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Problem #1: Bounding Congestion Approximators

Let G = (V,E, u) be a capacitated graph with u ∈ RE≥0 and let OPT(d) = minB>f=d ‖U−1f‖∞ for
U = diag(u). Prove thatR ∈ Rk×n is an α-congestion approximator for G if and only if OPT(d) ≤ α·‖Rd‖∞
for all d ∈ Rn and ‖RB>U‖∞ ≤ 1.

Note: this shows that the conditions given in the lecture notes regarding congestion approximators were
redundant and is related to [3].

Problem #2: Optimal Congestion Approximator

Let G = (V,E, u) be a capacitated, connected graph with u ∈ RE≥0 and let OPT(d) = minB>f=d ‖U−1f‖∞
for U def

= diag(u).

• Part (a): for d ∈ RV and all S ⊆ V let dS
def
=

∑
i∈[S] di and uS

def
=

∑
{a,b}∈E|a∈S,b/∈S u{a,b}. Show that

OPT(d)−1 = minS⊆V | dS 6=0
uS

|dS | .

• Part (b): Prove that there exists a 1-congestion approximator R ∈ Rk×n for G.

Note: this problem is related to [3].

Problem #3: Eulerian Graphs

Provide an algorithm which given any capacitated, Eulerian, directed graph G = (V,E, u) and s, t ∈ V
computes a (1− ε)-approximate maximum s-t flow in time Õ(|E|ε−1).

Note: G is Eulerian if and only if for all for all a ∈ V it is the case that
∑

(a,b)∈E u(a,b) =
∑

(b,a)∈E u(b,a).
This problem is related to [2].
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Problem #4: `∞-regularization difficulty

Prove that if r : Bn∞ → R is 1-strongly convex with respect ‖ · ‖∞ then for some universal constant c > 0.

sup
x∈Bn

∞

r(x)− inf
x∈Bn

∞
r(x) ≥ cn .

Note: this result was discussed and proved formally in [4].

Problem #5: `2-`1-Games

Provide an algorithm which given any A ∈ Rm×n, b ∈ Rn, c ∈ Rm can compute an ε-additive approximation
to the problem

min
x∈Rn|‖x‖2≤1

max
y∈∆m

y>Ax+ c>x− b>y

in time Õ(nnz(A)Lε−1) where L is the maximum `2-norm of any row of A.

Hint: you may use without proof that for any f : χ → R that is L-smooth (with respect to `2) and con-
vex and any closed, convex χ accelerated gradient descent can compute a point xk with f(xk)− infx∈χ f(x) =

O(
L‖xk−x∗‖22

k2 ) where x∗ ∈ argminx∈χf(x) in the time needed to compute k gradients of f and perform k
Euclidean projections onto χ.

Problem #6: Minimum Cost Transshipment

In the minimum cost transshipment problem we are given undirected G = (V,E), weights w ∈ RE>0,
and demands d ∈ RV . The problem is to compute OPT(d)

def
= minf∈RE |B>f=d

∑
e∈E we|fe|. Provide

an algorithm which given R with nnz(R) = Õ(|E|) for which for some α = Õ(1) it is the case that
‖Rd‖1 ≤ OPT(d) ≤ α · ‖Rd‖1 computes f̃ with B>f̃ = d and

∑
e∈E we|fe| ≤ (1 + ε)OPT(d).

Note: This problem is related to [1] which in turn leverages prior work in this area.
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