Solving Linear and Integer Programs

Robert E. Bixby
ILOG, Inc. and Rice University

Ed Rothberg
ILOG, Inc.

Outline

- **Linear Programming:** Bob Bixby
 - Example and introduction to basic LP, including duality
 - Primal and dual simplex algorithms
 - Computational progress in linear programming
 - Implementing the dual simplex algorithm

- **Mixed-Integer Programming:** Ed Rothberg
Diet Problem*

Bob wants to plan a nutritious diet, but he is on a limited budget, so he wants to spend as little money as possible. His nutritional requirements are as follows:

1. 2000 kcal
2. 55 g protein
3. 800 mg calcium

* From Linear Programming, by Vašek Chvátal
Diet Problem

Nutritional values

Bob is considering the following foods:

<table>
<thead>
<tr>
<th>Food</th>
<th>Serving Size</th>
<th>Energy (kcal)</th>
<th>Protein (g)</th>
<th>Calcium (mg)</th>
<th>Price per serving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oatmeal</td>
<td>28 g</td>
<td>110</td>
<td>4</td>
<td>2</td>
<td>$0.30</td>
</tr>
<tr>
<td>Chicken</td>
<td>100 g</td>
<td>205</td>
<td>32</td>
<td>12</td>
<td>$2.40</td>
</tr>
<tr>
<td>Eggs</td>
<td>2 large</td>
<td>160</td>
<td>13</td>
<td>54</td>
<td>$1.30</td>
</tr>
<tr>
<td>Whole milk</td>
<td>237 cc</td>
<td>160</td>
<td>6</td>
<td>285</td>
<td>$0.90</td>
</tr>
<tr>
<td>Cherry pie</td>
<td>170 g</td>
<td>420</td>
<td>4</td>
<td>22</td>
<td>$0.20</td>
</tr>
<tr>
<td>Pork and beans</td>
<td>260 g</td>
<td>260</td>
<td>14</td>
<td>80</td>
<td>$1.90</td>
</tr>
</tbody>
</table>

Variables

We can represent the number of servings of each type of food in the diet by the variables:

\[x_1 \text{ servings of oatmeal} \]
\[x_2 \text{ servings of chicken} \]
\[x_3 \text{ servings of eggs} \]
\[x_4 \text{ servings of milk} \]
\[x_5 \text{ servings of cherry pie} \]
\[x_6 \text{ servings of pork and beans} \]
Diet Problem

Nutritional values

Bob is considering the following foods:

<table>
<thead>
<tr>
<th>Food</th>
<th>Serving Size</th>
<th>Energy (kcal)</th>
<th>Protein (g)</th>
<th>Calcium (mg)</th>
<th>Price per serving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oatmeal</td>
<td>28 g</td>
<td>110</td>
<td>4</td>
<td>2</td>
<td>$0.30</td>
</tr>
<tr>
<td>Chicken</td>
<td>100 g</td>
<td>205</td>
<td>32</td>
<td>12</td>
<td>$2.40</td>
</tr>
<tr>
<td>Eggs</td>
<td>2 large</td>
<td>160</td>
<td>13</td>
<td>54</td>
<td>$1.30</td>
</tr>
<tr>
<td>Whole milk</td>
<td>237 cc</td>
<td>160</td>
<td>8</td>
<td>285</td>
<td>$0.90</td>
</tr>
<tr>
<td>Cherry pie</td>
<td>170 g</td>
<td>420</td>
<td>4</td>
<td>24</td>
<td>$2.00</td>
</tr>
<tr>
<td>Pork and beans</td>
<td>260 g</td>
<td>260</td>
<td>14</td>
<td>80</td>
<td>$1.90</td>
</tr>
</tbody>
</table>

KCAL constraint:

\[110x_1 + 205x_2 + 160x_3 + 160x_4 + 420x_5 + 260x_6 \geq 2000\]

\[(110x_1 = \text{kcals in oatmeal})\]

Diet Problem

LP formulation

Minimize **Cost**

\[0.3x_1 + 2.40x_2 + 1.30x_3 + 0.90x_4 + 2.0x_5 + 1.9x_6\]

subject to: **Nutritional requirements**

\[110x_1 + 205x_2 + 160x_3 + 160x_4 + 420x_5 + 260x_6 \geq 2000\]

\[4x_1 + 32x_2 + 13x_3 + 8x_4 + 4x_5 + 14x_6 \geq 55\]

\[2x_1 + 12x_2 + 54x_3 + 285x_4 + 22x_5 + 80x_6 \geq 800\]

Bounds

\[x_1, x_2, x_3, x_4, x_5, x_6 \geq 0\]
Solution

When we solve the preceding LP (using CPLEX, of course) we get a solution value of $6.71, which is achieved with the following menu:

14.24 servings of oatmeal
 0 servings of chicken
 0 servings of eggs
2.71 servings of milk
 0 servings of cherry pie
 0 servings of pork and beans

Some Basic Theory
Linear Program – Definition

A linear program (LP) in standard form is an optimization problem of the form

\[
\begin{align*}
 \text{Minimize} & \quad c^T x \\
 \text{Subject to} & \quad Ax = b \\
 & \quad x \geq 0
\end{align*}
\]

(P)

Where \(c \in \mathbb{R}^n \), \(b \in \mathbb{R}^m \), \(A \in \mathbb{R}^{m \times n} \), and \(x \) is a vector of \(n \) variables. \(c^T x \) is known as the objective function, \(Ax = b \) as the constraints, and \(x \geq 0 \) as the nonnegativity conditions. \(b \) is called the right-hand side.

Dual Linear Program – Definition

The dual (or adjoint) linear program corresponding to (P) is the optimization problem

\[
\begin{align*}
 \text{Maximize} & \quad b^T \pi \\
 \text{Subject to} & \quad A^T \pi \leq c \\
 & \quad \pi \text{ free}
\end{align*}
\]

(D)

In this context, (P) is referred to as the primal linear program.
Weak Duality Theorem
(von Neumann 1947)

Let \(x \) be feasible for (P) and \(\pi \) feasible for (D). Then

\[
\begin{align*}
\text{Maximize} & \quad b^T \pi \\
\text{Minimize} & \quad c^T x
\end{align*}
\]

If \(b^T \pi = c^T x \), then \(x \) is optimal for (P) and \(\pi \) is optimal for (D); moreover, if either (P) or (D) is unbounded, then the other problem is infeasible.

Proof:

\[
\begin{align*}
\pi^T b & = \pi^T Ax \\
& \leq c^T x
\end{align*}
\]

\[
\begin{align*}
Ax & = b \\
\pi^T A & \leq c^T & x \geq 0
\end{align*}
\]

Solving Linear Programs

- **Three types of algorithms are available**
 - Primal simplex algorithms (Dantzig 1947)
 - Dual simplex algorithms (Lemke 1954)
 - Developed in context of game theory
 - Primal-dual log barrier algorithms
 - Interior-point algorithms (Karmarkar 1989)
 - Reference: Primal-Dual Interior Point Methods, S. Wright, 1997, SIAM

Primary focus: Dual simplex algorithms
Basic Solutions – Definition

Let B be an ordered set of m distinct indices $(B_1, ..., B_m)$ taken from $\{1, ..., n\}$. B is called a basis for (P) if A_B is nonsingular. The variables x_B are known as the basic variables and the variables x_N as the non-basic variables, where $N = \{1, ..., n\} \setminus B$. The corresponding basic solution $X \in \mathbb{R}^n$ is given by $X_N = 0$ and $X_B = A_B^{-1} b$. B is called (primal) feasible if $X_B \geq 0$.

Note: $AX = b \Rightarrow A_BX_B + A_NX_N = b \Rightarrow A_BX_B = b \Rightarrow X_B = A_B^{-1} b$

Primal Simplex Algorithm

(Dantzig, 1947)

Input: A feasible basis B and vectors $X_B = A_B^{-1} b$ and $D_N = c_N - A_N^T c_B$.

- **Step 1**: (Pricing) If $D_N \geq 0$, stop, B is optimal; else let $j = \text{argmin}\{D_k : k \in N\}$.

- **Step 2**: (FTRAN) Solve $A_By = A_j$.

- **Step 3**: (Ratio test) If $y \leq 0$, stop, (P) is unbounded; else, let $i = \text{argmin}\{X_{Bi}/y_i : y_i > 0\}$.

- **Step 4**: (BTRAN) Solve $A_B^T z = e_i$.

- **Step 5**: (Update) Compute $\alpha_i = -A_i^T z$. Let $B_i = j$. Update X_B (using y) and D_N (using α_i).

Note: x_j is called the entering variable and x_{Bi} the leaving variable. The D_N values are known as reduced costs - like partial derivatives of the objective function relative to the nonbasic variables.
Dual Simple Algorithm – Setup

Simplex algorithms apply to problems with constraints in equality form. We convert (D) to this form by adding the dual slacks d:

\[
\begin{align*}
\text{Maximize} & \quad b^T \pi \\
\text{Subject to} & \quad A^T \pi + d = c \\
& \quad \pi \text{ free, } d \geq 0 \iff A^T \pi \leq c
\end{align*}
\]

Given a basis B, the corresponding dual basic solution Π, D is determined as follows:

\[
D_B=0 \quad \Rightarrow \quad \Pi = A_B^T c_B \quad \Rightarrow \quad D_N = c_N - A_N^T \Pi.
\]

B is dual feasible if $D_N \geq 0$.
An Important Fact

If X and Π,D are the respective primal and dual basic solutions determined by a basis B, then

$$\Pi^Tb = c^TX.$$

Hence, by weak duality, if B is both primal and dual feasible, then X is optimal for (P) and Π is optimal for (D).

Proof: $c^TX = c_B^TX_B$ (since $X_N=0$)

$$= \Pi^T A^B X_B$$ (since $\Pi = A_B^{-T}c_B$)

$$= \Pi^T b$$ (since $A_B X_B = b$)

Dual Simplex Algorithm

(Lemke, 1954)

Input: A dual feasible basis B and vectors

$$X_B = A_B^{-1}b \quad \text{and} \quad D_N = c_N - A_N^T B^{-T} c_B.$$

- **Step 1:** (Pricing) If $X_B \geq 0$, stop, B is optimal; else let

 $$i = \arg\min\{X_{B_k} : k \in \{1, \ldots, m\}\}.$$

- **Step 2:** (BTRAN) Solve $B^T z = e_r$. Compute $\alpha_N = -A_N^T z$.

- **Step 3:** (Ratio test) If $\alpha_N \leq 0$, stop, (D) is unbounded; else, let

 $$j = \arg\min\{D_k / \alpha_k : \alpha_k > 0\}.$$

- **Step 4:** (FTRAN) Solve $A_B y = A_j$.

- **Step 5:** (Update) Set $B_i = j$. Update X_B (using y) and D_N (using α_N)

Note: d_{Bi} is the entering variable and d_j is the leaving variable. (Expressed in terms of the primal: x_{Bi} is the leaving variable and x_j is the entering variable)
Simplex Algorithms

Input: A primal feasible basis B and vectors $X_B = A_B^{-1}b$ & $D_N = c_N - A_N^T A_B^{-1} e_B$.

- **Step 1:** (Pricing) If $D_N \geq 0$, stop; B is optimal; else, let $j = \arg\min\{D_k : k \in N\}$.
- **Step 2:** (FTRAN) Solve $A_B y = A_j$.
- **Step 3:** (Ratio test) If $y \leq 0$, stop, (P) is unbounded; else, let $i = \arg\min\{X_B k : k \in \{1, \ldots, m\} \}$.
- **Step 4:** (BTRAN) Solve $A_N^T z = e_i$. Compute $\alpha_N = -A_N^T z$.
- **Step 5:** (Update) Compute $\alpha_N = -A_N^T z$. Let $B = B_j$. Update X_B (using y) and D_N (using α_N)

Input: A dual feasible basis B and vectors $X_B = A_B^{-1}b$ & $D_N = c_N - A_N^T A_B^{-1} e_B$.

- **Step 1:** (Pricing) If $X_B \geq 0$, stop, B is optimal; else, let $i = \arg\min\{X_B k : k \in \{1, \ldots, m\} \}$.
- **Step 2:** (BTRAN) Solve $A_B^T z = e_i$. Compute $\alpha_N = -A_N^T z$.
- **Step 3:** (Ratio test) If $\alpha_i \leq 0$, stop, (D) is unbounded; else, let $j = \arg\min\{D_k / \alpha_k : \alpha_k > 0 \}$.
- **Step 4:** (FTRAN) Solve $A_B^T v = A_j$.
- **Step 5:** (Update) Set $B = B_i$. Update X_B (using y) and D_N (using α_N)

Correctness: Dual Simplex Algorithm

- **Termination criteria**
 - Optimality *(DONE – by “An Important Fact” !!!)*
 - Unboundedness
- **Other issues**
 - Finding starting dual feasible basis, or showing that no feasible solution exists
 - Input conditions are preserved (i.e., that B is still a feasible basis)
 - Finiteness
Summary:
What we have done and what we have to do

- **Done**
 - Defined primal and dual linear programs
 - Proved the weak duality theorem
 - Introduced the concept of a basis
 - Stated primal and dual simplex algorithms

- **To do (for dual simplex algorithm)**
 - Show correctness
 - Describe key implementation ideas
 - Motivate

Dual Unboundedness
(⇒ primal infeasible)

- We carry out a key calculation
- As noted earlier, in an iteration of the dual

\[d_{B_i} \text{ enters basis } \quad d_j \text{ leaves basis} \]

in

\[
\begin{align*}
\text{Maximize} & \quad b^T \pi \\
\text{Subject to} & \quad A^T \pi + d = c \\
\pi \text{ free, } d & \geq 0
\end{align*}
\]

- **The idea:** Currently \(d_{B_i} = 0 \), and \(X_{B_i} < 0 \) has motivated us to increase \(d_{B_i} \) to \(\theta > 0 \), leaving the other components of \(d \) at 0 (the object being to increase the objective). Letting \(d, \pi \) be the corresponding dual solution as a function of \(\theta \), we obtain

\[
\begin{align*}
d_B &= \theta e_i \\
d_N &= D_N - \theta \alpha_N \\
\pi &= \pi - \theta z,
\end{align*}
\]

where \(\alpha_N \) and \(z \) are as computed in the algorithm.
(Dual Unboundedness – cont.)

- Letting \(d, \pi \) be the corresponding dual solution as a function of \(\theta \). Using \(\alpha_N \) and \(z \) from dual algorithm,
 \[
 d_B = \theta e_i, \quad d_N = D_N - \theta \alpha_N, \quad \pi = \pi - \theta z.
 \]

- Using \(\theta > 0 \) and \(X_{Bi} < 0 \) yields
 \[
 \text{new_objective} = \pi^T b = (\pi - \theta z)^T b
 \]
 \[
 = \pi^T b - \theta X_{Bi}
 \]
 \[
 = \text{old_objective} - \theta X_{Bi} > \text{old_objective}
 \]

- **Conclusion 1:** If \(\alpha_N \leq 0 \), then \(d_N \geq 0 \) \(\forall \theta > 0 \) \(\Rightarrow \) (D) is unbounded.

- **Conclusion 2:** If \(\alpha_N \) not \(\leq 0 \), then
 \[
 d_N \geq 0 \Rightarrow \theta \leq D_j/\alpha_j \ \forall \ \alpha_j > 0
 \]
 \[
 \Rightarrow \theta_{\text{max}} = \min\{D_j/\alpha_j: \alpha_j > 0\}
 \]

(Dual Unboundedness – cont.)

- **Finiteness:** If \(D_B > 0 \) for all dual feasible bases \(B \), then the dual simplex method is finite: The dual objective strictly increases at each iteration \(\Rightarrow \) no basis repeats, and there are a finite number of bases.

- There are various approaches to guaranteeing finiteness in general:
 - **Bland’s Rules:** Purely combinatorial, bad in practice.
 - **CPLEX:** A perturbation is introduced to guarantee \(D_B > 0 \).
Graphical Interpretation of Simplex Algorithms

A Graphical Solution

Maximize $0.90x + 0.73y$ [OBJECTIVE]
Subject To
Constraint 1: $0.42x + 0.07y \leq 4200000$
Constraint 2: $0.13x + 0.39y \leq 3900000$
Constraint 3: $0.35x + 0.44y \leq 7000000$
$x \geq 0$
y \geq 0

Objective = $0.9 \times 0.882 + 0.73 \times 0.706$
= 13.1 million

Feasible Solutions

(0,0) (0,1) (0,1.5) (0,6)
(1,0) (2,0) (3,0) (0.882,0.706)
A graphical representation

We now look at a graphical representation of the simplex method as it solves the following problem:

Maximize \[3x_1 + 2x_2 + 2x_3 \]
Subject to \[
\begin{align*}
x_1 + x_3 & \leq 8 \\
x_1 + x_2 & \leq 7 \\
x_1 + 2x_2 & \leq 12 \\
x_1, x_2, x_3 & \geq 0
\end{align*}
\]

The Primal Simplex Algorithm

Add slacks: Initial basis \(B = (4,5,6) \)
Maximize \[z = 3x_1 + 2x_2 + 2x_3 \]
Subject to \[
\begin{align*}
x_1 + x_3 + x_4 & = 8 \\
x_1 + x_2 + x_5 & = 7 \\
x_1 + 2x_2 + x_6 & = 12 \\
x_1, x_2, x_3, x_4, x_5, x_6 & \geq 0
\end{align*}
\]

Optimal!

\(x_1 \) enters, \(x_1 \) leaves basis
\[D_j = \text{rate of change of } z \text{ relative to } x_j = 21/7 = 3 \]
“A certain wide class of practical problems appears to be just beyond the range of modern computing machinery. These problems occur in everyday life; they run the gamut from some very simple situations that confront an individual to those connected with the national economy as a whole. Typically, these problems involve a complex of different activities in which one wishes to know which activities to emphasize in order to carry out desired objectives under known limitations.”

George B. Dantzig, 1948
Application of LP & MIP - I

- **Transportation-airlines**
 - Fleet assignment
 - Crew scheduling
 - Ground personnel scheduling
 - Yield management
 - Fuel allocation
 - Passenger mix
 - Booking control
 - Maintenance scheduling
 - Load balancing/freight packing
 - Airport traffic planning
 - Gate scheduling/assignment
 - Upset recover and management

- **Transportation-other**
 - Vehicle routing
 - Freight vehicle scheduling and assignment
 - Depot/warehouse location
 - Freight vehicle packing
 - Public transportation system operation
 - Rental car fleet management

- **Process industries**
 - Plant production scheduling and logistics
 - Capacity expansion planning
 - Pipeline transportation planning
 - Gasoline and chemical blending

Application of LP & MIP - II

- **Financial**
 - Portfolio selection and optimization
 - Cash management
 - Synthetic option development
 - Lease analysis
 - Capital budgeting and rationing
 - Bank financial planning
 - Accounting allocations
 - Securities industry surveillance
 - Audit staff planning
 - Assets/liabilities management
 - Unit costing
 - Financial valuation
 - Bank shift scheduling
 - Consumer credit delinquency management
 - Check clearing systems
 - Municipal bond bidding
 - Stock exchange operations
 - Debt financing

- **Manufacturing**
 - Product mix planning
 - Blending
 - Manufacturing scheduling
 - Inventory management
 - Job scheduling
 - Personnel scheduling
 - Maintenance scheduling and planning
 - Steel production scheduling

- **Coal Industry**
 - Coal sourcing/transportation logistics
 - Coal blending
 - Mining operations management

- **Forestry**
 - Forest land management
 - Forest valuation models
 - Planting and harvesting models
Application of LP & MIP - III

- Agriculture
 - Production planning
 - Farm land management
 - Agricultural pricing models
 - Crop and product mix decision models
 - Product distribution

- Public utilities and natural resources
 - Electric power distribution
 - Power generator scheduling
 - Power tariff rate determination
 - Natural gas distribution planning
 - Natural gas pipeline transportation
 - Water resource management
 - Alternative water supply evaluation
 - Water reservoir management
 - Public water transportation models
 - Mining excavation models

- Oil and gas exploration and production
 - Oil and gas production scheduling
 - Natural gas transportation scheduling

- Communications and computing
 - Circuit board (VLSI) layout
 - Logical circuit design
 - Magnetic field design
 - Complex computer graphics
 - Curve fitting
 - Virtual reality systems
 - Computer system capacity planning
 - Office automation
 - Multiprocessor scheduling
 - Telecommunications scheduling
 - Telephone operator scheduling
 - Telemarketing site selection

Application of LP & MIP - IV

- Food processing
 - Food blending
 - Recipe optimization
 - Food transportation logistics
 - Food manufacturing logistics and scheduling

- Health care
 - Hospital staff scheduling
 - Hospital layout
 - Health cost reimbursement
 - Ambulance scheduling
 - Radiation exposure models

- Pulp and paper industry
 - Inventory planning
 - Trim loss minimization
 - Waste water recycling
 - Transportation planning

- Textile industry
 - Pattern layout and cutting optimization
 - Production scheduling

- Government and military
 - Post office scheduling and planning
 - Military logistics
 - Target assignment
 - Missile detection
 - Manpower deployment

- Miscellaneous applications
 - Advertising mix/media scheduling
 - Pollution control models
 - Sales region definition
 - Sales force deployment
LP History

- **George Dantzig, 1947**
 - Introduced LP and recognized it as more than a conceptual tool: Computing answers important.
 - Invented “primal” simplex algorithm.
 - First LP solved: Laderman, 9 cons., 77 vars., 120 MAN-DAYS.

- **First computer code – 1951**

- **LP used commercially – Early 60s**

- **Powerful mainframe codes introduced – Early 70s**

- **Computational progress stagnated – Mid 80s**

- **Remarkable progress last 15 years (PCs, new computer science and mathematics)**
 - We now have three algorithms: Primal & Dual Simplex, Barrier

Example: A Production Planning Model

- 401,640 constraints 1,584,000 variables

Solution time line (2.0 GHz P4):

- 1988 (CPLEX 1.0): Houston, 13 Nov 2002
Example: A Production Planning Model
401,640 constraints 1,584,000 variables

Solution time line (2.0 GHz P4):

- 1988 (CPLEX 1.0): 8.0 days (Berlin, 21 Nov)

Example: A Production Planning Model
401,640 constraints 1,584,000 variables

Solution time line (2.0 GHz P4):

- 1988 (CPLEX 1.0): 15.0 days (Dagstuhl, 28 Nov)
Example: A Production Planning Model
401,640 constraints 1,584,000 variables

Solution time line (2.0 GHz P4):
- 1988 (CPLEX 1.0): 19.0 days (Amsterdam, 2 Dec)
Example: A Production Planning Model
401,640 constraints 1,584,000 variables

Solution time line (2.0 GHz P4):

- 1988 (CPLEX 1.0): 29.8 days
- 1997 (CPLEX 5.0): 1.5 hours
- 2002 (CPLEX 8.0): 86.7 seconds
- 2003 (February): 59.1 seconds

Speedup: >43500x

BIG TEST: The testing methodology

- Not possible for one test to cover 10+ years: Combined several tests.
- The biggest single test:
 - Assembled 680 real LPs
 - Test runs: Using a time limit (4 days per LP) two chosen methods would be compared as follows:
 - Run method 1: Generate 680 solve times
 - Run method 2: Generate 680 solve times
 - Compute 680 ratios and form GEOMETRIC MEAN (not arithmetic mean!)
<table>
<thead>
<tr>
<th>Model</th>
<th>Rows</th>
<th>Cols</th>
<th>NZs</th>
<th>Model</th>
<th>Rows</th>
<th>Cols</th>
<th>NZs</th>
<th>Model</th>
<th>Rows</th>
<th>Cols</th>
<th>NZs</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>16229</td>
<td>28586</td>
<td>86340</td>
<td>M27</td>
<td>30190</td>
<td>57000</td>
<td>623730</td>
<td>M38</td>
<td>33707</td>
<td>23272</td>
<td>62940</td>
</tr>
<tr>
<td>M2</td>
<td>16768</td>
<td>38474</td>
<td>203112</td>
<td>M28</td>
<td>33440</td>
<td>58624</td>
<td>161831</td>
<td>M39</td>
<td>99788</td>
<td>32604</td>
<td>320273</td>
</tr>
<tr>
<td>M3</td>
<td>17881</td>
<td>161588</td>
<td>66273</td>
<td>M40</td>
<td>34984</td>
<td>87510</td>
<td>208719</td>
<td>M41</td>
<td>100127</td>
<td>154099</td>
<td>358171</td>
</tr>
<tr>
<td>M4</td>
<td>18282</td>
<td>23211</td>
<td>13624</td>
<td>M42</td>
<td>35519</td>
<td>43582</td>
<td>557466</td>
<td>M43</td>
<td>110350</td>
<td>112555</td>
<td>972586</td>
</tr>
<tr>
<td>M5</td>
<td>19123</td>
<td>53490</td>
<td>77965</td>
<td>M44</td>
<td>35645</td>
<td>34775</td>
<td>206769</td>
<td>M45</td>
<td>122864</td>
<td>92988</td>
<td>495000</td>
</tr>
<tr>
<td>M6</td>
<td>19754</td>
<td>189070</td>
<td>532558</td>
<td>M46</td>
<td>36400</td>
<td>92678</td>
<td>246606</td>
<td>M47</td>
<td>125211</td>
<td>159109</td>
<td>497108</td>
</tr>
<tr>
<td>M7</td>
<td>19519</td>
<td>48522</td>
<td>124850</td>
<td>M48</td>
<td>38712</td>
<td>261709</td>
<td>1502819</td>
<td>M49</td>
<td>129181</td>
<td>497102</td>
<td>125706</td>
</tr>
<tr>
<td>M8</td>
<td>19944</td>
<td>55528</td>
<td>152625</td>
<td>M50</td>
<td>39661</td>
<td>125000</td>
<td>36129</td>
<td>M51</td>
<td>155265</td>
<td>377918</td>
<td>939199</td>
</tr>
<tr>
<td>M9</td>
<td>19989</td>
<td>65191</td>
<td>170589</td>
<td>M52</td>
<td>41340</td>
<td>61402</td>
<td>370830</td>
<td>M53</td>
<td>170147</td>
<td>382239</td>
<td>121486</td>
</tr>
<tr>
<td>M10</td>
<td>21309</td>
<td>115701</td>
<td>728432</td>
<td>M54</td>
<td>41344</td>
<td>163569</td>
<td>152834</td>
<td>M55</td>
<td>179806</td>
<td>707656</td>
<td>197014</td>
</tr>
<tr>
<td>M11</td>
<td>22513</td>
<td>98785</td>
<td>337476</td>
<td>M56</td>
<td>41356</td>
<td>79750</td>
<td>2115108</td>
<td>M57</td>
<td>189629</td>
<td>188867</td>
<td>278708</td>
</tr>
<tr>
<td>M12</td>
<td>22797</td>
<td>68656</td>
<td>17218</td>
<td>M58</td>
<td>43387</td>
<td>107164</td>
<td>189864</td>
<td>M59</td>
<td>196441</td>
<td>23712</td>
<td>39736</td>
</tr>
<tr>
<td>M13</td>
<td>23610</td>
<td>44083</td>
<td>154822</td>
<td>M60</td>
<td>43967</td>
<td>164831</td>
<td>722996</td>
<td>M61</td>
<td>205760</td>
<td>382982</td>
<td>101495</td>
</tr>
<tr>
<td>M14</td>
<td>23700</td>
<td>25265</td>
<td>168445</td>
<td>M62</td>
<td>44150</td>
<td>200277</td>
<td>498617</td>
<td>M63</td>
<td>209940</td>
<td>120564</td>
<td>481640</td>
</tr>
<tr>
<td>M15</td>
<td>23712</td>
<td>31680</td>
<td>81245</td>
<td>M64</td>
<td>44211</td>
<td>37199</td>
<td>321863</td>
<td>M65</td>
<td>244018</td>
<td>92198</td>
<td>593426</td>
</tr>
<tr>
<td>M16</td>
<td>24377</td>
<td>48552</td>
<td>213009</td>
<td>M66</td>
<td>47143</td>
<td>81915</td>
<td>220865</td>
<td>M67</td>
<td>315256</td>
<td>68512</td>
<td>123163</td>
</tr>
<tr>
<td>M17</td>
<td>26218</td>
<td>38554</td>
<td>156713</td>
<td>M68</td>
<td>46048</td>
<td>162200</td>
<td>617853</td>
<td>M69</td>
<td>344297</td>
<td>505428</td>
<td>100649</td>
</tr>
<tr>
<td>M18</td>
<td>27349</td>
<td>97710</td>
<td>286421</td>
<td>M70</td>
<td>54447</td>
<td>328504</td>
<td>1507146</td>
<td>M71</td>
<td>555250</td>
<td>153590</td>
<td>537318</td>
</tr>
<tr>
<td>M19</td>
<td>27441</td>
<td>15126</td>
<td>66118</td>
<td>M72</td>
<td>55220</td>
<td>117910</td>
<td>301081</td>
<td>M73</td>
<td>715722</td>
<td>1165910</td>
<td>251108</td>
</tr>
<tr>
<td>M20</td>
<td>27899</td>
<td>26243</td>
<td>281568</td>
<td>M74</td>
<td>55463</td>
<td>191233</td>
<td>840896</td>
<td>M75</td>
<td>1000000</td>
<td>1685236</td>
<td>3370742</td>
</tr>
<tr>
<td>M21</td>
<td>28240</td>
<td>55200</td>
<td>181840</td>
<td>M76</td>
<td>60384</td>
<td>100578</td>
<td>485414</td>
<td>M77</td>
<td>1123032</td>
<td>1587664</td>
<td>4469136</td>
</tr>
<tr>
<td>M22</td>
<td>28420</td>
<td>16404</td>
<td>50253</td>
<td>M78</td>
<td>63856</td>
<td>144993</td>
<td>717209</td>
<td>M79</td>
<td>1288665</td>
<td>1317395</td>
<td>4999121</td>
</tr>
<tr>
<td>M23</td>
<td>29032</td>
<td>11172</td>
<td>262280</td>
<td>M80</td>
<td>68105</td>
<td>157496</td>
<td>416521</td>
<td>M81</td>
<td>1373253</td>
<td>2670398</td>
<td>13221433</td>
</tr>
<tr>
<td>M24</td>
<td>29617</td>
<td>20014</td>
<td>200102</td>
<td>M82</td>
<td>67745</td>
<td>111891</td>
<td>305125</td>
<td>M83</td>
<td>170957</td>
<td>1037262</td>
<td>4995650</td>
</tr>
<tr>
<td>M25</td>
<td>29517</td>
<td>19824</td>
<td>19824</td>
<td>M84</td>
<td>94940</td>
<td>31850</td>
<td>198963</td>
<td>M85</td>
<td>505269</td>
<td>1523580</td>
<td>3990543</td>
</tr>
<tr>
<td>M26</td>
<td>29724</td>
<td>88124</td>
<td>155242</td>
<td>M86</td>
<td>95011</td>
<td>197489</td>
<td>749771</td>
<td>M87</td>
<td>6662791</td>
<td>982747</td>
<td>349252509</td>
</tr>
<tr>
<td>M27</td>
<td>30190</td>
<td>57000</td>
<td>623730</td>
<td>M88</td>
<td>95011</td>
<td>197489</td>
<td>749771</td>
<td>M89</td>
<td>1796259</td>
<td>1991667</td>
<td>4823062</td>
</tr>
</tbody>
</table>

LP Progress: 1988 – 2002

- **Algorithms**
 - Primal simplex in 1988 *versus* Best(primal,dual,barrier) today *2360x*

- **Machines** *800x*

Net: Algorithm * Machine ~ 1 900 000x

This beats Moore’s Law!
Algorithm comparison and other remarks …

- Dual simplex vs. primal: Dual 2.6x faster
- Best simplex vs. barrier: Barrier 1.2x faster
- Best of three vs. primal: Best 7.5x faster
- CPLEX 9.0 – 2003
 - Primal 1.2x improvement
 - Dual 1.7x improvement