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Other Aspects of 
Distributed Computing

1. A Topological Perspective on Distributed Network 
Computing


2. Distributed Computing with Selfish Agents


3. Preferential Attachment as a Unique Equilibrium



A Topological Perspective on 
Distributed Network 

Computing1

1Joint work with A. Castañeda, A. Paz, S. Rajsbaum, M. Roy, and C. Travers
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A sequence of labeled digraphs H = (Ht)1≤t≤T
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• Synchronous, failure-free

• Full information communication

• Every process knows its name ꌡ and H = (Ht)1≤t≤T



Input-Output Tasks

• I = set of input values 


• O = set of input values


F : I   ➝  2O 


Example: Binary consensus: I = O = {0,1}


- F(v1,…,vn) = {(0,…,0),(1,…,1)} if there exists vi ≠ vj


- F(v,…,v) = {(v,…,v)} otherwise

nn



Information Flow Graph

➍ ➌

➎ ➋

➊ Remark: If H1 and H2 yields the same 

information flow graph G, then H1 and H2  
have the same computational power 

C3 S3After T rounds:

Information Flow Graph G



Protocol Complex 
Example 1
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Protocol Complex 
Example 2
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Solvability 1 de
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Consensus

SOLVABLE!



Solvability 2 de
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Path-Connectivity
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output = 1
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Necessary condition 
 for Consensus

Theorem 1. If the information flow graph G associated to H has 
no dominating vertex, then consensus is impossible under H 

Proof.  We show that there is a path between S0…0 and S1…1 in 
the protocol complex. 

0

0
0

1

1

1 ⧠

00…0

10…0

1…10

1…11



NSC for k-Set-Agreement
γ(G) = minimum size of a dominating set of G


Property If the information flow graph G associated to H 
satisfies γ(G) ≤ k, then k-set-agreement is possible under H 

Algorithm:  

• D = {v1,…,vk} dominating set of G

• Adopt input value of any vi 

Proof:
⧠

Theorem 2. If the information flow graph G associated to H 
satisfies γ(G) > k, then k-set-agreement is impossible under H



Application 1 
LOCAL model

LOCAL model: synchronous rounds in a fixed graph H, no 
failures


Corollary 1 For any k≥1, k-set-agreement in network H 
requires at least r rounds, where r is the smallest integer 
such that γ(H  ) ≤ k.r



DYNAMIC networks: synchronous, no failure; A sequence of 
labeled digraphs H = (Ht)t≥1


Corollary 2 For any k≥1, k-set-agreement in dynamic network 
(Ht)t≥1 requires at least r rounds, where r is the smallest 
integer such that (Ht)1≤t≤r has temporal domination number ≤ k 

Application 2 
Dynamic Networks

Round 1

H1

Round 2

H2

…
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Conclusion

• Topology is in the genes of distributed computing.


• Usefully applied to crash-prone asynchronous shared-
memory computing.


• Can also be usefully applied to failure-free synchronous 
network computing, as far as input-output tasks are 
concerned. 



Open Problems

• What about graph problems? (coloring, max independent 
set, LCL tasks, etc.)


• What about constrained models? (e.g., CONGEST)



Distributed Computing with 
Selfish Agents1

1Joint work with Simon Collet and Paolo Penna



Local Tasks

t

Tasks that can be solved locally in networks. 


Every node outputs after having consulted

information stored at nodes in its vicinity. 


Ideally radius t = O(1) or t = O(logO(1 )n)


t = #rounds performed by the algorithm

Examples:  
• Vertex-coloring (e.g., for frequency assignment)

• Independent set (e.g., for scheduling)

• Dominating set (e.g., to serve as cluster head)

• etc. 

!2



LCL Tasks
• Locally checkable labelings (LCL) are tasks whose 

solution can be checked locally. 


• Coloring, MIS, dominating set, etc., are LCL tasks. 


• An LCL is characterized by 


- a set L of node labels 


- a set B of labeled balls with radius r


• Task: Every node of network G must compute a label in L 
such that, for every node v, the ball BG(v,r) is in B. 

!3



A generic randomized 
algorithm for LCL tasks

Algorithm of node u ∈ V(G)

Repeat 

    observe BG(u,r) 

    select a label !(u) ∈ L at random according to D(u)

    observe BG(u,r) 

    if BG(u,r) ∈ B  then commit with label !(u) and stop


The distribution D(.) can be uniform, but is often biased to 
increase the probability of constructing a good ball. 

Also, D(.) can be different at different nodes, and may vary 
along with the execution of the algorithm. 

here we need LCL

!4



Examples
1. Maximal Independent Set (MIS)


Luby’s algorithm performs in O(log n) rounds w.h.p.

   Pr[u proposes itself to enter the MIS] ≈ 1/deg(u) 


2. (∆+1)-coloring in max-degree-∆ networks


Barenboim & Elkin’s algorithm performs in O(log n) rounds w.h.p.

    Pr[u participates in the phase] = 1/2 

    Pr[u proposes color c] ≈ uniform among available colors 

!5



Limits of the  
Generic Algorithm

• MIS or dominating sets can be used to construct a backbone 
in a radio network

‣ being part of the backbone might be undesirable (e.g., 

because it causes high energy consumption) 

• Vertex coloring can be used to assign radio frequencies to 

nodes in a radio network

‣ some frequencies might be preferred (e.g., because they 

interfere with local transmitters)


➡ Some selfish nodes might be tempted to deviate from the 
algorithm, by not respecting the specification of the random 
distribution D governing the choice of the labels.  

!6



Framework

Nodes want to solve

the problem quickly because 

the solution provides 

some desirable service

Every node has preference

for some of the solutions, 

and may wish to avoid 

undesirable solutions

Nodes communicate honestly their state, and 
correctly transfer messages, e.g., to avoid being 
caught.

Selfish nodes may privately rationally cheat about 
their choices of the randomly selected labels.

!7



The Game
• Players: the n nodes of a network G=(V,E)


• Strategy of node u: a distribution D(u) over the good balls 
centered at u


• Payoff for node u: 

- prefu : B  → [0,1]

- k = #rounds for the algorithm to terminate at u

- Payoff:


 πu = prefu(B) / 2k 

where B = BG(u,r) is the ball around u when the 
algorithm terminates at u

u aims at being the center 

of a ball that it prefers
u aims at terminating quickly

!8



Question

What form of equilibria can be derived for LCL games?

!9



Related Work 
(general)S. Collet, P. Fraigniaud, and P. Penna 0:7

Strategic Games Extensive games with Extensive games with
perfect information imperfect information
[28] [29]

Finite games [25] Subgame-perfect equilibrium Trembling-hand perfect eq.

Nash equilibrium Pure strategies Behavior strategies

Games with Mixed strategies [12] [12]

a finite Subgame-perfect equilibrium Sequential equilibrium

action set Pure strategies Behavior strategies

Games with [11] [16] [10]

an infinite [14] Subgame-perfect equilibrium Nash equilibrium

action set Nash equilibrium Pure strategies Behavior strategies

Mixed strategies

Table 1 A summary of results about the existence of equilibria

assumptions, every extensive game with imperfect information and finite action set has
a sequential equilibrium (for behavior strategies). The specific class of games for which
this result holds can be described as extensive games with observable actions, simultaneous
moves, perfect recall, and finite action set, plus some continuity requirements. Although
this class of games captures repeated games, and contains natural games in economy, LCL
games are not explicitly included into this class. Indeed, as we already mentioned, the
actions of far-away nodes are not observable in LCL games, and, in these latter games,
imperfect information also refers to the fact that each node is not aware of the states of far
away nodes in the network.

We now list some previous works related to games in networks (for network formation
games, see, e.g., [6, 17]). Many games in networks have complete information, and, among
games with incomplete information, a large part of the literature is dedicated to single-stage
games where players are not initially aware of the network topology (see the survey [18]).
Repeated games in networks have also been considered a lot in the literature (again, see [18]).
These games di�er from LCL games since, in repeated games, the utility of a player depends
on each round, and it is computed pairwise with each neighbor, while, in LCL games,
the utility is computed solely when the player terminates, and may depend on the whole
neighborhood. Regarding games with incomplete information involving communications in
networks, it is worth mentioning [2, 8, 9, 13, 15]. However, all these work mostly refer to
games in which the players’ actions consist in choosing which information to reveal, and
to whom it should be revealed. Instead, in LCL games, players actions are always fully
observable by their neighbors at distance Æ t, where t is the maximum radius of the good
balls for the considered LCL task.

Probably the first contribution to distributed computing by rational agents is [1], which
studies leader election in various networks, including complete networks and rings. Di�erent
forms of Nash equilibria are shown to exist, for both synchronous and asynchronous comput-
ing. The contribution in [3] extended and generalized the results in [1] by considering other
problems (consensus, renaming, etc.), and by identifying di�erent utility functions that en-
compass di�erent preferences of players in a distributed system: communication preference,
solution preference, and output preference. The paper [4] carried on this line of research,
by enlarging the considered set of problems to coloring, partition, orientation, etc., and by
addressing the question of how much global information agents should know a priori about
the network in order for equilibria to exist. All these previous work di�er from our approach
in many ways. First, in [1, 3, 4], the agents strategies define the algorithm itself, including
which messages to send, which information to reveal, etc. Instead, in this paper, the agents
strategies solely consist in choosing a probability distribution on the possible outputs (at

OPODIS 2018

Classical game theoretical results do not directly apply to LCL games 
because: 

• the usual notion of imperfect information is solely related to the fact 

that players play simultaneously

• in LCL games, imperfect information also refers to the fact that each 

node is not aware of the states of far away nodes in the network. 
!10



Related Work 
(games in networks)

Distributed computing by rational agents:


- Abraham, Dolev, and Halpern [DISC 2013]


- Afek, Ginzberg, Feibish, and Sulamy [PODC 2014]


- Afek, Rafaeli and Sulamy [DISC 2018]

Framework: 


‣ agents strategies define the algorithm itself, including 
which messages to send, which information to reveal


‣ the algorithms are “global” (they can take Ω(n) rounds)


‣ specific tasks are analyzed

!11



Our result
A trembling-hand perfect equilibrium is a stronger form of 
Nash equilibrium. 

• In Nash equilibria, players are assumed to play 

precisely as specified by the equilibrium. 

• Trembling-hand perfect equilibria include the possibility 

of off-the-equilibrium play (players may, with small 
probabilities, choose unintended strategies). 


Theorem 

For any (greedily constructible) LCL task, the associated 
game has a symmetric trembling-hand perfect equilibrium.

!12



Implications

For every LCL game, there is a distributed strategy from 
which the players have no incentive to deviate, in a robust 
sense (i.e., it supports small deviations). 


➥ One can keep control of the system even in the presence 
of rational selfish players optimizing their own benefit. 

!13



Techniques

Lemma 1 Every infinite, continuous, measurable, well-
rounded, extensive (symmetric) game with perfect recall and 
finite action set has a (symmetric) trembling-hand perfect 
equilibrium.


Lemma 2 LCL games are symmetric, infinite, continuous, 
measurable, well-rounded, extensive games with perfect 
recall and finite action set.

!14



• We have proved that natural games occurring in the 
framework of local distributed network computing have 
trembling-hand perfect equilibria, a strong form of Nash 
equilibria. 


What are the performances of the robust algorithms 
resulting from these equilibria? 


• Note that determining the performances of iterative 
distributed construction algorithms such as the generic 
algorithm is non trivial, even if nodes follow the prescribed 
actions imposed by the algorithm (e.g., Luby’s algorithm). 

Conclusion and  
Open Problems

!15



Preferential Attachment 
as a Unique Equilibrium

1Joint work with Chen Avin, Avi Cohen, Zvi Lotker, and David Peleg



Common Knowledge

A. Baronchelli, R. Ferrer-i-Cancho, R. Pastor-Satorras, N. Chater, M. Christiansen



Social Network Model

Preferential Attachement (Barabási–Albert)


• Nodes arrive one after the other


• A new node u connects to k≥1 existing nodes


• Pr[u→v] ≈ degG(v)


• For k=1, PA yields a tree



Rationals for Preferential 
Attachement

Empirical 

• Rich get richer aphorism (a.k.a. Matthew effect)


• Special case of Price's model


Analytical 

• Generate graphs “similar to’’ real networks


• Has desirable properties (degree sequence, short 
paths, etc.)



The Golden Circle
• The what: Heavy tailed degree distribution


• The how: Random graph theory: 

 ➥ preferential attachement (PA)


• The why: Game theory


A Hint why Social Networks are PA Graphs 

PA is the unique Nash equilibrium of 

a natural network formation game



Network Formation Game: 
Framework

• Society = graph


• Social capital of a node = degree


• Wealth of society = ! ∈ [0,1]


• Formation process = new connections are:


accepted with prob !


rejected with prob 1-!, and pushed to a neighbor 
chosen u.a.r. (the latter must accept the connection)



Network Formation Game: 
Strategy & Utility

• Nodes arrive one after the other


• A new node u arriving at time t connects to one of the 
existing nodes: it chooses a node v, with probability        
Pr[u chooses v], and connects to v or one of its neighbors.


• Pr[u chooses v] = πu(v) where πu is distributed over degree 
sequences — this is the strategy of node u. 


• Connections accepted according to probabilities (!t)t≥1


• Utility(v) at time t = "[deg(v) at time t]



Example

4 4

Step 5:

Step 4:



Universal Nash Equilibrium

Remark There is a game for 


• every stopping times τ≥1, and


• every wealth sequences (!t)t≥1.


Definition A strategy profile (πt)t≥1 is a universal NE if it is a 
NE for all stopping times τ≥1, and all wealth sequences (!t)t≥1



Universal NE Exist
Definition Pr[u chooses v] = πPA(v) = deg(v) / Σz deg(z) = deg(v) / 2m  

Theorem PA is a universal NE


Lemma Pr[u connects to v | T] = πPA(v)


Proof:  Pr[u connects to v | T] = ! πPA(v) + Σw∈N(v) πPA(w)(1-!)/deg(w)


                       = ! deg(v) / Σz deg(z) + Σw∈N(v) ((1-!) / Σz deg(z)) 


                       = deg(v) / Σz deg(z) = πPA(v)                                 ⧠



PA is a universal NE
Proof. Assume PA is used.


Assume that there exists a sequence (!t)t≥1 and some player vt 
for t≥4 who could increase her utility by deviating from PA to 
π’t ≠ PA.


degs(t) = degree of player vt at time s ≥ t. 


degt(t) = 1, and, for s>t, by the lemma, independently from π’t: 

degs(t) = degs-1(t) + 1with probability degs-1(t)/2(s-2)

degs(t) = degs-1(t) with probability 1 - degs-1(t)/2(s-2)    ⧠



Main Result

Theorem PA is the unique universal NE


Lemma Let Π=(πt)t≥1 be a strategy profile that is not PA. There 
exists a wealth sequence (!t)t≥1 such that Π is not a NE for (!t)t≥1.


Remark The result holds for only two different values !t ≠ !t’.



Time-Invariant Games

• The wealth remains constant over time


• Definition !t = ! ∈ [0,1] for every t≥1. 


• Theorem If a strategy profile Π=(πt)t≥1 is a universal Nash 
equilibrium for the time-invariant game, then 


each player plays PA on every graph that is not a star, and

if player t plays PA on the star St −1 then all subsequent 
players t’>t play PA on all graphs. 



Static Games
Definition Systematically connect to the host, i.e., !t = 1 for 
every t≥1.  


• A strategy πt is degree-k consistent if, for every degree-k 
node, the probability of selecting that node is independent of 
the degree sequence. 


• A strategy πt is degree consistent if it is degree-k consistent 
for every k≥0. 


• A strategy profile Π = (πt)t ≥1 is degree consistent if πt is degree 
consistent for every t ≥ 1.


Remark : PA is a degree consistent strategy. 



Universal NE for  
Static Games

Theorem Let Π=(πt)t≥1 be a universal Nash equilibrium for 
the static game. If the strategy πt’ is degree consistent for 
every t’∈{1,2,...,t − 1}, and πt’(k)>0 for every k∈{1,...,t − 1}, 
then πt is a degree consistent strategy. 


In particular, if every player t’∈{1, 2, ..., t − 1} played PA, then 
πt is a degree consistent strategy.



Conclusion

• What if the recommendation proceeds recursively? (By 
same arguments PA remains a universal Nash equilibrium 
in this case too). 


• What if each new node connects to m > 1 existing nodes? 


• In addition to node-events, considering edge-events 


• What if the players have more knowledge about the actual 
structure than just its degree sequence?



General Conclusion



Distributed Computing is 
Ubiquitous 

• All scales: multi-core, distributed data-bases, cloud 
computing, etc. 


• At the core of applications: blockchain, peer-to-peer 
(P2P), Internet of things (IoT), etc.


• Interest goes beyond human artefacts: understanding 
biological phenomena (cells, insects), global social 
behavior, etc. 



Coping with uncertainty! 

• Temporal uncertainty: Asynchrony, failures, etc.


• Spatial uncertainty: Locality, congestion, etc.



Topics left for future 
ADFOCS

• Mobile computing: physical robots, software agents, etc.


• Fault-tolerance: very many aspects


• Limited computational power: finite automata, oblivious 
computing, energy issue, etc.


• Anonymity, security, verification, certification, …


• Etc. Thank you! 


