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Gradient Descent for Function Minimization

= xt — me(X’) small step in direction of the negative gradient

= argmin { f(x") + (VF(x"),x — x!) + LHx — x5
x 2nt

proximity term

= We approximate f by a quadratic function that passes
through (x!, f(x!)) and has the same gradient as f at x.

= We move to the minimizer of the quadratic function;

x"+1is the solution of V(x") + L(x — x') = 0.

= At x!*1, the gradient of the quadratic term is —Vf(x?)
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Gradient Descent

We are also interested in constrained optimization: C is a
convex subset of R”.

1 = argmin { fx) 4 (V1) x = X) + 1 [1x— X'}
xeC 2771

Why are we approximating by a homogeneous quadratic function?

Aren’t there other (better?) choices?
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Clearly, there are better Choices sometimes

Assume f is a quadratic function, i.e.,
f(x) = 3(x — x1)TQ(x — x') with Q positive semidefinite.

Then we should clearly approximate with the function itself.
Iteration becomes

x*1 = argmin {f(x’) + (VF(x'), x — x') + ZL(X —xHTQ(x — x*)
X

Uis
= x!' - Q'VF(xh)

Note that at x*': —Vf(x") = L Q(x"" — x").

With n; = 1, we would reach the minimum in one step.

If Qis a diagonal matrix with r = T8 > 1, GD is slow:
r log(1/¢) iterations.

Alejandro’s talk: Newton iteration, aH < A < 8H.

|
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Mirror descent: choose proximity term to fit problem geometry
Nemirowski & Yudin, 1983

= |ocal curvature of f
= geometry of the constraint set C

= computation of x"*! is efficient.
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Mirror Descent

Replace the quadratic term by a “distance function” D,,..

x"*1 = argmin {f(x’) + (VF(xY), x — x') + 1Dgp(x,x“)}
xeC nt
D,(x, 2) = ¢(x) = (¢(2) + (Ve(2), (x = 2))).
= D,(x, z) is distance from z to x with respect to ;
v is strongly convex and differentiable.
= Bregman divergence; Lev Bregman, 1967.

at x'*1 gradient of ;- D,(x, x') is equal to —V£(x").

= more generally,

x*1 = argmin {f(xt) + (gt x — xt) + 1Dgo(x,xt)}
xeC nt

with g! a subgradient of f at x!; g* € of(x?).
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Properties of Bregman Divergence

Dy(x,2) = o(x) = (¢(2) + (V(2), (x = 2))).

distance from z to x with respect to ¢; ¢ is strongly convex
and differentiable.

= D,(x,z) > 0 and equal to 0 only if x = z.
= VxDy(x,2) = Vo(x) — Vo(2).

= ingeneral D,(x,z) # D,(z, x).

= convex in x, in general not conxex in z.

= if Q= 0.and p(x) = x" Qx, then Dy(x,z) = 3(x — 2)TQ(x — 2).
So gradient descent is a special case (even with
non-homogeneous quadratic function).
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Kullback-Leibler Divergence

= directed distance between two probability distributions;
introduced in 1951.

= o(x) = ;Xilnx negative entropy
»forx,ze A = {x ERIy DX =1 } (probability simplex)

KL(x|z) = Zx, In(x;/z).
= Proof: Since (Vg(x)); = Inx; + 1

Dy (x,2) = o(x) = (p(2) + Ve(2)(x - 2))

= Zx,lnx, ZZ'I”Z'_Z Inzi+1)(xi — z)
= Zx,ln(x,/z,) — ZX, +ZZ:
= ZXHH(X,’/Z,‘ .

planck institut

8

i
‘



The Update Rule for Mirror Descent with KL
Divergence in Probability Simplex

X1 = arg min {f(xt) + (VF(xY),x — x!) + 1KL(x||x1’)}
XEA it

KL(xIx) =" xiIn(xi/x)

At xt+1, gradient of objective must be parallel to normal of A
(the all-ones vector), i.e., there must be an « such that for all /
with x ™" ¢ {0,1}

1
(VF(xhH)i + ” [In(xil‘ﬂ/xit) +xH X xE 1/Xit] o
and hence x/ ™" /x! = exp(—n:(VF(x")); + nra — 1) or

xI = xlexp(—ni(VF(x'));)/C for some constant C.

Since x'*1 € A, C =3 x exp(—ni(VF(x!)))).
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Alternative View of Mirror Descent.

= Bregman projection of x onto C

Pc,o(x) = argmin D,(z, x)
zeC

the point z € C closest to x with respect to D,.
= Unconstrained mirror descent

x"*1 = argmin {f(xt) + (VF(xY), x — x) + ;Dw(x,x’)}
X t
Vo (x*1) = Ve(x") — nVF(x")
= Alternative view of constrained mirror descent

Ve(y™) = Ve(x") — nV(x")

X =P (v = arg ngin D, (x,y"™)
Xe

Unconstained step followed by Bregman projection onto C.
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Proof of Equivalence

x*1 = argmin {f(xt) + (VA(x'), x = x") + 1D¢(X7X[)}
xeC it

Optimality condition: Negative gradient of {...} in normal cone
of C at x!*1.

- (Vf(xt) + ;t(Vgo(XtH) — Vgp(xt))> e Ne(xt*).

Vo(y™) = V(x!) — nVE(x")
X =P (v = arg rgin D,(x,y"™™)
Xe

Optimality condition: negative gradient of D<p(x,yf+1) in normal
cone at x*1,

— (V) = Veyt) ) € Ne(x).

Optimality conditions are identical.
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A Second Reformulation (= the Original by
Nemirovski & Yudin, 1983)

Assume C = R”" for simplicity. Then
X = Vet ((Ve(x') — neVi(xh),
where ¢* is the Fenchel-conjugate of .

" (y) = Sgp[<27 x) — ¢(2)]
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Convergence of Mirror Descent to min,cc f(x)

Il ll, a norm

Assume f is convex and L-Lipschitz.

Assume g is p-strongly convex wrt. || ||.

Run mirror descent for t steps starting at x%: x°, x', ..., x’.
Let 26541 = ming<j<; f(x') and R = supyee Dy(x, xO).

Then

L 2
best,t _ fopt R+ 2p 20§k<t77k
f foPt <
20§k<t Nk

HITULEY
in t




Lipschitz Continuity, and Strong Convexity

= fis convex:
f(y) = f(x) + (V) T,y — x).

= pis p-strongly convex wrt. || ||, i.e.,

2 (X) > 0(y) + (Vely), x = y) + Slx =yl

» fis L-Lipschitz:

FO) =W < L-[lx =yl




Convergence of Mirror Descent to min,cc f(x)

Il ll, a norm

Assume f is convex and L-Lipschitz.

Assume ¢ is p-strongly convex wrt. a norm || ||.

Run mirror descent for t steps starting at x%: x°, x', ..., x’.
Let 26541 = ming<j<; f(x') and R = supyee Dy(x, xO).

Then

L 2
best,t _ fopt R+ 2p 20§k<t77k
f foPt <
20§k<t Nk

HITULEY
in t




Gradient vs Mirror over the Probability Simplex

= C = A (probability simplex) and x° = n='1.
" p(x) = %||x|\§ is 1-strongly convex w.r.t. || ||2.
* R = supyea Dy(X,X%) < 1/2and Ly = supyep || VF(X)| 2.

= Then

1
fbest,t - fopt < Lf72 L

Vit

= o(x) =Y ; xiInx; is 1-strongly convex w.r.t. || |1.

* R = supyea KL(X|X%) = supyea S XiInx; — 2 Xi In 15 <
0+Inn.

" Ltoo = supxea [[V1]co-

* Then
fbest,t - fopt < Lf . L

Vi

= Since || [[oo < || 2 < V1| |loo, MD is often much better.
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Robust Regression (taken from Stanford EE364B)

= minimize ||Ax — bll1 = Y << @] X — bj| subject to x € A.
» Subgradient of objective is g = Z1§,§msign(a,7x — bj)a;.
» Projected subgradient update (¢(x) = || x||3) is:

Let y"*1 = x! + nig'. Then x'+1 = argmin,, [|X — y 2.

Let z € R" be the orthogonal projection of y!*! onto
hyperplane 17z = 1.

Then x/*! = see drawing

= Mirror descent update (¢(x) = >_; xiIn x;) is (see slide 9):

(i Xee(omg))
: > X! exp(—negf)
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Slide 17 from Stanford EE364B

Robust regression problem with a; ~ N(0, I,,x») and

bi = (aiyl + ai72)/2 + E; where E; ~ N(O, 10_2), m = 20,71 = 3000

— Entropy
— Gradient

0 10 20 30 40 50 60

solution is close to xy =~ 1/2, xo =~ 1/2.

What they call k, we call t.
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