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The combinatorial auction problem

A set M = {1, . . . ,m} shall be allocated to n bidders with private
valuations for bundles of items

Definitions:

feasible allocations: A = {(S1, . . . ,Sn) ⊆ Mn |Si ∩ Sj = ∅, i 6= j }
valuation functions: vi : 2M → R≥0, i ∈ [n]

objective: maximize social welfare
∑n

i=1 vi (Si )

Assumptions:

free disposal: S ⊆ T ⇒ vi (S) ≤ vi (T )

normalization: vi (∅) = 0
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Single-minded bidders

Bidders are called single-minded if, for every bidder i , there
exists a bundle S∗i ⊆ M and a value v∗i ∈ R≥0 such that

vi (T ) =

{
v∗i if T ⊇ S∗i
0 otherwise

Bids correspond to tuples (S∗i , v
i
i ).

Given the output of a mechanism, bidder i is called winning if
it is assigned a bundle T ⊇ S∗i .

An output is called exact, if every bidder i is assigned S∗i
(rather than some superset).

A mechanism producing only exact outputs is called exact.
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Computational hardness

Proposition

The allocation problem among single-minded bidders is NP-hard.

Proof: Reduction from independent set.

Consider a graph G = (V ,E ). Each node is represented by a
bidder. Each edge is represented by a good.

For bidder i , set S∗i = {e ∈ E |i ∈ e} and v∗i = 1.

This way, winning bidders correspond to nodes in an
independent set. �

Indeed, the reduction implies

Proposition

Approximating the optimal allocation among single-minded bidders
to within a factor of m1/2−ε, for any ε > 0, is NP-hard.
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Incentive compatibility for single-minded bidders

Characterization of truthfulness

An exact mechanism for single minded bidders in which losers pay 0
is truthful if and only if it satisfies the following two properties:

Monotonicity: A bidder who wins with bid (S∗i , v
∗
i ) keeps

winning for any v ′i > v∗i and for any S ′i ⊂ S∗i (for any fixed
setting of the other bids).

Critical Payment: A winning bidder pays the minimum value
needed for winning: The infimum of all values v ′i such that
(S∗i , v

′
i ) wins.
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Incentive compatible mechanism for single-minded bidders

Greedy allocation

Reorder the bids such that
v∗1√
|S∗1 |

≥ v∗2√
|S∗2 |

≥ · · · ≥ v∗n√
|S∗n |

.

Initialize the set of winning bidders to W = ∅.
For i = 1 . . . n do: If S∗i ∩

⋃
j∈W

S∗j = ∅ then add i to W .

The Greedy allocation is monotone. Combining it with critical
payment gives a truthful mechanism.
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Approximation factor of the Greedy algorithm

Theorem [Lehmann et. al, 2002]

The Greedy mechanism guarantees a
√

m-approximation of the
optimal social welfare.

Proof:

For i ∈W , let OPTi = {j ∈ OPT , j ≥ i |S∗i ∩ S∗j 6= ∅}.
As v∗j ≤

√
|S∗j | · v∗i /

√
|S∗i |, for j ∈ OPTi , we obtain∑

j∈OPTi

v∗j ≤
v∗i√
|S∗i |

∑
j∈OPTi

√
|S∗j |

We will show that
∑

j∈OPTi

√
|S∗j | ≤

√
|S∗i |
√

m, which gives

v(OPT ) ≤
∑
i∈W

∑
j∈OPTi

v∗j ≤
∑
i∈W

v∗i
√

m =
√

m·v(GREEDY ) .
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Approximation factor of the Greedy algorithm

Claim ∑
j∈OPTi

√
|S∗j | ≤

√
|S∗i |
√

m

By the Cauchy-Schwarz inequality∑
j∈OPTi

√
|S∗j | ≤

√
|OPTi |

√ ∑
j∈OPTi

|S∗j |.

Now |OPTi | ≤ |S∗i | since every S∗j , for j ∈ OPTi , intersects
S∗i and these intersections are disjoint. (Why?)

Furthermore,
∑

j∈OPTi
|S∗j | ≤ m since OPTi is an allocation.

�
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Berthold Vöcking – RWTH Aachen University Randomized Mechanism Design 11 / 41



Problem description

ILP description of the problem

Maximize
∑
(i ,S)

xi ,Svi (S)

subject to
∑
S

xi ,S ≤ 1 for each bidder i∑
(i ,S)|j∈S

xi ,S ≤ 1 for each item j

xi ,S ≥ 0

The LP-ralaxation of this problem can be solved efficiently using

Demand oracles:

Given a price pj , for each item j , the demand oracle for bidder i
answers queries of the following kind:

What is the utility-maximizing bundle?
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Incentive compatibility for multi-dimensional bidders

Characterization of truthfulness

A mechanism is truthful if and only if it satisfies the following two
properties for every i :

i) For every bundle T ⊆ M, there exists a price q
(i)
T (v−i ).

That is, for all vi with fi (vi , v−i ) = T , p(vi , v−i ) = q
(i)
T (v−i ).

ii) The social choice function maximizes the utility for player i .

That is, for every bidder i ,

f (v) = argmax
(S1,...,Sn)∈A(i)(v−i )

(vi (Si )− q
(i)
Si

(v−i ))

with A(i)(v−i ) ⊆ A being a non-empty subset of allocations.

Examples: VCG, Fixed Price Auctions, Iterative Auctions
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A universally truthful auction mechanism
[Dobzinski, Nisan, Schapira 2006]

1 Partition bidders into three sets SEC-PRICE, FIXED, STAT
with probability 1− ε, ε/2, and ε/2, respectively.

2 Calculate optimal fractional solution opt∗STAT of the bidders
in STAT.

3 Perfom a second price auction for selling a full bundle to a
bidder in SEC-PRICE with a reserve price r = v(opt∗STAT )/

√
m.

4 If the second price auction was not successful then:
Perform a fixed price auction selling items at a fixed price
p = εv(εopt∗STAT )/8m, considering bidders in some fixed order.
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Analyzing the approximation ratio

Bidder i is called t-dominant if vi (M) ≥ v(opt)/t.

Lemma

Suppose that there is a
√

m-dominant bidder and r ≤ v(opt)/
√
m.

Then the mechanism provides a
√

m-approximation with
probability at least 1− ε.

Lemma

Suppose there is no
√

m-dominant bidder. Then, with probability
at least 1− 16/ε

√
m., both v(optSTAT ) and v(optFIXED) are

lower-bounded by v(opt) · ε/4.

An analogous statement holds wrt opt∗, opt∗STAT , and opt∗FIXED .
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Analyzing the approximation ratio

Analysis of fixed price auction

Suppose that the following conditions hold:

There is no
√

m-dominant bidder.

The item price p satisfies:
ε2v(opt∗)

32m
≤ p ≤ εv(opt∗)

8m
.

v(opt∗FIXED) ≥ v(opt∗) · ε/4.

We will show that the revenue of the fixed-price auction is
Ω(ε3v(opt∗FIXED)/

√
m).

This gives

Theorem [Dobzinski et. al, 2010]

The mechanism provides an approximation ratio of O(
√

m/ε3)
with probability at least 1− ε.
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Analysis of fixed price auction

Let {yi ,S} be the values of the variables in opt∗FIXED .

Let T be the set of pairs (i ,S) with yi ,S > 0 and vi (S) ≥ p · |S |.
Let opt∗FIXED|T = {yi ,S}(i ,S)∈T .

Claim

v(opt∗FIXED|T ) =
∑

(i ,S)∈T

yi ,Svi (S) ≥ 1

2
· v(opt∗FIXED).

Proof:

Define T̄ to be the complement of T . It holds∑
(i ,S)∈T̄

yi ,S · vi (S) ≤
∑

(i ,S)∈T̄

yi ,S · |S | · p ≤ m · p

≤ m · εv(opt∗)

8m
≤
εv(opt∗FIXED)

2
.

�
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Analysis of fixed price auction

It remains to show v(FP) = Ω(v(opt∗FIXED|T )), where FP denotes
the allocation of the fixed price auction.

We consider bidders in the order of the fixed price auction and
study the following

dynamic process:

Whenever the fixed price auction chooses a bundle Si for a bidder
i , we remove the following bundles from T :

1 (i , S) for any bundle S

2 (j ,S) for any bidder j and any bundle S with S ∩ Si 6= ∅

At the end of the process the set T is empty!
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Analysis of fixed price auction

When adding Si to FP, the set T loses the following values

1

∑
(i ,S)∈T

yi ,S · vi (S) ≤
∑

(i ,S)∈T

yi ,S · vi (M) ≤ vi (M) ≤ v(opt∗)√
m

2

∑
(i ,S)∈T |j∈S

yi ,S · vi (S) ≤ v(opt∗)√
m

, for every j ∈ Si

That is, for each item that we add to FP, the set T loses a value

of at most 2 · v(opt∗)√
m

.

On the other hand, FP achieves revenue p ≥ ε2 · v(opt∗)

32m
, for each

of the picked items. �
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Online mechanisms – model and approach

We assume that there are n bidders with arbitrary valuations.

The n bidders arrive one by one in random order.

The bidder arriving at time i , 1 ≤ i ≤ n, is called the i th bidder.

The iterative pricing approach

When the i-th bidder arrives the mechanism calls the demand
oracle with prices pi

e that only depend on vauations of bidders
1, . . . , i − 1 but not on the valuations of bidders i , . . . , n.

By the direct characterization, this approach yields incentive
compatible mechanisms.
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Online mechanisms – competitive ratio

What do we achieve?

Suppose each items is available with multiplicity b ≥ 1.

Competitive ratio: O(m1/(b+1) log(bm)).

For b = log m this gives competitive ratio O(log m).

Suppose bundles have size at most d .

Competitive ratio: O(d1/b log(bm)).

Suppose valuations are submodular or XOS.

Competitive ratio: O(log m).
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Analytic trick: Violate constraints

Overselling MPU algorithm [inspired by Bartal, Gonen, Nisan 2003]

For each good e ∈ U do p1
e := p0.

For each bidder i = 1, 2, . . . , n do

Set Si := Oraclei (Ui , p
i ).

Update for each good e ∈ Si : pi+1
e := pi

e · 21/b.

Suppose L is a lower bound of v(opt) such that at most one bidder
exceeds L. We set p0 = L/4bm.

For the time being, assume that Ui = M.

Oraclei (Ui , p
i ) returns the utility-maximal bundle for bidder i for

prices pi restricted to items in Ui ⊆ M.
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How many copies per item are sold?

Lemma 1

At most sb copies of each item are sold, where s = log(4bm) + 2
b .

Proof:

Suppose dsb − 2e ≥ b log(4bm) copies of item e have been
sold after some step.

Then the price of e is larger than p0 · 2log(4bm) ≥ L.

After this step, only one further copiy of e might be given to
that bidder whose maximum valuation exceeds L.

Hence, at most dsb − 1e ≤ sb copies of e are assigned, which
proves the lemma. �
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Lower bounding social welfare achieved by the algorithm

Let p∗e denote the final prices (after the algorithm stopped).

Lemma 2

v(S) ≥ b
∑

e∈U p∗e − bmp0.

Proof:

As bidders are individually rational, vi (Si ) ≥
∑

e∈Si pi
e . Thus

v(S) ≥
n∑

i=1

∑
e∈Si

pi
e =

n∑
i=1

∑
e∈Si

p0r `
i
e = p0

∑
e∈U

`∗e−1∑
k=0

rk = p0

∑
e∈U

r `
∗
e − 1

r − 1

where r = 21/b, `ie is the number of copies of e sold before bidder i ,
and `∗e is the number of copies sold at the end of the execution.

Applying p∗e = p0r `
∗
e and 1/(r − 1) = 1/(21/b − 1) ≥ b gives the

lemma. �
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Lower bounding social welfare achieved by the algorithm

Lemma 3

v(S) ≥ v(opt)− b
∑

e∈M p∗e , provided U1 = · · ·Un = M.

Proof:

Consider any feasible allocation T = (T1, . . . ,Tn).

As the algorithm uses a utility-maximizing demand oracle, we have

vi (Si )−
∑
e∈Si

pi
e ≥ vi (Ti )−

∑
e∈Ti

pi
e ,

which implies

vi (Si ) ≥ vi (Ti )−
∑
e∈Ti

pi
e .

As p∗e ≥ pi
e , for every i and e, we obtain

vi (Si ) ≥ vi (Ti )−
∑
e∈Ti

p∗e . (∗)

Berthold Vöcking – RWTH Aachen University Randomized Mechanism Design 27 / 41



Lower bounding social welfare achieved by the algorithm

Summing over all bidders gives

v(S) =
n∑

i=1

vi (Si ) ≥
n∑

i=1

vi (Ti )−
n∑

i=1

∑
e∈Ti

p∗e ≥ v(T )− b
∑
e∈M

p∗e

because T is feasible so that each item is given to at most b sets.

Taking for Ti to be the bundle assigned to bidder i in an optimal
solution gives

v(S) ≥ v(opt)− b
∑
e∈U

p∗e .

�
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Lower bounding social welfare achieved by the algorithm

Lemma 2

v(S) ≥ b
∑

e∈U p∗e − bmp0.

Lemma 3

v(S) ≥ v(opt)− b
∑

e∈U p∗e , provided U1 = · · ·Un = M.

Substituting Lemma 2 into Lemma 3 gives

v(S) ≥ v(opt)− v(S)− bmp0 ≥ v(opt)− v(S)− 1
4 v(opt)

as p0 = L/4bm ≤ v(opt)/4bm.

This gives 2v(S) ≥ 3
4 v(opt) and, hence, v(S) ≥ 3

8 v(opt).
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Properties of the overselling MPU algorithm

The algorithm is 3
8 -competitive with respect to the optimal offline

social welfare.

However, its output is not feasible as it oversells items by a factor
of O(log bm).

Is the algorithm incentive compatible?
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Algorithmic trick: Use randomization to ensure feasibility

MPU algorithm with oblivious randomized rounding

For each good e ∈ U do p1
e := p0, b1

e := b.

For each bidder i = 1, 2, . . . , n do

Set Si := Oraclei (Ui , p
i ), for Ui = {e ∈ U | bi

e > 0}.

Update for each good e ∈ Si : pi+1
e := pi

e · 21/b.

With probability q set Ri := Si else Ri := ∅.

Update for each good e ∈ Ri : bi+1
e := bi

e − 1.
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Lower bounding social welfare achieved by the algorithm

Lemma 4

Suppose the probability q > 0 is chosen sufficiently small such
that, for any 1 ≤ i ≤ n, and any bundle T ⊆ U,

E [vi (T ∩ Ui )] ≥ 1

2
vi (T )︸ ︷︷ ︸

expected value assumption

.

Then E [v(S)] ≥ 1
8 v(opt) and E [v(R)] ≥ q

8 v(opt).

Proof:

Consider any feasible allocation T1, . . . ,Tn.

The set Si is chosen by Oraclei (Ui , p
i ) so that

vi (Si ) ≥ vi (Ti ∩ Ui )−
∑

e∈Ti∩Ui

pi
e ,

for any outcome of the algorithm’s random coin flips.
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Lower bounding social welfare achieved by the algorithm

This implies

E [vi (Si )] ≥ E [vi (Ti ∩ Ui )]−
∑

e∈Ti∩Ui

E
[
pi
e

]
.

Applying the expected value assumption, we obtain

E [vi (Si )] ≥ 1

2
vi (Ti )−

∑
e∈Ti

E
[
pi
e

]
.

Observe that this equation is similar to equation (*) in the proof of
Lemma 3 so that the rest of the analysis proceeds analogous to the
analysis for the overselling MPU algorithm. �
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Lower bounding social welfare achieved by the algorithm

Lemma 5

The expected value assumption holds for

q =
1

2ed1/b
(
log(4bm) + 2

b

) ,

where b denotes the multiplicity and d the maximum bundle size.

This implies

Theorem [Krysta, V., 2012]

The algorithm is O(d1/b log(bm))-competitive.
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Lower bounding social welfare achieved by the algorithm

Proof of Lemma 5:

By Lemma 1, item e ∈ U is contained in at most
` := b · log(4bm) + 2 of the provisional bundles S1, . . . ,Si−1.

Each of these ` bundles is turned into a final bundle with
probability q = b/(2ed1/b`).

Observe that e 6∈ Ui if at least b of the ` bundles became final.

The probability that e 6∈ Ui is thus(
`

b

)
· qb ≤

(
e`

b

)b

·
(

b

2ed1/b`

)b

=
1

2d
.

By the union bound, we have Pr [∃e ∈ T : e 6∈ Ui ] ≤ |T | · 1
2d ≤

1
2 .

Thus, E [vi (T ∩ Ui )] ≥ vi (T ) · Pr [¬∃e ∈ T : e 6∈ Ui ] ≥ 1
2 vi (T ). �
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Submodular and XOS valuations

Submodular:
vi (S ∪ T ) ≤ vi (S) + vi (T )− vi (S ∩ T ), for every S ,T

Subadditive (a.k.a. complement free):
vi (S ∪ T ) ≤ vi (S) + vi (T ), for every S ,T

Fractional-subadditive (a.k.a. XOS):
vi (S) ≤

∑
K⊆S αKvi (K ) for every fractional cover αK , i.e.,

0 ≤ αK ≤ 1, for all K ⊆ S , and∑
i |j∈K αK ≥ 1, for every item j ∈ S

Submodular ⊆ Fractional-Subadditive ⊆ Subadditive
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Fractional-subadditive valuations

Lemma 6

If valuation functions are fractional-subadditive then the expected
value assumption holds for

q =
1

2(log(4µm) + 2)
.

This implies

Theorem [Krysta, V., 2012]

The algorithm is O(log(m)-competitive for XOS valuations.
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Fractional-subadditive valuations

Proof of Lemma 6:

Any item e ∈ U is contained in at most ` := b · log(4bm) + 2 of
the provisional bundles S1, . . . ,Si−1. Each of these ` bundles is
turned into a final bundle with probability q = 1/(2`).

Pr [e 6∈ Ui ] = Pr [one of the ` bundles becomes final] ≤ 1

2
.

Now fix T arbitrarily. For any given subset K ⊆ T , let α(K )
denote the probability that T ∩ Ui = K . For any e ∈ T ,∑

T⊇K3e
α(K ) = Pr [e ∈ Ui ] ≥

1

2
.

That is, α is a fractional half-cover of T . By fractional
subadditivity,

E [vi (T ∩ Ui )] =
∑
K⊆T

α(K )vi (K ) ≥ 1

2
vi (T ) .

�
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P. Krysta and B. Vöcking, Online Mechanism Design
(Randomized Rounding on the Fly). ICALP 2012.

Y. Bartal, R. Gonen, and N. Nisan. Incentive compatible
multi unit combinatorial auctions. TARK 2003.

B. Awerbuch, Y. Azar, A. Meyerson. Reducing truth-telling
online mechanisms to online optimization. STOC 2003.
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