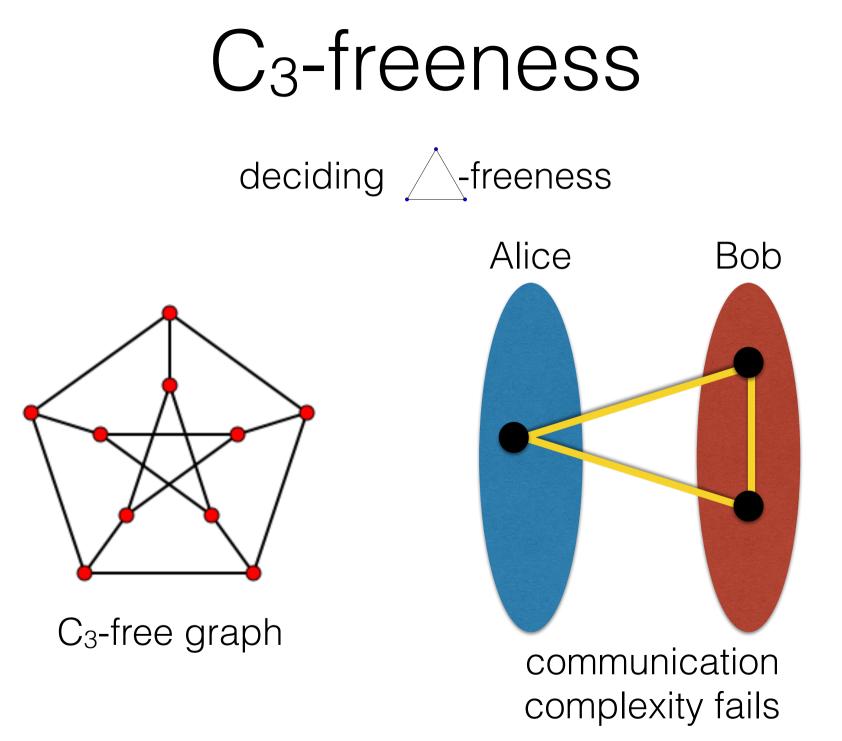
Exercices (session 2)

Exercice 1



Distributed Property Testing

- **Property testing:** checking correctness of large data structure, by performing small (sub-linear) amount of queries.
- Graph queries (with nodes labeled from 1 to n):
 - what is degree of node x?
 - what is the ith neighbor of node x?
- Two relaxations:
 - G is ε-far from satisfying φ if removing/adding up to εm edges to/from G results in a graph which does not satisfy φ.
 - algorithm A tests ϕ if and only if:
 - $G \models \phi \Rightarrow Pr[all nodes output accept] \ge \frac{2}{3}$
 - $G \not\models \phi \Rightarrow Pr[at least one node outputs reject] \ge \frac{2}{3}$

Question 1. Design a randomized algorithm which detects any triangle with probability $\geq 1/n$.

Testing C₃-freeness

Algorithm of node u
Exchange IDs with neighbors
for every neighbor v do
 pick a received ID u.a.r.
 send that ID to v
if u receives ID(w) from v ∈ N(u) with w ∈ N(u) and v ≠ w
then output reject
else output accept

Lemma 1 For any triangle Δ , $Pr[\Delta \text{ is detected}] \ge 1/n$

Question 2 Show that if G is ε -far from being C₃-free, then G contains at least ε m/3 edge-disjoint triangles.

Analysis

Lemma 2 If G is ε -far from being C₃-free, then G contains at least ε m/3 edge-disjoint triangles.

Proof Let $S = \{e_1, e_2, \dots, e_k\}$ be min #edges to remove for making G triangle-free ($k \ge \epsilon m$).

Repeat removing e from S, as well as all edges of a triangle Δ_e containing e \Rightarrow at least k/3 steps.

All triangles Δ_e are edge-disjoint.

Question 3 Let $\varepsilon \in [0,1[$. Show that if G is ε -far from being C₃-free, then a constant number of repetition of the algorithm detects a cycle with probability at least $1-(1/\varepsilon)^{\varepsilon/3}$

Analysis (continued)

Theorem Let $\varepsilon \in [0,1[$. If G is ε -far from being C₃-free, then a constant number of repletion of the algorithm detects a cycle with probability $\ge 1-(1/e)^{\varepsilon/3}$

Proof (of theorem)

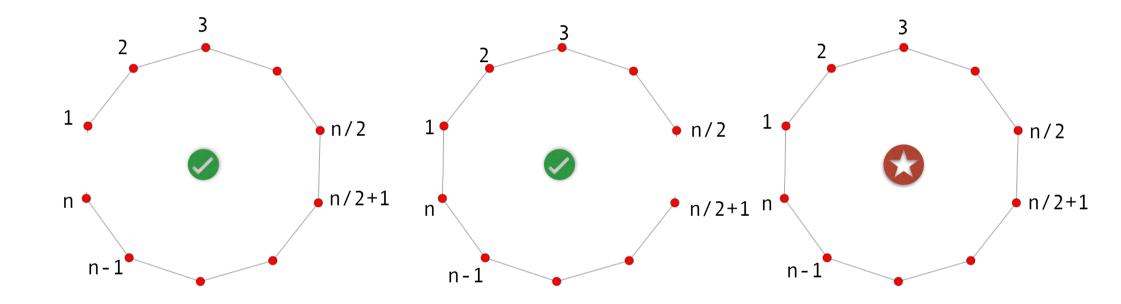
- $Pr[no \Delta detected] \le (1-1/n)^{\epsilon m/3} \le (1-1/n)^{\epsilon n/3}$
- $(1-1/n)^n = 1/e$
- $\Pr[no \Delta detected] \leq (1/e)^{\epsilon/3}$ Repeat k times with k such that $(1/e)^{\epsilon k/3} \leq 1/3$ That is $k \geq 3 \ln(3) / \epsilon \implies \#rounds = O(1/\epsilon)$.

Exercice 2

Cycle-freeness

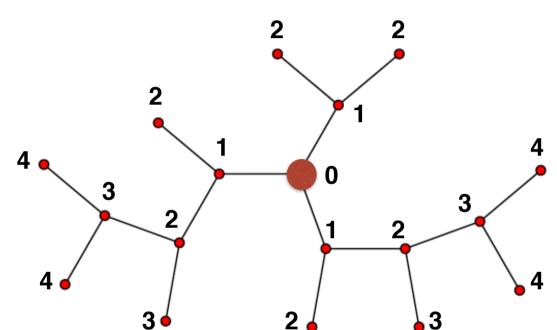
Question 1. Show that cycle-freeness cannot be decided locally.

Cycle-freeness



Certifying cycle-freeness

14

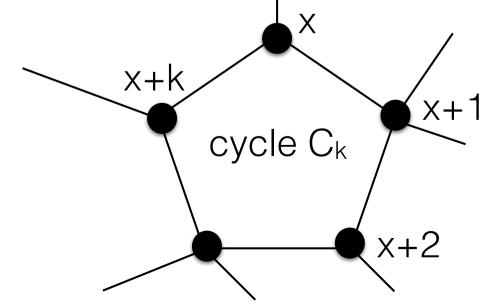


if G is acyclic, then there is an assignment of the counter resulting in all nodes accept.

if G is has a cycle, then for every assignment of the counters, at least one node rejects.

Algorithm of node u

exchange counters with neighbors if ∃! v∈N(u) : cpt(v)=cpt(u)-1 and ∀ w∈N(u) \{v}, cpt(w)=cpt(u)+1 then accept else reject



Proof-Labeling Scheme

A distributed algorithm A verifies ϕ if and only if:

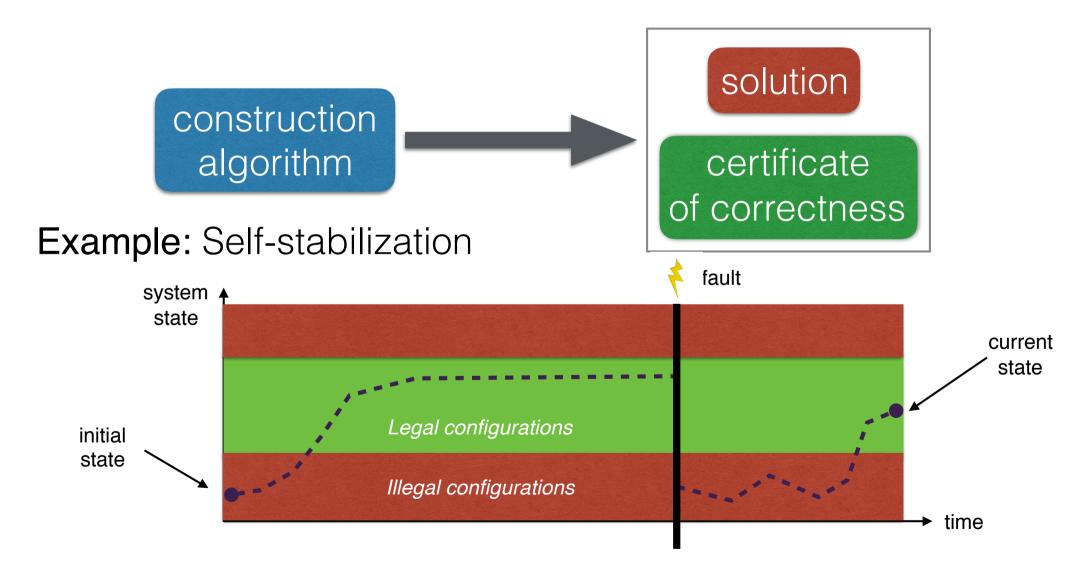
- $G \models \phi \Rightarrow \exists c: V(G) \rightarrow \{0,1\}^*$: all nodes accept (G,c)
- $G \nvDash \varphi \Rightarrow \forall c: V(G) \rightarrow \{0,1\}^*$ at least one node rejects (G,c)

The bit-string c(u) is called the *certificate* for u (cf. class NP) **Objective:** Algorithms in O(1) rounds (ideally, just 1 round in LOCAL) **Examples:** O(log n) bits

- Cycle-freeness: $c(u) = dist_G(u,r)$
- Spanning tree: $c(u) = (dist_G(u,r), ID(r))^{r}$

Measure of complexity: $\max_{u \in V(G)} |C(u)|$

Application: Fault-Tolerance



Universal PLS

Question 2. Show that, for any (decidable) graph property ϕ , there exists a PLS for ϕ , with certificates of size O(n²) bits in n-node graphs.

Universal PLS

Theorem For any (decidable) graph property ϕ , there exists a PLS for ϕ , with certificates of size O(n²) bits in n-node graphs.

- **Proof** c(u) = (M,x) where
 - M = adjacency matrix of G
 - x = table[1..n] with x(i) = ID(node with index i)

Verification algorithm:

- 1. check local consistency of M using x
- 2. if no inconsistencies, check whether M satisfies ϕ

G satisfies \iff both tests are passed

Lower bound

Question 3. Show that there exists a graph property for which any PLS has certificates of size $\Omega(n^2)$ bits.

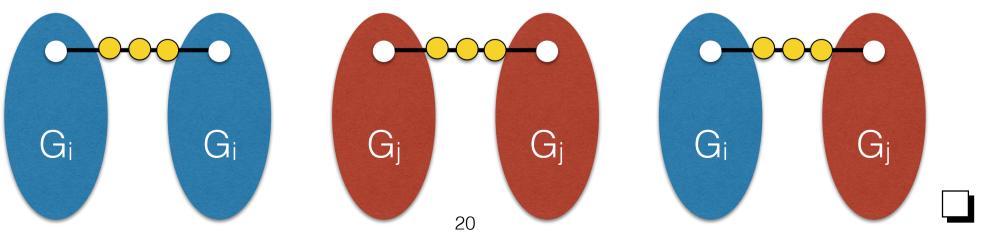
Lower bound

Theorem There exists a graph property for which any PLS has certificates of size $\Omega(n^2)$ bits.

Proof Graph automorphism = bijection $f:V(G) \rightarrow V(G)$ such that $\{u,v\} \in E(G) \iff \{f(u),f(v)\} \in E(G)$

Fact There are $\ge 2^{\epsilon n^2}$ graphs with no non-trivial auto.

If certificates on $< \epsilon n^2/3$ bits, then $\exists i \neq j$ such that the three nodes $\bigcirc \bigcirc \bigcirc$ have same certificates on G_i - G_i and G_i - G_i .



Local hierarchy

- Equivalent of, e.g., polynomial hierarchy in complexity theory
- {locally decidable properties} = $\Sigma_0 = \prod_0$
- {locally verifiable properties (with PLS)} = Σ_1

Deciding graph property ϕ is in Σ_1 if and only if:

- $G \models \phi \Rightarrow \exists c all nodes accept (G,c)$
- $G \nvDash \varphi \Rightarrow \forall c$ at least one node rejects (G,c)

Deciding graph property ϕ is in \prod_1 if and only if:

- $G \models \phi \Rightarrow \forall c all nodes accept (G,c)$
- $G \nvDash \varphi \Rightarrow \exists c \text{ at least one node rejects } (G,c)$

The hierarchy $(\Sigma_k, \Pi_k)_{k \ge 0}$

Deciding graph property ϕ is in Σ_2 if and only if:

- $G \models \phi \Rightarrow \exists c_1 \forall c_2 \text{ all nodes accept } (G,c_1,c_2)$
- $G \nvDash \varphi \Rightarrow \forall c_1 \exists c_2 \text{ at least one node rejects } (G,c_1,c_2)$

Deciding graph property ϕ is in \prod_2 if and only if:

- $G \vDash \phi \Rightarrow \forall c_1 \exists c_2 \text{ all nodes accept } (G,c_1,c_2)$
- $G \nvDash \varphi \Rightarrow \exists c_1 \lor c_2$ at least one node rejects (G,c_1,c_2)

Deciding graph property ϕ is in \sum_k if and only if:

- $G \models \varphi \Rightarrow \exists c_1 \forall c_2 \exists c_3 \dots Q c_k all nodes accept (G, c_1, \dots, c_k)$
- $G \nvDash \varphi \Rightarrow \forall c_1 \exists c_2 \forall c_1 \dots \neg Q c_k$ at least one node rejects (G, c_1, \dots, c_k)

Deciding graph property ϕ is in \prod_k if and only if:

- $G \models \varphi \Rightarrow \forall c_1 \exists c_2 \forall c_3 \dots Q c_k all nodes accept (G, c_1, \dots, c_k)$
- $G \nvDash \varphi \Rightarrow \exists C_1 \forall C_2 \exists C_3 \dots \neg Q C_k \text{ at least one node rejects } (G, C_1, \dots, C_k)$

Example: Minimum Dominating Set

Decision problem MinDS:

- input = dominating set \mathcal{D} (i.e., $\mathcal{D}(u) \in \{0,1\}$)
- output = accept if $|\mathcal{D}| = \min_{\text{dom } D} |D|$

Question 4. Show that MinDS $\in \prod_2$

Example: Minimum Dominating Set

Decision problem MinDS:

- input = dominating set \mathcal{D} (i.e., $\mathcal{D}(u) \in \{0,1\}$)
- output = accept if $|\mathcal{D}| = \min_{\text{dom D}} |D|$

Theorem MinDS $\in \prod_2$

Proof

 c_1 encodes a dominating set, i.e., $c_1(u) \in \{0, 1\}$

c₂ encodes:

- a spanning tree T_{err} pointing to node u with error in c_1 if any
- a spanning tree T_0 for counting $|\mathcal{D}|$ (w/ same root)
- a spanning tree T₁ for counting |c₁| (w/ same root)

Algorithm:

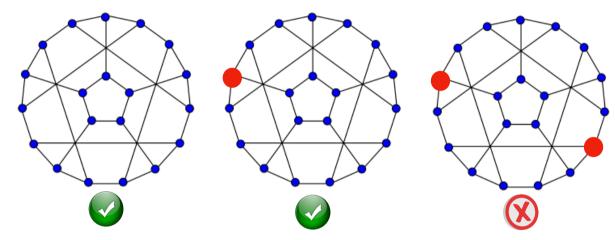
- If root u ses $|c_1| < |\mathcal{D}|$ with no error, it rejects, otherwise it accepts
- If any node detects inconsistencies in T₀, T₁ or T_{err} it rejects, otherwise it accepts.

Exercice 3

Randomized Protocols

[FKP, 2013]

• At most one selected (AMOS)

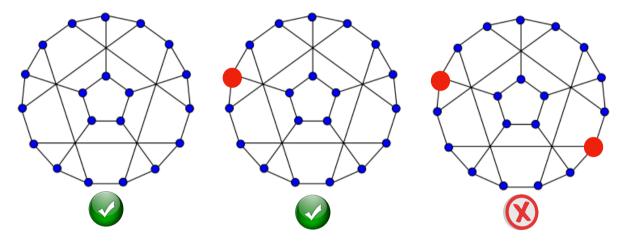


• Question 1. Show that there exists a randomized algorithm performing in a constant number of rounds for deciding AMOS.

Randomized Protocols

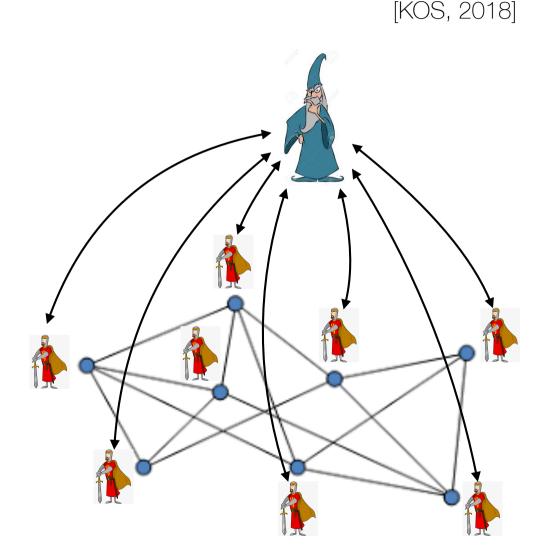
[FKP, 2013]

• At most one selected (AMOS)

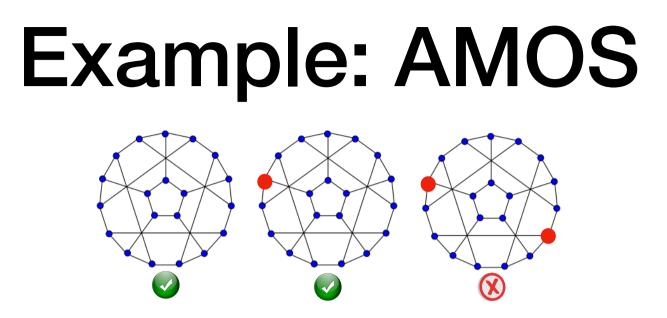


- Decision algorithm (2-sided):
 - let $p = (\sqrt{5}-1)/2 = 0.61...$
 - If not selected then accept
 - If selected then accept w/ prob p, and reject w/ prob 1-p
- Issue with boosting! But OK for 1-sided error

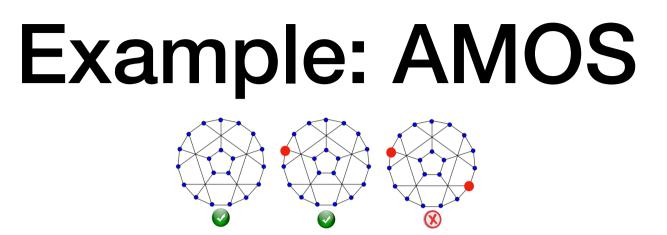
Distributed Interactive Protocols



- Arthur-Merlin Phase (no communication, only interactions)
- Verification Phase (only communications)
- Merlin has infinite communication power
- Arthur is randomized
- k = #interactions
- dAM[k] or dMA[k]



- In BPLD with success prob $(\sqrt{5-1})/2 = 0.61...$
- In $\Sigma_1 LD(O(\log n))$ Not in $\Sigma_1 LD(O(\log n))$
- Not in dMA(o(log n)) for success prob > 4/5
- Question 2. Show that AMOS is in dAM(k) with k random bits, and success prob 1-1/2^k



- In BPLD with success prob $(\sqrt{5}-1)/2 = 0.61...$
- In $\Sigma_1 LD(O(\log n))$ Not in $\Sigma_1 LD(o(\log n))$
- Not in dMA(o(log n)) for success prob > 4/5
- In dAM(k) with k random bits, and success prob 1-1/2^k
 - Arthur independently picks a k-bit index at each node u.a.r.
 - Merlin answer \perp if no nodes selected, or the index of the selected node

Sequential setting

- For every $k \ge 2$, AM[k] = AM
- $MA \subseteq AM$ because $MA \subseteq MAM = AM[3] = AM$
- $MA \in \Sigma_2 P \cap \Pi_2 P$
- $AM \in \Pi_2 P$
- AM[po/y(n)] = IP = PSPACE

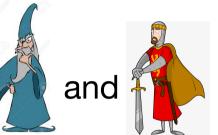
Known results

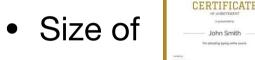
[KOS 2018, NPY 2018]

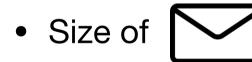
- Sym \in dAM(n log n)
- Sym \in dMAM(log n)
- Any dAM protocol for Sym requires Ω(loglog n)-bit certificates
- \neg Sym \in dAMAM(log n)
- Other results on graph non-isomorphism

Parameters

Number of interactions between







- Number of random
- Shared vs distributed

Tradeoffs [CFP, 2019]

- Theorem 1 For every c, there exists a Merlin-Arthur (dMA) protocol for *triangle-freeness*, using O(log n) bits of shared randomness, with Õ(n/c)-bit certificates and Õ(c)-bit messages between nodes.
- Theorem 2 There exists a graph property admitting a proof-labeling scheme with certificates and messages on O(n) bits, that cannot be solved by an Arthur-Merlin (dAM) protocol with certificates on O(n) bits, for any fixed number k ≥ 0 of interactions between Arthur and Merlin, even using shared randomness, and even with messages of unbounded size.