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Distributed Property Testing
• Property testing: checking correctness of large data structure, by 

performing small (sub-linear) amount of queries.  

• Graph queries (with nodes labeled from 1 to n):  
- what is degree of node x? 
- what is the ith neighbor of node x? 

• Two relaxations:  
- G is ε-far from satisfying ϕ if removing/adding up to εm 

edges to/from G results in a graph which does not satisfy ϕ.  
- algorithm A tests ϕ if and only if:  

‣ G ⊨ ϕ  ⇒ Pr[all nodes output accept] ≥ ⅔  
‣ G ⊭ϕ  ⇒ Pr[at least one node outputs reject] ≥ ⅔

 4



Question 1. Design a randomized algorithm which 
detects any triangle with probability ≥ 1/n. 
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Testing C3-freeness
Algorithm of node u 
Exchange IDs with neighbors 
for every neighbor v do 

pick a received ID u.a.r. 
send that ID to v 

if u receives ID(w) from v ∈ N(u) with w ∈ N(u) and v ≠ w  
then output reject 
else output accept
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Lemma 1 For any triangle ∆, Pr[∆ is detected] ≥ 1/n



Question 2 Show that if G is ε-far from being C3-free, 
then G contains at least εm/3 edge-disjoint triangles. 
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Analysis
Lemma 2 If G is ε-far from being C3-free, then G 
contains at least εm/3 edge-disjoint triangles.  

Proof Let S={e1,e2,…,ek} be min #edges to remove for 
making G triangle-free (k ≥ εm).  

Repeat removing e from S, as well as all edges of a 
triangle ∆e containing e ➡ at least k/3 steps.  

All triangles ∆e are edge-disjoint. 
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Question 3 Let ε ∈ ]0,1[. Show that if G is ε-far from 
being C3-free, then a constant number of repetition of 
the algorithm detects a cycle with probability at least 
1-(1/e)ε/3  
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Analysis (continued)

Theorem Let ε ∈ ]0,1[. If G is ε-far from being         
C3-free, then a constant number of repletion of the 
algorithm detects a cycle with probability ≥ 1-(1/e)ε/3  

Proof (of theorem) 
• Pr[no ∆ detected] ≤ (1-1/n)εm/3 ≤ (1-1/n)εn/3 
• (1-1/n)n ≂ 1/e 
• Pr[no ∆ detected] ≤ (1/e)ε/3 

Repeat k times with k such that (1/e)εk/3 ≤ 1/3 
That is k ≥ 3 ln(3) / ε ➡ #rounds = O(1/ε). 
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Exercice 2
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Cycle-freeness

 12

Question 1. Show that cycle-freeness cannot  
be decided locally. 



Cycle-freeness
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Certifying cycle-freeness
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Algorithm of node u 

exchange counters with neighbors 
if ∃! v∈N(u) : cpt(v)=cpt(u)-1 and 
   ∀ w∈N(u)∖{v}, cpt(w)=cpt(u)+1 
then accept 
else reject

if G is acyclic, then there is  
an assignment of the counter  
resulting in all nodes accept. 

if G is has a cycle, then for  
every assignment of the  
counters, at least one node 
rejects.   
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Proof-Labeling Scheme
A distributed algorithm A verifies ϕ if and only if:  

• G ⊨ ϕ  ⇒ ∃ c: V(G) → {0,1}* : all nodes accept (G,c) 

• G ⊭ϕ  ⇒ ∀ c: V(G) → {0,1}* at least one node rejects (G,c) 

The bit-string c(u) is called the certificate for u (cf. class NP) 

Objective: Algorithms in O(1) rounds (ideally, just 1 round in LOCAL) 

Examples: 
• Cycle-freeness: c(u) = distG(u,r) 
• Spanning tree: c(u) = (distG(u,r),ID(r)) 

Measure of complexity: maxu∈V(G) |c(u)|
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O(log n) bits



Application: Fault-Tolerance
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Universal PLS

Question 2. Show that, for any (decidable) graph 
property ϕ, there exists a PLS for ϕ, with certificates 
of size O(n2) bits in n-node graphs. 
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Universal PLS
Theorem For any (decidable) graph property ϕ, there 
exists a PLS for ϕ, with certificates of size O(n2) bits in n-
node graphs.  

Proof c(u) = (M,x) where  
• M = adjacency matrix of G 
• x = table[1..n] with x(i) = ID(node with index i) 

Verification algorithm:  
1. check local consistency of M using x 
2. if no inconsistencies, check whether M satisfies ϕ 

G satisfies ⟺ both tests are passed 
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Lower bound
Question 3. Show that there exists a graph property for 
which any PLS has certificates of size Ω(n2) bits. 



Lower bound
Theorem There exists a graph property for which any 
PLS has certificates of size Ω(n2) bits.  

Proof Graph automorphism = bijection f:V(G)→V(G) such 
that {u,v} ∈ E(G) ⟺ {f(u),f(v)} ∈ E(G) 

Fact There are ≥ 2      graphs with no non-trivial auto. 
If certificates on < εn2/3 bits, then ∃ i≠j such that the three 
nodes          have same certificates on Gi-Gi and Gi-Gi.
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Local hierarchy
• Equivalent of, e.g., polynomial hierarchy in complexity theory 

• {locally decidable properties} = ∑0 = ∏0  

• {locally verifiable properties (with PLS)} = ∑1 

Deciding graph property ϕ is in ∑1 if and only if:  
• G ⊨ ϕ  ⇒ ∃ c all nodes accept (G,c) 

• G ⊭ϕ  ⇒ ∀ c at least one node rejects (G,c) 

Deciding graph property ϕ is in ∏1 if and only if:  
• G ⊨ ϕ  ⇒ ∀ c all nodes accept (G,c) 

• G ⊭ϕ  ⇒ ∃ c at least one node rejects (G,c)
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The hierarchy (∑k,∏k)k≥0
Deciding graph property ϕ is in ∑2 if and only if:  

• G ⊨ ϕ  ⇒ ∃ c1 ∀ c2 all nodes accept (G,c1,c2) 
• G ⊭ϕ  ⇒ ∀ c1 ∃ c2 at least one node rejects (G,c1,c2) 

Deciding graph property ϕ is in ∏2 if and only if:  
• G ⊨ ϕ  ⇒ ∀ c1 ∃ c2 all nodes accept (G,c1,c2) 
• G ⊭ϕ  ⇒ ∃ c1 ∀ c2 at least one node rejects (G,c1,c2) 

Deciding graph property ϕ is in ∑k if and only if:  
• G ⊨ ϕ  ⇒ ∃ c1 ∀ c2 ∃ c3 … Q ck all nodes accept (G,c1,…,ck) 
• G ⊭ϕ  ⇒ ∀ c1 ∃ c2 ∀ c1 … ¬Q ck at least one node rejects (G,c1,…,ck) 

Deciding graph property ϕ is in ∏k if and only if:  
• G ⊨ ϕ  ⇒ ∀ c1 ∃ c2 ∀ c3 … Q ck all nodes accept (G,c1,…,ck)  
• G ⊭ϕ  ⇒ ∃ c1 ∀ c2 ∃ c3 … ¬Q ck at least one node rejects (G,c1,…,ck)
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Example: Minimum 
Dominating Set

Decision problem MinDS:  
- input = dominating set D   (i.e., D(u)∈{0,1}) 
- output = accept if |D| = mindom D |D| 

Question 4.  Show that MinDS ∈ ∏2  
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Example: Minimum 
Dominating Set

Decision problem MinDS:  
- input = dominating set D   (i.e., D(u)∈{0,1}) 
- output = accept if |D| = mindom D |D| 

Theorem MinDS ∈ ∏2  
Proof  
c1 encodes a dominating set, i.e., c1(u)∈{0,1} 
c2 encodes:  

a spanning tree Terr pointing to node u with error in c1 if any 
a spanning tree T0 for counting |D| (w/ same root) 
a spanning tree T1 for counting |c1| (w/ same root) 

Algorithm:  
- If root u ses |c1| < |D| with no error, it rejects, otherwise it accepts 
- If any node detects inconsistencies in T0, T1 or Terr it rejects, 

otherwise it accepts. 
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Randomized Protocols 
[FKP, 2013]

• At most one selected (AMOS)


• Question 1. Show that there exists a randomized algorithm 
performing in a constant number of rounds for deciding 
AMOS. 



Randomized Protocols 
[FKP, 2013]

• At most one selected (AMOS)


• Decision algorithm (2-sided): 

- let p = (√5-1)/2 = 0.61…

- If not selected then accept

- If selected then accept w/ prob p, and reject w/ prob 1-p


• Issue with boosting!  — But OK for 1-sided error



Distributed Interactive Protocols 
[KOS, 2018]

• Arthur-Merlin Phase 
(no communication, 
only interactions)


• Verification Phase 
(only communications)

• k = #interactions

• dAM[k] or dMA[k]

• Merlin has infinite 
communication power


• Arthur is randomized



Example: AMOS

• In BPLD with success prob (√5-1)/2 = 0.61…


• In Σ1LD(O(log n))  — Not in Σ1LD(o(log n))


• Not in dMA(o(log n)) for success prob > 4/5 


• Question 2. Show that AMOS is in dAM(k) with k random 
bits, and success prob 1-1/2k



Example: AMOS

• In BPLD with success prob (√5-1)/2 = 0.61…


• In Σ1LD(O(log n))  — Not in Σ1LD(o(log n))


• Not in dMA(o(log n)) for success prob > 4/5 


• In dAM(k) with k random bits, and success prob 1-1/2k

- Arthur independently picks a k-bit index at each node u.a.r. 

- Merlin answer ⊥ if no nodes selected, or the index of the 

selected node



Sequential setting
• For every k ≥ 2, AM[k] = AM


• MA ⊆ AM  because MA ⊆ MAM = AM[3] = AM


• MA ∈ Σ2P ∩ Π2P   


• AM ∈ Π2P


• AM[poly(n)] = IP = PSPACE



Known results  
[KOS 2018, NPY 2018] 

• Sym ∈ dAM(n log n)


• Sym ∈ dMAM(log n)


• Any dAM protocol for Sym requires Ω(loglog n)-bit 
certificates 


• ¬Sym ∈ dAMAM(log n)


• Other results on graph non-isomorphism



• Number of interactions between         and        


• Size of 


• Size of


• Number of random


• Shared vs distributed

Parameters



Tradeoffs  
[CFP, 2019]

• Theorem 1 For every c, there exists a Merlin-Arthur (dMA) 
protocol for triangle-freeness, using O(log n) bits of shared 
randomness, with ︎Õ(n/c)-bit certificates and Õ︎(c)-bit 
messages between nodes.


• Theorem 2 There exists a graph property admitting a 
proof-labeling scheme with certificates and messages on 
O(n) bits, that cannot be solved by an Arthur-Merlin (dAM) 
protocol with certificates on o(n) bits, for any fixed 
number k ≥ 0 of interactions between Arthur and Merlin, 
even using shared randomness, and even with messages 
of unbounded size.


