Exercise 1 (Truthfulness for single-minded bidders) Prove that an exact mechanism for combinatorial auctions with single-minded bidders in which losers pay 0 is truthful if it satisfies the following two properties:

- Monotonicity: A bidder who wins with bid $\left(S_{i}^{*}, v_{i}^{*}\right)$ keeps winning for any $v_{i}^{\prime}>v_{i}^{*}$ and for any $S_{i}^{\prime} \subset S_{i}^{*}$ (for any fixed setting of the other bids).
- Critical Payment: A winning bidder pays the minimum value needed for winning: The infimum of all values $v_{i}^{\prime}$ such that $\left(S_{i}^{*}, v_{i}^{\prime}\right)$ wins.

Exercise 2 (Estimating valuations) Let $\mathcal{M}(L)$ denote an efficiently computable, deterministically truthful mechanism for combinatorial auctions that is parametrized with a positive number $L$. Suppose $\mathcal{M}(L)$ guarantees an $\alpha$ approximation of the optimal social welfare, for some $\alpha>1$, provided that there is at least one bidder whose valuation for the full bundle is at least $L$ (i.e., a bidder $i$ with $\left.v_{i}(M) \geq L\right)$ and at most one bidder whose valuation for the full bundle exceeds $L$ (i.e, $\left.v_{i}(M)>L\right)$.

Derive a randomized, efficiently computable, universally truthful mechanism $\mathcal{M}^{*}$ with unconditioned approximation ratio $O(\alpha)$ (wrt expected social welfare). Hint: Use sampling based statistics.

Exercise 3 (Combinatorial auctions with explicit valuations) Consider combinatorial auctions for $m$ items among $n$ bidders where each valuation is represented simply as a vector of $2^{m}-1$ numbers (a value for each subset of items). Prove that the optimal allocation can be computed in time that is polynomial in the input length: $n\left(2^{m}-1\right)$. Hint: Use dynamic programming.
(An immediate consequence is that the optimal allocation can be computed in time polynomial in $n$ when $m=\log n$.)

