Exercices (session 2)

Exercice 1

C_{3}-freeness

deciding -freeness

Distributed Property Testing

- Property testing: checking correctness of large data structure, by performing small (sub-linear) amount of queries.
- Graph queries (with nodes labeled from 1 to n):
- what is degree of node x?
- what is the ith neighbor of node x ?
- Two relaxations:
- G is ε-far from satisfying ϕ if removing/adding up to εm edges to/from G results in a graph which does not satisfy ϕ.
- algorithm A tests ϕ if and only if:
- $G \vDash \phi \Rightarrow \operatorname{Pr}[$ all nodes output accept $] \geq 2 / 3$
- $G \not \vDash \phi \Rightarrow \operatorname{Pr}[$ at least one node outputs reject $] \geq 2 / 3$

Question 1. Design a randomized algorithm which detects any triangle with probability $\geq 1 / n$.

Testing C ${ }_{3}$-freeness

```
Algorithm of node u
Exchange IDs with neighbors for every neighbor v do pick a received ID u.a.r. send that ID to v
if \(u\) receives \(I D(w)\) from \(v \in N(u)\) with \(w \in N(u)\) and \(v \neq w\) then output reject
else output accept
```

Lemma 1 For any triangle $\Delta, \operatorname{Pr}[\Delta$ is detected $] \geq 1 / n$

Question 2 Show that if G is ε-far from being C_{3}-free, then G contains at least $\varepsilon m / 3$ edge-disjoint triangles.

Analysis

Lemma 2 If G is ε-far from being C_{3}-free, then G contains at least $\varepsilon \mathrm{m} / 3$ edge-disjoint triangles.

Proof Let $\mathrm{S}=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{\mathrm{k}}\right\}$ be min \#edges to remove for making G triangle-free ($k \geq \varepsilon m$).

Repeat removing e from S, as well as all edges of a triangle Δ_{e} containing e at least $\mathrm{k} / 3$ steps.

All triangles Δ_{e} are edge-disjoint.

Question 3 Let $\varepsilon \in] 0,1[$. Show that if G is ε-far from being C_{3}-free, then a constant number of repetition of the algorithm detects a cycle with probability at least 1 -(1/e) $)^{\varepsilon / 3}$

Analysis (coninues)

Theorem Let $\varepsilon \in] 0,1[$. If G is ε-far from being C_{3}-free, then a constant number of repletion of the algorithm detects a cycle with probability $\geq 1-(1 / e)^{\varepsilon / 3}$

Proof (of theorem)

- $\operatorname{Pr}[$ no Δ detected $] \leq(1-1 / n)^{\text {em/3 }} \leq(1-1 / n)^{\text {en/3 }}$
- $(1-1 / n)^{n}=1 / e$
- $\operatorname{Pr}[$ no Δ detected $] \leq(1 / e)^{\varepsilon / 3}$

Repeat k times with k such that ($1 / e)^{\varepsilon k / 3} \leq 1 / 3$
That is $k \geq 3 \ln (3) / \varepsilon \Rightarrow$ \#rounds $=O(1 / \varepsilon)$.

Exercice 2

Cycle-freeness

Question 1. Show that cycle-freeness cannot be decided locally.

Cycle-freeness

Certifying cycle-freeness

Algorithm of node u
exchange counters with neighbors if $\exists!v \in N(u): \operatorname{cpt}(v)=\operatorname{cpt}(u)-1$ and $\forall w \in N(u) \backslash\{v\}, \operatorname{cpt}(w)=c p t(u)+1$
then accept
else reject
an assignment of the counter resulting in all nodes accept.
if G is has a cycle, then for every assignment of the counters, at least one node rejects.

Proof-Labeling Scheme

A distributed algorithm A verifies ϕ if and only if:

- $G \vDash \phi \Rightarrow \exists c: V(G) \rightarrow\{0,1\}^{*}:$ all nodes accept (G, c)
- $\mathrm{G} \neq \varnothing \Rightarrow \forall \mathrm{c}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1\}^{*}$ at least one node rejects (G, c)

The bit-string $c(u)$ is called the certificate for u (cf. class NP)
Objective: Algorithms in $O(1)$ rounds (ideally, just 1 round in LOCAL) Examples:

- Cycle-freeness: $c(u)=\operatorname{dista}_{G}(u, r) \rightleftharpoons O(\log n)$ bits
- Spanning tree: $c(u)=(\operatorname{distg}(u, r), I D(r))$

Measure of complexity: $\max _{u \in V(G)}|c(u)|$

Application: Fault-Tolerance

construction algorithm

Example: Self-stabilization

solution

fault

Universal PLS

Question 2. Show that, for any (decidable) graph property ϕ, there exists a PLS for ϕ, with certificates of size $O\left(n^{2}\right)$ bits in n-node graphs.

Universal PLS

Theorem For any (decidable) graph property ϕ, there exists a PLS for ϕ, with certificates of size $O\left(n^{2}\right)$ bits in n node graphs.

Proof $c(u)=(M, x)$ where

- $\mathrm{M}=$ adjacency matrix of G
- $x=$ table[1..n] with $x(i)=I D(n o d e$ with index $i)$

Verification algorithm:

1. check local consistency of M using x
2. if no inconsistencies, check whether M satisfies ϕ

G satisfies \Longleftrightarrow both tests are passed

Lower bound

Question 3. Show that there exists a graph property for which any PLS has certificates of size $\Omega\left(n^{2}\right)$ bits.

Lower bound

Theorem There exists a graph property for which any PLS has certificates of size $\Omega\left(n^{2}\right)$ bits.

Proof Graph automorphism $=$ bijection $f: V(G) \rightarrow V(G)$ such that $\{u, v\} \in E(G) \Longleftrightarrow\{f(u), f(v)\} \in E(G)$
Fact There are $\geq 2^{\varepsilon n^{2}}$ graphs with no non-trivial auto.
If certificates on $<\varepsilon n^{2} / 3$ bits, then $\exists i \neq j$ such that the three nodes $\mathrm{O} O$ o have same certificates on $\mathrm{G}_{\mathrm{i}}-\mathrm{G}_{\mathrm{i}}$ and $\mathrm{G}_{\mathrm{i}} \mathrm{G}_{\mathrm{i}}$.

Local hierarchy

- Equivalent of, e.g., polynomial hierarchy in complexity theory
- $\{$ locally decidable properties $\}=\Sigma_{0}=\Pi_{0}$
- $\{$ locally verifiable properties (with PLS) $\}=\Sigma 1$

Deciding graph property ϕ is in $\Sigma \uparrow$ if and only if:

- $G \vDash \phi \Rightarrow \exists c$ all nodes accept (G,c)
- $G \not \vDash \phi \Rightarrow \forall c$ at least one node rejects (G, c)

Deciding graph property ϕ is in Π_{1} if and only if:

- $G \vDash \phi \Rightarrow \forall c$ all nodes accept (G, c)
- $G \not \approx \phi \Rightarrow \exists$ c at least one node rejects (G,c)

The hierarchy $\left(\sum_{k}, \Pi_{k}\right)_{k \geq 0}$

Deciding graph property ϕ is in Σ_{2} if and only if:

- $G \vDash \phi \Rightarrow \exists C_{1} \forall C_{2}$ all nodes accept (G, C_{1}, C_{2})
- $G \not \vDash \phi \Rightarrow \forall C_{1} \exists C_{2}$ at least one node rejects (G, C_{1}, C_{2})

Deciding graph property ϕ is in Π_{2} if and only if:

- $G \vDash \phi \Rightarrow \forall C_{1} \exists c_{2}$ all nodes accept (G, C_{1}, C_{2})
- $G \not \vDash \phi \Rightarrow \exists C_{1} \forall C_{2}$ at least one node rejects (G, C_{1}, C_{2})

Deciding graph property ϕ is in Σ_{k} if and only if:

- $G \vDash \phi \Rightarrow \exists C_{1} \forall C_{2} \exists C_{3} \ldots Q c_{k}$ all nodes accept (G, C_{1}, \ldots, C_{k})
- $G \not \vDash \phi \Rightarrow \forall C_{1} \exists C_{2} \forall C_{1} \ldots \neg Q C_{k}$ at least one node rejects (G, C_{1}, \ldots, C_{k})

Deciding graph property ϕ is in Π_{k} if and only if:

- $G \vDash \phi \Rightarrow \forall C_{1} \exists C_{2} \forall C_{3} \ldots Q c_{k}$ all nodes accept (G, C_{1}, \ldots, c_{k})
- $G \not \vDash \phi \Rightarrow \exists C_{1} \forall C_{2} \exists C_{3} \ldots \neg Q C_{k}$ at least one node rejects (G, C_{1}, \ldots, C_{k})

Example: Minimum Dominating Set

Decision problem MinDS:

- input $=$ dominating set $\mathcal{D} \quad$ (i.e., $\mathcal{D}(u) \in\{0,1\})$
- output = accept if $|D|=$ mindom $D^{D}|\mathrm{D}|$

Question 4. Show that MinDS $\in \Pi_{2}$

Example: Minimum Dominating Set

Decision problem MinDS:

- input $=$ dominating set $\mathcal{D} \quad$ (i.e., $\mathcal{D}(\mathrm{u}) \in\{0,1\})$
- output = accept if $|D|=$ mindom D $|\mathrm{D}|$

Theorem MinDS $\in \Pi_{2}$

Proof

c_{1} encodes a dominating set, i.e., $c_{1}(u) \in\{0,1\}$
c2 encodes:

- a spanning tree Terr pointing to node u with error in c_{1} if any
- a spanning tree To for counting $|\mathcal{D}|$ ($\mathrm{w} /$ same root)
- a spanning tree T_{1} for counting $\left|\mathrm{c}_{1}\right|$ ($\mathrm{w} /$ same root)

Algorithm:

- If root u ses $\left|\mathrm{c}_{1}\right|<|\mathcal{D}|$ with no error, it rejects, otherwise it accepts
- If any node detects inconsistencies in $\mathrm{T}_{0}, \mathrm{~T}_{1}$ or $\mathrm{T}_{\text {err }}$ it rejects, otherwise it accepts.

Exercice 3

Randomized Protocols

[FKP, 2013]

- At most one selected (AMOS)

- Question 1. Show that there exists a randomized algorithm performing in a constant number of rounds for deciding AMOS.

Randomized Protocols

[FKP, 2013]

- At most one selected (AMOS)

- Decision algorithm (2-sided):
- let $p=(\sqrt{ } 5-1) / 2=0.61 \ldots$
- If not selected then accept
- If selected then accept w/ prob p, and reject w/ prob 1-p
- Issue with boosting! - But OK for 1-sided error

Distributed Interactive Protocols

[KOS, 2018]

- Arthur-Merlin Phase (no communication, only interactions)
- Verification Phase (only communications)
- Merlin has infinite communication power
- Arthur is randomized
- $\mathrm{k}=$ \#interactions
- dAM[k] or dMA[k]

Example: AMOS

- In BPLD with success prob $(\sqrt{ } 5-1) / 2=0.61 \ldots$
- $\ln \Sigma_{1} \mathrm{LD}(\mathrm{O}(\log \mathrm{n}))-\operatorname{Not}$ in $\Sigma_{1} \mathrm{LD}(\mathrm{o}(\log \mathrm{n}))$
- Not in dMA(o(log n)) for success prob > 4/5
- Question 2. Show that AMOS is in $\mathrm{dAM}(\mathrm{k})$ with k random bits, and success prob 1-1/2k

Example: AMOS

- In BPLD with success prob $(\sqrt{ } 5-1) / 2=0.61 \ldots$
- $\ln \Sigma_{1} \mathrm{LD}(\mathrm{O}(\log \mathrm{n}))-\operatorname{Not}$ in $\Sigma_{1} \mathrm{LD}(\mathrm{o}(\log \mathrm{n}))$
- Not in dMA(o(log n)) for success prob $>4 / 5$
- In dAM(k) with k random bits, and success prob 1-1/2k
- Arthur independently picks a k-bit index at each node u.a.r.
- Merlin answer \perp if no nodes selected, or the index of the selected node

Sequential setting

- For every $k \geq 2, A M[k]=A M$
- $M A \subseteq A M$ because $M A \subseteq M A M=A M[3]=A M$
- $\mathrm{MA} \in \Sigma_{2} \mathrm{P} \cap \Pi_{2} \mathrm{P}$
- $A M \in \Pi_{2} P$
- $\operatorname{AM}[p o l y(n)]=I P=$ PSPACE

Known results

[KOS 2018, NPY 2018]

- $\operatorname{Sym} \in \mathrm{dAM}(\mathrm{n} \log \mathrm{n})$
- $\operatorname{Sym} \in \mathrm{dMAM}(\log \mathrm{n})$
- Any dAM protocol for Sym requires Ω (loglog n)-bit certificates
- \neg Sym $\in \operatorname{dAMAM}(\log n)$
- Other results on graph non-isomorphism

Parameters

- Number of interactions between
- Size of $\underset{=}{\square}$
- Size of

- Number of random
- Shared vs distributed

Tradeoffs

[CFP, 2019]

- Theorem 1 For every c, there exists a Merlin-Arthur (dMA) protocol for triangle-freeness, using $\mathrm{O}(\log \mathrm{n})$ bits of shared randomness, with Õ(n/c)-bit certificates and Õ(c)-bit messages between nodes.
- Theorem 2 There exists a graph property admitting a proof-labeling scheme with certificates and messages on $\mathrm{O}(\mathrm{n})$ bits, that cannot be solved by an Arthur-Merlin (dAM) protocol with certificates on o(n) bits, for any fixed number $\mathrm{k} \geq 0$ of interactions between Arthur and Merlin, even using shared randomness, and even with messages of unbounded size.

