑦𝑦2
HW ??



Homework

Smoothess for value maximization games
• Utility of player i: 𝑢𝑢𝑖𝑖 𝑠𝑠 or 𝑢𝑢𝑖𝑖 𝑠𝑠𝑖𝑖 , 𝑠𝑠−𝑖𝑖

Pure Nash equilibrium if 𝑢𝑢𝑖𝑖 𝑠𝑠 ≥ 𝑢𝑢𝑖𝑖(𝑠𝑠𝑖𝑖′, 𝑠𝑠−𝑖𝑖) for all players and all 
alternate strategies 𝑠𝑠𝑠𝑖𝑖 ∈ 𝑆𝑆𝑖𝑖

• Suppose ∑𝑖𝑖 𝑢𝑢𝑖𝑖 𝑠𝑠𝑖𝑖∗, 𝑠𝑠−𝑖𝑖 ≥ 𝜆𝜆∑𝑖𝑖 𝑢𝑢𝑖𝑖 𝑠𝑠∗ − 𝜇𝜇 ∑𝑖𝑖 𝑢𝑢𝑖𝑖(𝑠𝑠) for 
some 𝜆𝜆, 𝜇𝜇 > 0, an optimal solution vector 𝑠𝑠∗ and any 
solution 𝑠𝑠. What does this imply about the price of 
anarchy? [Roughgarden’09]

∑𝑖𝑖 𝑢𝑢𝑖𝑖 𝑠𝑠 ≥ 𝝀𝝀
𝝁𝝁+𝟏𝟏

∑𝑖𝑖 𝑢𝑢𝑖𝑖(𝑠𝑠∗)



A utility game: Auctions as (Bayesian) game
First Example:  Single item first price
• Auction sets a price p (full info, pure Nash).

Players

𝑝𝑝𝑝𝑝+

Can win by bidding p+𝑝𝑝

⇒ At full info Nash player with max 𝑣𝑣𝑖𝑖 wins 
at the next highest price

𝑣𝑣1

𝑣𝑣2

𝑣𝑣3



First price auction with uncertainty?
• Bayesian game
• Randomized bid

Players

𝑝𝑝

Price p random
Cannot bid p+

𝑣𝑣1

𝑣𝑣𝑖𝑖

𝑣𝑣𝑛𝑛

𝐹𝐹1 ∼

𝐹𝐹𝑖𝑖 ∼

𝐹𝐹𝑛𝑛 ∼

𝑏𝑏1

𝑏𝑏𝑖𝑖

𝑏𝑏𝑛𝑛



Auction games:
• Finite set of players 1,…,n
• strategy sets 𝑆𝑆𝑖𝑖 for player i:  bid on some items (not a finite set)

• Resulting in strategy vector: s=(𝑠𝑠1, … , 𝑠𝑠𝑛𝑛) for each 𝑠𝑠𝑖𝑖 ∈ 𝑆𝑆𝑖𝑖
• Utility player i: 𝑢𝑢𝑖𝑖 𝑠𝑠 or 𝑢𝑢𝑖𝑖 𝑠𝑠𝑖𝑖 , 𝑠𝑠−𝑖𝑖

• We assume quasi-linear utility, and no externalities:
• If player wins set if items 𝐴𝐴𝑖𝑖 and pays 𝑝𝑝𝑖𝑖 her value is 
𝑢𝑢𝑖𝑖 𝐴𝐴𝑖𝑖 ,𝑝𝑝𝑖𝑖 = 𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 − 𝑝𝑝𝑖𝑖

• Social welfare? (include auctioneer): ∑𝑖𝑖 𝑣𝑣𝑖𝑖 𝐴𝐴𝑖𝑖 = ∑𝑖𝑖 𝑢𝑢𝑖𝑖 𝐴𝐴𝑖𝑖 + ∑𝑖𝑖 𝑝𝑝𝑖𝑖

Revenue



Bayes Nash analysis
Strategy: bid as a function of value 𝑏𝑏𝑖𝑖 𝑣𝑣
Nash:  𝐸𝐸𝑣𝑣−𝑖𝑖𝑏𝑏 𝑢𝑢𝑖𝑖 𝑏𝑏 𝑣𝑣 |𝑣𝑣𝑖𝑖 ≥ 𝐸𝐸𝑣𝑣−𝑖𝑖𝑏𝑏−𝑖𝑖 𝑢𝑢𝑖𝑖 𝑏𝑏𝑖𝑖

′,𝑏𝑏−𝑖𝑖 𝑣𝑣−𝑖𝑖 |𝑣𝑣𝑖𝑖
for all 𝑏𝑏𝑖𝑖′

Players𝑣𝑣1

𝑣𝑣𝑖𝑖

𝑣𝑣𝑛𝑛

𝑏𝑏1

𝑏𝑏𝑖𝑖

𝑏𝑏𝑛𝑛



Example: [0,1] uniform value independent

• Two players:
• Assume both use deterministic, monotone, and identical bidding 

functions b(v)
• Person with larger value wins
• Bid must maximize utility: 

alternate bid for a player with value v: bid b(z) (pretend to have value z)

v = argmax
𝑧𝑧

𝑧𝑧 (𝑣𝑣 − 𝑏𝑏(𝑧𝑧))

Prob of 
winning

price
value

→ v-b(v)-vb’(v)=0 

Solved by b(v)=v/2



First price single item auction

• Uniform independent [0,1] value n players:
bid b(v)=𝑛𝑛−1

𝑛𝑛
𝑣𝑣 (more competition bid more aggressively)

• Independent identical distributions F and n players:
bid b(v)= E(max of n-1 draws from F|each ≤ 𝑣𝑣)

BTW, Second price auction: bid your value, 
first price bid = expected payment
revenue equivalence (Meyerson)

If distribution not identical and independent: big mess!!!



Smoothness for auctions

Auction game is λ-smooth if for some λ>0 and some strategy s* and all 
s we have

�
𝑖𝑖

𝑢𝑢𝑖𝑖 𝑠𝑠𝑖𝑖∗, 𝑠𝑠−𝑖𝑖 ≥ 𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 − 𝑅𝑅𝑅𝑅𝑅𝑅(𝑠𝑠)

R(s) = revenue at bid vector s 
Theorem: [Syrgkanis-T’13] λ-smooth auction game ⇒

Price of anarchy for any  ≤ 1
𝜆𝜆

Social welfare: ∑𝑖𝑖 𝑢𝑢𝑖𝑖 𝑠𝑠 + 𝑅𝑅(𝑠𝑠)



Robust Analysis: first price auction

No regret: 𝑢𝑢𝑖𝑖 𝑏𝑏 ≥

either i wins or price above p ≥ 1
2
𝑣𝑣𝑖𝑖

Players

∑𝑖𝑖 𝑢𝑢𝑖𝑖
𝑣𝑣𝑖𝑖
2

, 𝑏𝑏−𝑖𝑖 ≥ (max 𝑣𝑣𝑖𝑖
2

− 𝑝𝑝) + ∑𝑖𝑖 0
⇒auction is 1/2- smooth

⇒a price of anarchy of 2

(actually… (𝑒𝑒 − 1)/𝑒𝑒 ≈ 0.63)

𝑣𝑣1

𝑣𝑣𝑖𝑖

𝑣𝑣𝑛𝑛

𝐹𝐹1 ∼

𝐹𝐹𝑖𝑖 ∼

𝐹𝐹𝑛𝑛 ∼

𝑏𝑏𝑖𝑖 =
1
2 𝑣𝑣𝑖𝑖

𝑢𝑢𝑖𝑖
1
2
𝑣𝑣𝑖𝑖 , 𝑏𝑏−𝑖𝑖 ≥

1
2
𝑣𝑣𝑖𝑖 − 𝑝𝑝

- Apply this to the top value
+ winner doesn’t regret paying

,0



Bayes Nash analysis: Bayesian extension (I)
Strategy: bid as a function of value 𝑏𝑏𝑖𝑖 𝑣𝑣
Nash:  𝐸𝐸𝑣𝑣−𝑖𝑖𝑏𝑏 𝑢𝑢𝑖𝑖 𝑏𝑏 𝑣𝑣 |𝑣𝑣𝑖𝑖 ≥ 𝐸𝐸𝑣𝑣−𝑖𝑖𝑏𝑏−𝑖𝑖 𝑢𝑢𝑖𝑖 𝑏𝑏𝑖𝑖

′,𝑏𝑏−𝑖𝑖 𝑣𝑣−𝑖𝑖 |𝑣𝑣𝑖𝑖
for all 𝑏𝑏𝑖𝑖′

Players𝑣𝑣1

𝑣𝑣𝑖𝑖

𝑣𝑣𝑛𝑛

𝑏𝑏1

𝑏𝑏𝑖𝑖

𝑏𝑏𝑛𝑛

Same bound on price of anarchy, 
same prof (take expectation)

𝐸𝐸𝑣𝑣(�
𝑖𝑖

𝑢𝑢𝑖𝑖 𝑏𝑏 ) ≥�
𝑖𝑖

𝐸𝐸𝑣𝑣(𝑢𝑢𝑖𝑖
𝑣𝑣𝑖𝑖
2

, 𝑏𝑏𝑖𝑖 ) ≥ 𝜆𝜆𝐸𝐸𝑣𝑣 𝑂𝑂𝑂𝑂𝑂𝑂(𝑣𝑣) − 𝜇𝜇𝐸𝐸𝑣𝑣(𝑅𝑅𝑅𝑅𝑅𝑅(𝑏𝑏)

No need to bid 𝑣𝑣𝑖𝑖
2

just don’t regret it!



Smoothness and Bayesian games

We had 𝑏𝑏𝑖𝑖∗ 𝑣𝑣 = 𝑣𝑣𝑖𝑖
2

, 0.5-smooth: Bid depends only on the 
players own value!
Theorem: Auction is λ-smooth and 𝑏𝑏𝑖𝑖∗ is a function of 𝑣𝑣𝑖𝑖 only, 
then price of anarchy bounded by 1/𝜆𝜆 for arbitrary (private 
value) type distributions

Proof: just take expectations!



Price of anarchy in multi-item 
• First price is auction Hassidim, Kaplan, Mansour, Nisan EC’11) 

Price of anarchy 1.58…
• All pay auction price of anarchy 2
• First position auction (GFP) is price of anarchy 2
• Variants with second price (see also Christodoulou, Kovacs, Schapira  

ICALP’08) price of anarchy 2
Other applications include: 
- public goods
- Fair sharing (Kelly, Johari-Tsitsiklis) price of anarchy 1.33
- Walrasian Mechanism (Babaioff, Lucier, Nisan, and Paes Leme EC’13)



All pay auction (example)
Claim: all pay auction is 1/2-smooth

Max value player: bi*(v) uniform random [0,v].
All others: bid bi*(v)=0

i not the top value: 𝑢𝑢𝑖𝑖 𝑏𝑏𝑖𝑖∗, 𝑏𝑏−𝑖𝑖 = 0
i is the top value, and suppose max other bid is b. 

If b>𝑣𝑣𝑖𝑖 we are set: ∑𝑖𝑖 𝑢𝑢𝑖𝑖 𝑏𝑏𝑖𝑖∗, 𝑏𝑏−𝑖𝑖 ≥ − 𝑣𝑣𝑖𝑖
2
≥ 1

2
𝑂𝑂𝑂𝑂𝑂𝑂 −𝑏𝑏

Else expected value for player i

E(ui bi∗, 𝑏𝑏−𝑖𝑖 ) = −𝑣𝑣𝑖𝑖
2

+ 𝑣𝑣𝑖𝑖
𝑣𝑣𝑖𝑖−𝑏𝑏
𝑣𝑣𝑖𝑖

≥ 1
2
𝑣𝑣𝑖𝑖 − 𝑏𝑏

Trouble: bi*(v) 
depends on 
other player’s 
valuation! 



Bayesian extension theorem

Theorem [Syrgkanis-T’13] Auction game is λ-auction smooth, and 
values are drawn from independent distribution, than the Price of 
anarchy in the Bayesian game is at most  1 /𝜆𝜆

Extension theorem: OK to only think about the full information game!

Proof idea: bid b*(v)….
Trouble:  depends on other players and hence we don’t know……



Bayesian extension theorem

Notation v=(𝑣𝑣1, … 𝑣𝑣𝑛𝑛) value vector and use 𝑏𝑏𝑖𝑖∗ 𝑣𝑣 = 𝑏𝑏𝑖𝑖∗(𝑣𝑣𝑖𝑖 ,𝑣𝑣−𝑖𝑖)

Idea: random sample opponent 𝑤𝑤−𝑖𝑖, and bid 𝑏𝑏𝑖𝑖∗(𝑣𝑣𝑖𝑖 ,𝑤𝑤−𝑖𝑖)

Any fixed value vi, and any player i we get 
𝐸𝐸𝑤𝑤−𝑖𝑖𝑏𝑏−𝑖𝑖(𝑢𝑢𝑖𝑖 𝑏𝑏𝑖𝑖

∗ 𝑣𝑣𝑖𝑖 ,𝑤𝑤−𝑖𝑖 , 𝑏𝑏−𝑖𝑖|𝑣𝑣𝑖𝑖 ≤ 𝐸𝐸𝑏𝑏−𝑖𝑖(𝑢𝑢𝑖𝑖 𝑏𝑏 |𝑣𝑣𝑖𝑖)

Rename 𝑤𝑤−𝑖𝑖 = 𝑣𝑣−𝑖𝑖 , and also take expectation over 𝑣𝑣𝑖𝑖
𝐸𝐸𝑣𝑣𝑣𝑣(𝑢𝑢𝑖𝑖 𝑏𝑏𝑖𝑖∗ 𝑣𝑣 , 𝑏𝑏−𝑖𝑖 ≤ 𝐸𝐸𝑣𝑣𝑣𝑣(𝑢𝑢𝑖𝑖(𝑏𝑏)) 



Bayesian extension theorem (cont.)

𝐸𝐸𝑣𝑣𝑣𝑣(𝑢𝑢𝑖𝑖 𝑏𝑏𝑖𝑖∗ 𝑣𝑣 , 𝑏𝑏−𝑖𝑖 ≤ 𝐸𝐸𝑣𝑣𝑣𝑣(𝑢𝑢𝑖𝑖(𝑏𝑏))

Recall smoothness: for all fixed v and b

�
𝑖𝑖

𝑢𝑢𝑖𝑖 𝑏𝑏𝑖𝑖∗ 𝑣𝑣 , 𝑏𝑏−𝑖𝑖 𝑣𝑣𝑖𝑖 ≥ 𝜆𝜆 𝑂𝑂𝑂𝑂𝑂𝑂 𝑣𝑣 − 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇(𝑏𝑏)

Combine and take expectation over b and v (these are independent in the 
above!!!)

𝐸𝐸𝑣𝑣𝑣𝑣(�
𝑖𝑖

𝑢𝑢𝑖𝑖 𝑏𝑏 ) ≥ 𝐸𝐸𝑣𝑣𝑣𝑣(�
𝑖𝑖

𝑢𝑢𝑖𝑖(𝑏𝑏𝑖𝑖∗ 𝑣𝑣 , 𝑏𝑏−𝑖𝑖)) ≥ 𝜆𝜆𝐸𝐸𝑣𝑣(𝑂𝑂𝑂𝑂𝑂𝑂 𝑣𝑣 − 𝜇𝜇 𝐸𝐸𝑏𝑏(𝑅𝑅 𝑏𝑏 )



Multiple items (e.g. unit demand bidders)

i
Value if 𝑖𝑖 gets subset 𝑆𝑆 is 𝑣𝑣𝑖𝑖 𝑆𝑆
for example: 𝑣𝑣𝑖𝑖 𝑆𝑆 = max

𝑗𝑗∈𝑆𝑆
𝑣𝑣𝑖𝑖𝑖𝑖

Optimum is max value matching! 
max
𝑀𝑀∗

∑𝑖𝑖𝑗𝑗∈𝑀𝑀∗ 𝑣𝑣𝑖𝑖𝑗𝑗

Extension also if 𝑣𝑣𝑖𝑖 𝐴𝐴 submodular function of set 𝐴𝐴
Also for diminishing value of added items:  

𝐴𝐴 ⊂ 𝐵𝐵 ⇒ 𝑣𝑣𝑖𝑖 𝐴𝐴 + 𝑥𝑥 − 𝑣𝑣𝑖𝑖 𝐴𝐴 ≥ 𝑣𝑣𝑖𝑖 𝐵𝐵 + 𝑥𝑥 − 𝑣𝑣𝑖𝑖(𝐵𝐵)



Multi-item first prize auction 
with unit demand bidders

• Smoothness?

• ∑𝑖𝑖 𝑢𝑢𝑖𝑖 𝑏𝑏𝑖𝑖∗, 𝑏𝑏−𝑖𝑖 ≥ 1/2∑𝑖𝑖 𝑣𝑣𝑖𝑖𝑗𝑗𝑖𝑖∗ −∑𝑗𝑗 max
𝑖𝑖
𝑏𝑏𝑖𝑖𝑖𝑖 = 1

2
𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑅𝑅𝑅𝑅𝑅𝑅

• True item by item!

i • Optimal solution max
𝑀𝑀∗

∑𝑖𝑖𝑗𝑗∈𝑀𝑀∗ 𝑣𝑣𝑖𝑖𝑗𝑗
• A bid vector 𝑏𝑏∗ inducing optimal solution 𝑖𝑖 bids 
𝑣𝑣𝑖𝑖𝑗𝑗/2 on item 𝑗𝑗𝑖𝑖∗ assigned in 𝑖𝑖 in opt ( 𝑖𝑖, 𝑗𝑗𝑖𝑖∗ ∈ 𝑀𝑀∗)



Trouble: bidding is very hard!

• Special case: unit demand buyer, all items has the vale value 𝑣𝑣 ≫ 0
• There are n items
• Opponents bid 1 on some items, and ℎ > 𝑣𝑣 on all others
• Possible set that they bid 1 on: 𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑘𝑘 uniformly likely
• Use 2nd price or assume you can bid 1, and will win (and pay 1) if max other 

bid is 1

𝑣𝑣 > nk implies, 
• optimal bid always wins some item
• Wanted: T s.t. 𝑆𝑆𝑖𝑖 ∩ 𝑇𝑇 ≠ ∅ for all 𝑖𝑖 and  ∑𝑖𝑖 |𝑆𝑆𝑖𝑖 ∩ 𝑇𝑇| as small as possible



Fining optimal strategy NP-complete

• Given sets 𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑘𝑘
• Wanted: T s.t. 𝑆𝑆𝑖𝑖 ∩ 𝑇𝑇 ≠ ∅ for all 𝑖𝑖 and  ∑𝑖𝑖 |𝑆𝑆𝑖𝑖 ∩ 𝑇𝑇| as small as possible

Assume: every s the number #{𝑖𝑖: 𝑠𝑠 ∈ 𝑆𝑆𝑖𝑖} = r is the same
Then ∑𝑖𝑖 𝑆𝑆𝑖𝑖 ∩ 𝑇𝑇 = 𝑟𝑟|𝑇𝑇|
Wanted: T s.t. 𝑆𝑆𝑖𝑖 ∩ 𝑇𝑇 ≠ ∅ for all 𝑖𝑖 and |𝑇𝑇| minimal

This is hitting set 
Still NP-complete (= set-cover with equal size sets)

in fact, hard to approximate within ≈ log 𝑟𝑟



What is possible to do?

Why is no-regret so hard? So many bids to consider (𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑛𝑛) all 
possible bids on all items
Simplifications:
• Do not bid 𝑏𝑏𝑗𝑗 > 𝑣𝑣𝑗𝑗, still bid space is ∏𝑗𝑗[0, 𝑣𝑣𝑗𝑗]
• Discretize, only bid multiples of 𝜖𝜖, being off my an 𝜖𝜖 can only cause 𝜖𝜖

regret! Only ∏𝑗𝑗 𝑣𝑣𝑗𝑗/𝜖𝜖 options
• Assume (k-1)𝜖𝜖 < 𝑏𝑏 < 𝑘𝑘𝑘𝑘
• If  b wins: so does k𝜖𝜖 and pays too much by 𝜖𝜖
• If k𝜖𝜖 wins and b looses k𝜖𝜖 is better off.

• Bid on a single item only? Regret can be huge!



Bidding options that are possible to not regret
[Daskalakis-Syrgkanis’16]

• Idea:  strategy space names set S of items to buy, regardless of price

• If no regret:  
∑𝜏𝜏 𝑣𝑣𝑖𝑖 𝑠𝑠𝜏𝜏 − 𝑝𝑝𝑖𝑖 𝑠𝑠𝜏𝜏 ≥ 1 − 𝜖𝜖 max

𝑆𝑆𝑖𝑖
∑𝜏𝜏 𝑣𝑣𝑖𝑖 𝑆𝑆𝑖𝑖 , 𝑠𝑠−𝑖𝑖𝜏𝜏 −∑𝜏𝜏 𝑝𝑝 𝑆𝑆𝑖𝑖 , 𝑠𝑠−𝑖𝑖𝜏𝜏 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

Items in j ∈ 𝑆𝑆𝑖𝑖 are evaluated against their average price! T 𝑣𝑣𝑗𝑗 − ∑𝜏𝜏 𝑝𝑝𝜏𝜏(𝑗𝑗)



Choosing sets, versus bidding for a set

• Second price: 
selected set 𝑆𝑆: bid 𝑣𝑣𝑗𝑗 for 𝑗𝑗 ∈ 𝑆𝑆 and 0 elsewhere. This is strictly 
better!

• Is no regret for this good enough for social welfare? 
Let 𝑆𝑆𝑖𝑖∗be set awarded to 𝑖𝑖 in optimum. We get
∑𝜏𝜏 𝑢𝑢𝑖𝑖 𝑆𝑆𝜏𝜏 ≥ 𝑇𝑇𝑣𝑣𝑖𝑖 𝑆𝑆𝑖𝑖∗ − ∑𝜏𝜏 𝑅𝑅𝑅𝑅𝑣𝑣𝜏𝜏 (𝑆𝑆𝑖𝑖∗)
Sum over all players
∑𝜏𝜏∑𝑖𝑖 𝑢𝑢𝑖𝑖 𝑠𝑠𝜏𝜏 ≥ 𝑇𝑇∑𝑖𝑖 𝑣𝑣𝑖𝑖(𝑆𝑆𝑖𝑖∗) −∑𝜏𝜏∑𝑖𝑖 𝑅𝑅𝑅𝑅𝑣𝑣𝜏𝜏 𝑆𝑆𝑖𝑖∗ = 𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂 − ∑𝜏𝜏 𝑅𝑅𝑅𝑅𝑣𝑣𝜏𝜏



Choosing sets, versus bidding for a set

First price: 
selected set 𝑆𝑆: bid 1

2
𝑣𝑣𝑗𝑗 for 𝑗𝑗 ∈ 𝑆𝑆 and 0 elsewhere. 

If no regret:  
∑𝜏𝜏 𝑣𝑣𝑖𝑖 𝑠𝑠𝜏𝜏 − 𝑝𝑝𝑖𝑖 𝑠𝑠𝜏𝜏 ≥ 1

2
max
𝑆𝑆𝑖𝑖

∑𝜏𝜏 𝑣𝑣𝑖𝑖 𝑆𝑆𝑖𝑖 , 𝑠𝑠−𝑖𝑖𝜏𝜏 −∑𝜏𝜏 𝑝𝑝 𝑆𝑆𝑖𝑖 , 𝑠𝑠−𝑖𝑖𝜏𝜏 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

Is this no regret for this good enough for social welfare? 
Let 𝑆𝑆𝑖𝑖∗be set awarded to 𝑖𝑖 in optimum. We get
∑𝜏𝜏 𝑢𝑢𝑖𝑖 𝑆𝑆𝜏𝜏 ≥ 1

2
𝑇𝑇𝑣𝑣𝑖𝑖 𝑆𝑆𝑖𝑖∗ − ∑𝜏𝜏 𝑅𝑅𝑅𝑅𝑣𝑣𝜏𝜏 (𝑆𝑆𝑖𝑖∗)

Sum over all players
∑𝜏𝜏∑𝑖𝑖 𝑢𝑢𝑖𝑖 𝑠𝑠𝜏𝜏 ≥ 1

2
𝑇𝑇 ∑𝑖𝑖 𝑣𝑣𝑖𝑖(𝑆𝑆𝑖𝑖∗) − ∑𝜏𝜏∑𝑖𝑖 𝑅𝑅𝑅𝑅𝑣𝑣𝜏𝜏 𝑆𝑆𝑖𝑖∗ = 1

2
𝑇𝑇 𝑂𝑂𝑂𝑂𝑂𝑂 − ∑𝜏𝜏 𝑅𝑅𝑅𝑅𝑣𝑣𝜏𝜏



Magic Fictitious play and no regret
Fictitious play = best respond to past history of other players

𝑠𝑠𝑖𝑖𝑡𝑡 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥 ∑𝜏𝜏=1𝑡𝑡−1 𝑢𝑢𝑖𝑖 𝑥𝑥, 𝑠𝑠−𝑖𝑖𝜏𝜏

Magic enhancement of Fictitious play with response included

𝑠𝑠𝑖𝑖𝑡𝑡 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛𝑥𝑥 ∑𝜏𝜏=1𝑡𝑡 𝑢𝑢𝑖𝑖 𝑥𝑥, 𝑠𝑠−𝑖𝑖𝜏𝜏

Theorem 1: Magic fictitious play has no regret.
Proof: by induction we claim that 

∑𝜏𝜏=1𝑡𝑡 𝑢𝑢𝑖𝑖 𝑠𝑠𝜏𝜏 ≥ ∑𝜏𝜏=1𝑡𝑡 𝑢𝑢𝑖𝑖 𝒔𝒔𝒊𝒊𝒕𝒕, 𝑠𝑠−𝑖𝑖𝜏𝜏

∑𝜏𝜏=1𝑡𝑡 𝑢𝑢𝑖𝑖 𝑠𝑠𝜏𝜏 = ∑𝜏𝜏=1𝑡𝑡−1 𝑢𝑢𝑖𝑖 𝑠𝑠𝜏𝜏 + 𝑢𝑢𝑖𝑖 𝑠𝑠𝑡𝑡

By choice of 𝒔𝒔𝒊𝒊𝒕𝒕

IH      with 𝑥𝑥 = 𝑠𝑠𝑖𝑖𝑡𝑡

QED

≥ ∑𝜏𝜏=1𝑡𝑡−1 𝑢𝑢𝑖𝑖 𝑠𝑠𝑖𝑖𝑡𝑡, 𝑠𝑠−𝑖𝑖𝜏𝜏 + 𝑢𝑢𝑖𝑖 𝑠𝑠𝑡𝑡

= max
𝑥𝑥

∑𝜏𝜏=1𝑡𝑡 𝑢𝑢𝑖𝑖 𝑥𝑥, 𝑠𝑠−𝑖𝑖𝜏𝜏



Follow the perturbed leader has small regret 
(Theorem)

Follow the perturbed leader:  chose a random 𝑟𝑟𝑗𝑗, for all items j
select 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛𝑥𝑥[∑𝑗𝑗∈𝑥𝑥 𝑟𝑟𝑗𝑗 + ∑𝜏𝜏=1𝑡𝑡−1 𝑐𝑐𝑖𝑖(𝑥𝑥, 𝑠𝑠−𝑖𝑖𝜏𝜏 )]

Step 1: Magic Follow the perturbed leader has regret at most max
𝑥𝑥

∑𝑗𝑗∈𝑥𝑥 𝑟𝑟𝑗𝑗
select 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑛𝑛𝑥𝑥[∑𝑗𝑗∈𝑥𝑥 𝑟𝑟𝑗𝑗 + ∑𝜏𝜏=1𝑡𝑡 𝑐𝑐𝑖𝑖(𝑥𝑥, 𝑠𝑠−𝑖𝑖𝜏𝜏 )]

Proof: as before
∑𝜏𝜏=1𝑡𝑡 𝑐𝑐𝑖𝑖 𝑠𝑠𝜏𝜏 − 𝑟𝑟𝑠𝑠𝑖𝑖1 ≤ ∑𝜏𝜏=1𝑡𝑡 𝑐𝑐𝑖𝑖 𝒔𝒔𝒊𝒊𝒕𝒕, 𝑠𝑠−𝑖𝑖𝜏𝜏 − 𝑟𝑟𝑠𝑠𝑖𝑖𝑡𝑡

∑𝜏𝜏=1𝑡𝑡 𝑐𝑐𝑖𝑖 𝑠𝑠𝜏𝜏 − 𝑟𝑟𝑠𝑠𝑖𝑖1 = ∑𝜏𝜏=1𝑡𝑡−1 𝑐𝑐𝑖𝑖 𝑠𝑠𝜏𝜏 − 𝑟𝑟𝑠𝑠𝑖𝑖1 + 𝑐𝑐𝑖𝑖 𝑠𝑠𝑡𝑡
IH

QED

≤ min
𝑥𝑥

∑𝜏𝜏=1𝑡𝑡 𝑐𝑐𝑖𝑖 𝑥𝑥, 𝑠𝑠−𝑖𝑖𝜏𝜏 − 𝑟𝑟𝑥𝑥

≤ ∑𝜏𝜏=1𝑡𝑡−1 𝑐𝑐𝑖𝑖 𝑠𝑠𝑖𝑖𝑡𝑡, 𝑠𝑠−𝑖𝑖𝜏𝜏 −𝑟𝑟𝑠𝑠𝑖𝑖𝑡𝑡 +𝑐𝑐𝑖𝑖 𝑠𝑠𝑡𝑡



Real follow the perturbed leader
Let 𝑟𝑟𝑗𝑗 random: number of coins till you get H, if probability of H is 𝜖𝜖
So 𝐸𝐸 𝑟𝑟𝑥𝑥 = |𝑥𝑥|

ϵ
Step 2: if max𝑢𝑢𝑖𝑖 𝑠𝑠 ≤ 1, then in any one step, the probability that magic 
perturbed follow the leader makes  a different choice than real ≤ 𝜖𝜖
Alternate way to flip the coins. 

Start with 𝑟𝑟𝑥𝑥=1 all 𝑥𝑥
While more than one 𝑥𝑥 possible

Take largest 𝑥𝑥, and flip a coin for a j in x. 
If all coins already H: x eliminated

When one x left: flip coins for x till H
If ≠H, then adding 𝑢𝑢𝑖𝑖(𝑥𝑥, 𝑠𝑠−𝑖𝑖𝑡𝑡 ) or not makes no difference, prob=1 − 𝜖𝜖

Also, for n strategies  𝐸𝐸(max
𝑥𝑥

∑𝑗𝑗∈𝑥𝑥 𝑟𝑟𝑗𝑗) = 𝑂𝑂(𝑛𝑛
𝜖𝜖

)



Follow perturbed leader: small regret

Assuming we always follow magic version: regret at most max
𝑥𝑥

𝑟𝑟𝑥𝑥

• Expected value 𝐸𝐸(max
𝑥𝑥

𝑟𝑟𝑥𝑥) = 𝑛𝑛
𝜖𝜖

• expected total utility loss when not following the magic leader is at 
most an 𝜖𝜖 fraction

• Total regret at most
∑𝜏𝜏𝑡𝑡 𝑢𝑢𝑖𝑖 𝑠𝑠𝑡𝑡 ≤ 1 − 𝜖𝜖 max

𝑥𝑥
∑𝜏𝜏𝑡𝑡 𝑐𝑐𝑖𝑖 𝑥𝑥, 𝑠𝑠𝑖𝑖𝑡𝑡 − 𝑛𝑛

𝜖𝜖

Theorem: Select 𝜖𝜖 = 𝑛𝑛
𝑇𝑇

then resulting regret at most 𝑂𝑂( 𝑇𝑇𝑇𝑇)



Valuations beyond unit demand
• Unit demand  𝑣𝑣𝑖𝑖 𝑆𝑆 = max

𝑗𝑗∈𝑆𝑆
𝑣𝑣𝑖𝑖𝑖𝑖

• Additive 𝑣𝑣𝑖𝑖 𝑆𝑆 = ∑𝑗𝑗∈𝑆𝑆 𝑣𝑣𝑖𝑖𝑖𝑖

XOS = mix of the two 𝑣𝑣𝑖𝑖 𝑆𝑆 = max
𝑘𝑘

∑𝑗𝑗∈𝑆𝑆 𝑣𝑣𝑖𝑖𝑖𝑖𝑘𝑘

Fact: unit demand is XOS: 𝑣𝑣𝑖𝑖𝑖𝑖𝑘𝑘 = 𝑣𝑣𝑖𝑖𝑖𝑖 if 𝑘𝑘 = 𝑗𝑗, and 0 otherwise

Submodular: 𝐴𝐴 ⊂ 𝐵𝐵 we have 𝑣𝑣𝑖𝑖 𝐴𝐴 + 𝑗𝑗 − 𝑣𝑣𝑖𝑖 𝐴𝐴 ≥ 𝑣𝑣𝑖𝑖 𝐵𝐵 + 𝑗𝑗 − 𝑏𝑏(𝐵𝐵)

Lemma: Submodular is XOS: for any order 𝜋𝜋 we have 𝑣𝑣𝑖𝑖𝑖𝑖 = marginal value 
of 𝑗𝑗 in this order



Plans for next two lectures: things that 
learning can do beyond getting to CCE
So far we had: learning outcome is as good as Price of Anarchy 
proven via smoothness arguments (and almost all PoA proofs are 
smoothness arguments)

Things we hope learning can do: 
• Adjust to changing environments (churn)
• Do better than the worst case Nash (or better than any Nash?)
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