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Multi-unit Auctions

m identical items shall be allocated to n bidders with private
valuations such that social welfare is maximized

Definitions:

feasible allocations: A = {(s1, . . . , sn) ∈ Nn |
∑

i si ≤ m}
valuation functions: vi : {0, . . . ,m} → R≥0, i ∈ [n]

social welfare:
∑n

i=1 vi (si )

Assumptions:

value queries: What is the valuation of bidder i for k items?

free disposal: valuations are non-decreasing

normalization: vi (0) = 0

It is common to assume that the input length is n + log m.
We seek for a poly-time ”incentive compatible” mechanism.
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Lower bound for exact algorithms

Consider the following valuation functions for 2 players:

Player 1 has valuations v1(i) = i , for i ∈ {0, . . . ,m}.
Player 2 has valuations

v2(i) =

{
i for i 6= k
i + 1 for i = k

for some k ∈ {0, . . . ,m}.

The unique optimal allocation is s1 = m − k, s2 = k.

Any (randomized) algorithm needs Ω(m) queries for finding the
index k .
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Ignoring the aspect of truthfulness ...

A ”non-truthful” approximation scheme

Round down valuations to the nearest power of (1 + ε) and
consider only the breakpoints, i.e., valuations at which the
rounded valuations increase.

The number of breakpoints per bidder is O(1/ε · log m).

Use FPTAS for the multiple-choice knapsack problem with
objects defined by the breakpoints.
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Incentive compatibility

Let V be the set of all valuations, and A the set of allocations.

A mechanism is a pair (f , p) where

f : V n → A is called social choice-function, and

p : V n → Rn is called a payment scheme.

If (f , p) is fixed, then the utility of bidder i for valuations v ∈ V n is

ui (v) = vi (f (v))− pi (v) .

Definition

A mechanism (f , p) is truthful if for all i , all vi , v ′i ∈ V and all
v−i ∈ V n−1, we have that ui (vi , v−i ) ≥ ui (v ′i , v−i ).

In words: A mechanism is called truthful if truth-telling is a
dominant strategy for every bidder.
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Incentive compatibility

Randomized notions of truthfulness:

Truthfulness in expectation: every bidder maximizes his
expected utility by bidding truthfully, that is, for all i , all vi ,
v ′i ∈ V and all v−i ∈ V n−1, we have that

E [ui (vi , v−i )] ≥ E
[
ui (v ′i , v−i )

]
Universal truthfulness: a universally truthful mechanism is
defined by a probability distribution over deterministically
truthful mechanisms
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Overview

0: Introduction

1: VCG-based mechanisms

– maximal in range (deterministically truthful) –

– maximal in distributional range (truthful in expectation) –

2: A universally truthful approximation scheme

– polynomial query complexity –

– polynomial running time –
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VCG-based mechanisms

Vickrey-Clarke-Groves (VCG) mechanism

Compute an optimal allocation f (v) = s1, . . . , sn.

Set payments by pi (v) = maxt∈A

(∑
j 6=i vj(tj)

)
−
∑

j 6=i vj(sj).

VCG is truthful since, for every bidder i ,

vi (si )− pi︸ ︷︷ ︸
utility of i

=
∑
j∈[n]

vj(sj)︸ ︷︷ ︸
social welfare

−max
t∈A

∑
j 6=i

vj(tj)


︸ ︷︷ ︸

independent of vi

That is, maximizing social welfare maximizes the bidder’s utility
(provided that the bidder reports her true valuation).
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VCG-based mechanisms

Definition (affine maximizer)

A social choice function (allocation algorithm) f is an affine
maximizer if there exists a set of allocations A′ ⊆ A, a constant
αi ≥ 0, for i ∈ {1, . . . , n}, and a constant βs ∈ R, for every
s ∈ A′, such that

f (v) = argmaxs∈A′

(
n∑

i=1

αivi (si ) + βs

)
.

VCG-based mechanisms achieve truthfulness by combining an
affine maximizer f with generalized VCG payments.
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Maximal In Range (MIR)

A mechanism is called MIR if it maximizes over a subrange A′ ⊂ A.

MIR 1/2-approximation algorithm [Dobzinski and Nisan, 2007]

Split the items into

n2 equally-sized bundles of size b = bm
n2
c and

a single extra bundle of size r = m − n2b.

Optimally allocate these whole bundles among the n bidders.

Observation

An optimal bundle allocation can be found in time polynomial in n
using dynamic programming.
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MIR 1/2-approximation

Lemma

Let (a1, . . . , an) be an optimal bundle allocation and (o1, . . . , on)
an optimal unrestricted allocation. Then

∑
i vi (ai ) ≥ 1

2

∑
i vi (oi ).

Proof: W.l.o.g.,
∑

i oi = m.

There exists a bidder i with oi ≥ m
n .

If vi (oi ) ≥ 1
2

∑
j v(oj) then assigning all items to

bidder i gives a 1
2 -approximation.

Otherwise, rounding up all bidders j 6= i to full
bundles of size b gives a 1

2 -approximation. �
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Limitations of VCG-based mechanisms

A′ ⊆ A is called a true sub-range if there exists s ∈ A with∑
i si = m and s 6∈ A′.

Theorem

There does not exist a MIR algorithm that optimizes over a true
subrange A′ and achieves an approximation factor better than 1/2.

Proof:

Suppose there are only two bidders.

Let (s1, s2) be an allocation with s1 + s2 = m and (s1, s2) 6∈ A′.

Suppose v1(k) = 1, for k ≥ s1, and v1(k) = 0, otherwise.

Suppose v2(k) = 1, for k ≥ s2, and v2(k) = 0, otherwise.

The optimal allocation over A has a value of 2 while
the optimal allocation over A′ has a value of 1. �

Berthold Vöcking – RWTH Aachen University Randomized Mechanism Design 13 / 48



Limitations of VCG-based mechanisms

Corollary

Any deterministic VCG-based mechanism with an approximation
factor better than 1/2 needs an exponential number of queries.
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Some more results about deterministic mechanisms

Restricted valuations:

FPTAS for single-minded valuations using monotonicity
[Briest, Krysta, V., 2005]

PTAS for k-minded valuations based on the MIR approach
[Dobzinski, Nisan, 2007]

There does not exist a MIR-FPTAS for k-minded valuations
[Dobzinski, Nisan, 2007]

Multi-dimensional valuations:

Any ”scalable” deterministically truthful mechanism that
guarantees a c-approximation, for c > 1

2 , needs to make an
exponential number of queries. [Dobzinski, Nisan, 2011]

Berthold Vöcking – RWTH Aachen University Randomized Mechanism Design 15 / 48



Overview

0: Introduction

1: VCG-based mechanisms

– maximal in range (deterministically truthful) –

– maximal in distributional range (truthful in expectation) –

2: A universally truthful approximation scheme

– polynomial query complexity –

– polynomial running time –

Berthold Vöcking – RWTH Aachen University Randomized Mechanism Design 16 / 48



Maximal In Distributional Range (MIDR)

Let D(A) denote a set of probability distributions D : A→ [0, 1].

A mechanism that chooses a probability distribution from D(A)
such that the expected social welfare is maximized is called
Maximal In Distributionan Range (MIDR).
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Simplified MIDR mechanism inspired by [Dobzinski,Dughmi, 2009]

For an integer t ≥ 1, let q(t) denote the number of trailing 0’s in
the binary representation, e.g., q(101000) = 3.

Obviously, q(t) ≤ blog mc, for 1 ≤ t ≤ m. Let q(0) = blog mc+ 1.

Probabilistic allocations

For (s1, . . . , sn) ∈ A, let [s1, . . . , sn]D denote the following
distribution: Bidder i gets allocated si items with probability

(1− ε)q(0)−q(si ) ,

for some given ε ∈ [0, 1]; and 0 items, otherwise.
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Simplified MIDR mechanism

The ”simplified MIDR mechanism” ...

... outputs a probabilistic allocation [s1, . . . , sn]D that maximizes
expected social welfare among all (s1, . . . , sn) ∈ A, and uses VCG
prices over this range.

Perturbed valuations

The expected value of [s1, . . . , sn]D for bidder i is thus

v ′(si ) = vi (si ) · (1− ε)q(0)−q(si ) .

∗ ∗ ∗ Maximizing wrt to v ′ yields a (1− ε)q(0)-approximation wrt to v ∗ ∗ ∗
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Simplified MIDR mechanism

Lemma

The optimal allocation wrt v ′ can be found with a number of
queries bounded polynomially in log m and 1/ε per bidder.

Proof:

Consider bidder i . Let Vi = (vi (0), vi (1), . . . , vi (m)).

Partition Vi into subsequences V k
i , for 0 ≤ k ≤ q(0), such

that V k
i contains the valuations vi (t) with q(t) = k .

The k-breakpoints of bidder i are defined to be those entries
from V k

i at which the value increases by a factor of at least
(1− ε)−1 in comparison to the preceding k-breakpoint.

#breakpoints = poly(n, log m, 1/ε)

Breakpoints can be found efficiently using binary search.
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Simplified MIDR mechanism

Lemma

Let o1, . . . , on denote an optimal allocation wrt v ′.
For every i ∈ [n], oi is a q(oi )-breakpoint of bidder i .

Proof (sketch):

................

o i
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The power of randomized mechanism design
[Dobzinski, Dughmi, 2009]

Approximation scheme

There is a truthful-in-expectation FPTAS for multi-unit auctions.

Separation result

A certain (technical) variant of multi-unit auctions

admits a truthful-in-expectation FPTAS, but

does not admit a universally truthful algorithm achieving an
approximation factor better than 2 with a sub-exponential
number of queries.
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Overview

0: Introduction
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A universally truthful approximation scheme

Theorem (V., SODA 2012)

There exists a universally truthful polynomial-time approximation
scheme for multi-unit auctions.

The approximation scheme corresponds is randomized PTAS.
The expected social welfare is lower bounded by (1− ε) of the
optimal social welfare.

We first present a simplified approximation scheme with
polynomially bounded query complexity.
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Idea: apply small additive perturbations to the valuations

∆-perturbed maximizer

Let ∆ > 0. For 1 ≤ i ≤ n, 0 ≤ j ≤ m, set

v ′i (j) = vi (j) + q(j)∆

with q(j) denoting the number trailing 0’s in the binary represen-
tation of j (as defined before).

Choose an allocation s ∈ A maximizing v ′(s) =
∑n

i=1 v ′i (si ).

Claim:

If ∆ is set equal to εvmax/(n log m) then

the additive error due to perturbation is O(εOPT ), and

the allocation maximizing v ′ can be computed with
poly(log m, n, 1/ε) queries.
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The dilemma

On the one hand:

In order to get a polynomial time approximation scheme, ∆ needs
to be chosen in a way depending on the valuations.

On the other hand:

In order to obtain truthfulness, ∆ must be chosen independently of
the valuations.

We introduce a subjective variant of VCG in order to overcome this
problem.
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Description of the mechanism

Let L : R>0 → R>0 ∪ {⊥} denote a suitable function with
L(x) ≤ x , unless L(x) =⊥, called drop-out consensus function.

For every bidder i , compute si as follows:

Let v
(−i)
max denote the maximum valuation of the other bidders.

Compute a lower bound Li = L(v
(−i)
max ).

If Li =⊥ then the algorithm sets si = 0. (”player i drops out”)

Otherwise, compute an allocation s(i) ∈ {0, . . . ,m}n
by calling the ∆i -perturbed maximizer with ∆i = Li/N

(with N = (dlog me+ 1)n/ε) and set si = s
(i)
i .

Observe that there are only two different outcomes of v
(−i)
max .
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Drop-out consensus

Ideally, we seek for a consensus function ` : R→ R with the follow-
ing properties:

For any a ∈ R, `(a) ∈ [a− 1
ε , a].

For any a, b ∈ R with |a− b| ≤ 1, `(a) = `(b).

Exercise: Show that such a consensus function does not exist.

We will present a randomized consensus procedure ` : R→ R∪{⊥}
with the following properties:

For any v ∈ R, `(a) ∈ [a− 1
ε , a], unless `(a) =⊥.

For any a, b ∈ R with |a− b| ≤ 1, `(a) = `(b),
unless `(a) =⊥ or `(b) =⊥.

In particular, Pr [`(a) =⊥] ≤ ε, for any a ∈ R.
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Drop-out consensus

vA vB
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Drop-out consensus

1/eps
vvA B
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Drop-out consensus

1/epsBvA v
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Drop-out consensus
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Drop-out consensus

More formally, we define a function ` : [0, 1]×R→ R ∪ [⊥] where
the first parameter is picked uniformly at random.

Properties of `

1 For every a > 0 and τ chosen uniformly at random from [0, 1],
Pr [`(τ, a) =⊥] = ε.

2 For every a ∈ R and τ ∈ [0, 1] with `(τ, a) 6=⊥, it holds
`(τ, a) ∈ [a− 1/ε, a].

3 For any numbers a2 > a1, τ ∈ [0, 1] with `(τ, a1) 6=⊥ and
`(τ, a2) 6=⊥, it holds:

If `(τ, a1) 6= `(τ, a2) then a1 ≤ `(τ, a2)− 1.
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Drop-out consensus

We use the drop-out consensus procedure on an exponential scale.
That is L(τ, v) = N`(τ,v), for N = (dlog me+ 1)n/ε.

L : [0, 1]×R>0 → R>0 ∪ [⊥] satisfies

1 For every a > 0 and τ chosen uniformly at random from [0, 1],
Pr [L(τ, a) =⊥] = ε.

2 For every a > 0 and τ ∈ [0, 1] with L(τ, a) 6=⊥, it holds
L(τ, a) ≤ a and L(τ, a) ≥ aN−1/ε.

3 For any numbers a2 > a1 > 0, τ ∈ [0, 1] with L(τ, a1) 6=⊥ and
L(τ, a2) 6=⊥, it holds:

If L(τ, a1) 6= L(τ, a2) then a1 ≤ L(τ, a2)/N.
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Feasibility of the mechanism

Let v1st and v2nd denote the ”largest” and the ”second largest”
valuation, respectively.

Feasibility analysis

1 If L(v1st) =⊥ or L(v2nd) =⊥ then the solution is feasible as
the bidder with the largest bid or all other bidders drop out.
Otherwise:

2 If L(v1st) = L(v2nd) then all players call the same perturbed
maximizer and, hence, the solution is feasible.

3 If L(v1st) 6= L(v2nd) then v2nd < L(v1st)/N = ∆. This implies

∆(q(0)− q(k)) > v2nd , for k ∈ {1, . . . ,m}, so that
the mechanism sets si = 0 for all bidders except the bidder
with the maximum bid.
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Truthfulness of the mechanism

Composition of quasi-linear maximizers

Let f (1), . . . , f (n), f (i) : V n → A be a collection of n functions s.t.

f (i)(v) = argmax
s∈A

(vi (s) + g
(i)
s (v−i ))

with g
(i)
s : V n−1 → R being an arbitrary function.

The function f : V n → {0, . . . ,m}n defined by f (v)i = f (i)(v)i is
called a composition of quasi-linear maximizers.

This composition is called feasible if f (V n) ⊆ A.
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Truthfulness – Subjective VCG

The mechanism calls an affine maximizer for each bidder i .

Let f (i) denote the maximizer of bidder i . This way, the social
choice function f of the mechanism is a composition of quasi-linear
maximizers f (1), . . . , f (n) .

For every bidder i , the mechanism uses VCG prices wrt to fi .

Lemma

The mechanism is truthful.

Proof:

For every bidder, the mechanism solves an optimization
problem that maximizes the bidder’s utility (like VCG).

Hence, it is a dominant strategy to report valuations truthfully.

�

Berthold Vöcking – RWTH Aachen University Randomized Mechanism Design 41 / 48



Overview

0: Introduction

1: VCG-based mechanisms

– maximal in range (deterministically truthful) –

– maximal in distributional range (truthful in expectation) –

2: A universally truthful approximation scheme

– polynomial query complexity –

– polynomial running time –
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Idea: use two kinds of perturbations

For 1 ≤ i ≤ n, 0 ≤ j ≤ m, set

v ′i (j) = vi (j) + βji ∆

with βji = 2q(j) + x j
i , where

a) q(j) denotes the number trailing 0’s (as before), and

b) x j
i is a random variable chosen independently, uniformly at

random from [0, 1].

Perturbations of type (a) yield that the number of ”breakpoints”
per bidders is bounded polynomially (as before).

Perturbations of type (b) yield that the number of ”Pareto-optimal
allocations” is bounded polynomially.
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Pareto-optimal allocations
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Berthold Vöcking – RWTH Aachen University Randomized Mechanism Design 44 / 48



Pareto-optimal allocations

0 200 400 600 800

0

200

400

600

800

1,000

number of items

va
lu
at
io
n

Pareto-front
Solutions
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Pareto-optimal allocations
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Running time analysis

The Pareto-front can be enumerated in time O(b
∑n−1

i=1 ki ) where
ki denotes the number of Pareto-optimal solutions restricted to
bidders 1 to i .

Smoothed analysis of the knapsack problem [Beier, V., 2003]

Suppose object values are chosen from [0, 1] by an adversary and
then these values are perturbed by adding numbers that are picked
uniformly at random from [0, σ]. E [ki ] = O(b2i2/σ).

The expected running time is thus O(b3n3/σ).
In our context,

b = # number of breakpoints

σ = ∆/v2nd

As ∆ ≥ v2nd/N1/ε+1 and b = poly(log m, n, 1/ε), the expected
running time is polynomially bounded. �
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