Exercises

1. Let \(G = (V, E) \) be a \(d \)-regular graph that is 3-colorable and such that there is a 3-coloring in which the color classes have equal size \(|V|/3 \). Let \(A \) be the adjacency matrix and \(\frac{1}{d} \cdot M \) be the normalized adjacency matrix. Prove that \(M \) has at least two eigenvalues which are smaller than or equal to \(-1/2\), that is, \(\lambda_{n-1} \leq -1/2 \).

[Note: you get partial credit if you prove that there is a negative absolute constant, independent of \(|V| \), such that two eigenvalues must be smaller than that constant.]

Give an example in which the bound the tight.

Show that the converse is not true. (That is, give an example of a regular graph that is not 3-colorable but such that at least two eigenvalues of the normalized adjacency matrix are \(\leq -1/2 \).)

2. Recall that, given two graphs \(G = (V, E_G) \) and \(H = (V, E_H) \), the non-uniform sparsest cut is

\[
\phi(G, H) = \min_{S \subseteq V} \frac{1}{|E_G|} \cdot \sum_{u,v} A_{u,v} |1_S(u) - 1_S(v)|
\]

where \(A \) is the adjacency matrix of \(G \) and \(B \) is the adjacency matrix of \(H \), and the minimum is taken over all sets \(S \) that are not empty and are different from \(V \).

Consider the following continuos relaxation

\[
\gamma(G, H) = \min_{x \in \mathbb{R}^V} \frac{1}{|E_G|} \cdot \sum_{u,v} A_{u,v} |x(u) - x(v)|^2
\]

Note that if \(H \) is a clique with self-loops and \(G \) is regular, then \(\gamma(G, H) = 1 - \lambda_2 \) and \(\phi(G, H) = \phi(G) \). Recall also that \(\phi(G) \leq \sqrt{8(1 - \lambda_2)} \), and so we may hope that, say, when \(G \) and \(H \) are two arbitrary regular graphs, we have \(\phi(G, H) \leq O(\gamma(G, H)) \).

Give a counterexample by showing (an infinite family of) regular graphs \(G, H \) such that \(\phi(G, H) \geq \Omega(1) \) but \(\gamma(G, H) = o(1) \).

[Notes: you get full credit even if \(G \) and \(H \) are not regular. You should be able to get a family of graphs for which \(\gamma(G, H) = O(1/n) \) and \(\phi(G, H) = \Omega(1) \).

[Hint: Let \(G \) be a cycle]