Randomized Mechanism Design:
 Approximation and Online Algorithms

Part 2: Combinatorial Auctions

Berthold Vöcking
RWTH Aachen University

August 2012

The combinatorial auction problem

A set $M=\{1, \ldots, m\}$ shall be allocated to n bidders with private valuations for bundles of items

Definitions:

- feasible allocations: $A=\left\{\left(S_{1}, \ldots, S_{n}\right) \subseteq M^{n} \mid S_{i} \cap S_{j}=\emptyset, i \neq j\right\}$
- valuation functions: $v_{i}: 2^{M} \rightarrow \mathbb{R}_{\geq 0}, i \in[n]$
- objective: maximize social welfare $\sum_{i=1}^{n} v_{i}\left(S_{i}\right)$

Assumptions:

- free disposal: $S \subseteq T \Rightarrow v_{i}(S) \leq v_{i}(T)$
- normalization: $v_{i}(\emptyset)=0$

Overview

0 : Introduction

1: Approximation algorithms

- single-minded bidders -
- multi-dimensional bidders -

2: Online algorithms

- overselling algorithm -
- oblivious randomized rounding -

Overview

0 : Introduction
1: Approximation algorithms

- single-minded bidders -
- multi-dimensional bidders -

2: Online algorithms

- overselling algorithm -
- oblivious randomized rounding -

Single-minded bidders

- Bidders are called single-minded if, for every bidder i, there exists a bundle $S_{i}^{*} \subseteq M$ and a value $v_{i}^{*} \in \mathbb{R}_{\geq 0}$ such that

$$
v_{i}(T)= \begin{cases}v_{i}^{*} & \text { if } T \supseteq S_{i}^{*} \\ 0 & \text { otherwise }\end{cases}
$$

- Bids correspond to tuples $\left(S_{i}^{*}, v_{i}^{i}\right)$.
- Given the output of a mechanism, bidder i is called winning if it is assigned a bundle $T \supseteq S_{i}^{*}$.
- An output is called exact, if every bidder i is assigned S_{i}^{*} (rather than some superset).
- A mechanism producing only exact outputs is called exact.

Computational hardness

Proposition

The allocation problem among single-minded bidders is NP-hard.
Proof: Reduction from independent set.

- Consider a graph $G=(V, E)$. Each node is represented by a bidder. Each edge is represented by a good.
- For bidder i, set $S_{i}^{*}=\{e \in E \mid i \in e\}$ and $v_{i}^{*}=1$.
- This way, winning bidders correspond to nodes in an independent set.
Indeed, the reduction implies

Proposition

Approximating the optimal allocation among single-minded bidders to within a factor of $m^{1 / 2-\epsilon}$, for any $\epsilon>0$, is NP-hard.

Incentive compatibility for single-minded bidders

Characterization of truthfulness

An exact mechanism for single minded bidders in which losers pay 0 is truthful if and only if it satisfies the following two properties:

- Monotonicity: A bidder who wins with bid $\left(S_{i}^{*}, v_{i}^{*}\right)$ keeps winning for any $v_{i}^{\prime}>v_{i}^{*}$ and for any $S_{i}^{\prime} \subset S_{i}^{*}$ (for any fixed setting of the other bids).
- Critical Payment: A winning bidder pays the minimum value needed for winning: The infimum of all values v_{i}^{\prime} such that $\left(S_{i}^{*}, v_{i}^{\prime}\right)$ wins.

Incentive compatible mechanism for single-minded bidders

Greedy allocation

- Reorder the bids such that $\frac{v_{1}^{*}}{\sqrt{\left|S_{1}^{*}\right|}} \geq \frac{v_{2}^{*}}{\sqrt{\left|S_{2}^{*}\right|}} \geq \cdots \geq \frac{v_{n}^{*}}{\sqrt{\left|S_{n}^{*}\right|}}$.
- Initialize the set of winning bidders to $W=\emptyset$.
- For $i=1 \ldots n$ do: If $S_{i}^{*} \cap \bigcup_{j \in W} S_{j}^{*}=\emptyset$ then add i to W.

The Greedy allocation is monotone. Combining it with critical payment gives a truthful mechanism.

Approximation factor of the Greedy algorithm

Theorem [Lehmann et. al, 2002]

The Greedy mechanism guarantees a \sqrt{m}-approximation of the optimal social welfare.

Proof:

- For $i \in W$, let $O P T_{i}=\left\{j \in O P T, j \geq i \mid S_{i}^{*} \cap S_{j}^{*} \neq \emptyset\right\}$.
- As $v_{j}^{*} \leq \sqrt{\left|S_{j}^{*}\right|} \cdot v_{i}^{*} / \sqrt{\left|S_{i}^{*}\right|}$, for $j \in O P T_{i}$, we obtain

$$
\sum_{j \in O P T_{i}} v_{j}^{*} \leq \frac{v_{i}^{*}}{\sqrt{\left|S_{i}^{*}\right|}} \sum_{j \in O P T_{i}} \sqrt{\left|S_{j}^{*}\right|}
$$

- We will show that $\sum_{j \in O P T_{i}} \sqrt{\left|S_{j}^{*}\right|} \leq \sqrt{\left|S_{i}^{*}\right|} \sqrt{m}$, which gives

$$
v(O P T) \leq \sum_{i \in W} \sum_{j \in O P T_{i}} v_{j}^{*} \leq \sum_{i \in W} v_{i}^{*} \sqrt{m}=\sqrt{m} \cdot v(G R E E D Y)
$$

Approximation factor of the Greedy algorithm

Claim

$$
\sum_{j \in O P T_{i}} \sqrt{\left|S_{j}^{*}\right|} \leq \sqrt{\left|S_{i}^{*}\right|} \sqrt{m}
$$

- By the Cauchy-Schwarz inequality

$$
\sum_{j \in O P T_{i}} \sqrt{\left|S_{j}^{*}\right|} \leq \sqrt{\left|O P T_{i}\right|} \sqrt{\sum_{j \in O P T_{i}}\left|S_{j}^{*}\right| .}
$$

- Now $\left|O P T_{i}\right| \leq\left|S_{i}^{*}\right|$ since every S_{j}^{*}, for $j \in O P T_{i}$, intersects S_{i}^{*} and these intersections are disjoint. (Why?)
- Furthermore, $\sum_{j \in O P T_{i}}\left|S_{j}^{*}\right| \leq m$ since $O P T_{i}$ is an allocation.

Overview

0 : Introduction

1: Approximation algorithms

- single-minded bidders -
- multi-dimensional bidders -

2: Online algorithms

- overselling algorithm -
- oblivious randomized rounding -

Problem description

ILP description of the problem

$$
\begin{array}{rlr}
\text { Maximize } & \sum_{(i, S)} x_{i, S} v_{i}(S) & \\
\text { subject to } & \sum_{S} x_{i, S} \leq 1 & \text { for each bidder } i \\
\sum_{(i, S) \mid j \in S} x_{i, S} \leq 1 & \text { for each item } j \\
x_{i, S} \geq 0 &
\end{array}
$$

The LP-ralaxation of this problem can be solved efficiently using

Demand oracles:

Given a price p_{j}, for each item j, the demand oracle for bidder i answers queries of the following kind:

What is the utility-maximizing bundle?

Incentive compatibility for multi-dimensional bidders

Characterization of truthfulness

A mechanism is truthful if and only if it satisfies the following two properties for every i :
i) For every bundle $T \subseteq M$, there exists a price $q_{T}^{(i)}\left(v_{-i}\right)$.

That is, for all v_{i} with $f_{i}\left(v_{i}, v_{-i}\right)=T, p\left(v_{i}, v_{-i}\right)=q_{T}^{(i)}\left(v_{-i}\right)$.
ii) The social choice function maximizes the utility for player i. That is, for every bidder i,

$$
f(v)=\underset{\left(S_{1}, \ldots, S_{n}\right) \in A^{(i)}\left(v_{-i}\right)}{\operatorname{argmax}}\left(v_{i}\left(S_{i}\right)-q_{S_{i}}^{(i)}\left(v_{-i}\right)\right)
$$

with $A^{(i)}\left(v_{-i}\right) \subseteq A$ being a non-empty subset of allocations.

Examples: VCG, Fixed Price Auctions, Iterative Auctions

A universally truthful auction mechanism
 [Dobzinski, Nisan, Schapira 2006]

(1) Partition bidders into three sets SEC-PRICE, FIXED, STAT with probability $1-\epsilon, \epsilon / 2$, and $\epsilon / 2$, respectively.
(2) Calculate optimal fractional solution opt $t_{S T A T}^{*}$ of the bidders in STAT.
(3) Perfom a second price auction for selling a full bundle to a bidder in SEC-PRICE with a reserve price $r=v\left(o p t_{S T A T}^{*}\right) / \sqrt{m}$.
(9) If the second price auction was not successful then: Perform a fixed price auction selling items at a fixed price $p=\epsilon v\left(\epsilon \circ \rho t_{S T A T}^{*}\right) / 8 m$, considering bidders in some fixed order.

Analyzing the approximation ratio

Bidder i is called t-dominant if $v_{i}(M) \geq v(o p t) / t$.

Lemma

Suppose that there is a \sqrt{m}-dominant bidder and $r \leq v(o p t) / \sqrt{m}$.
Then the mechanism provides a \sqrt{m}-approximation with probability at least $1-\epsilon$.

Lemma

Suppose there is no \sqrt{m}-dominant bidder. Then, with probability at least $1-16 / \epsilon \sqrt{m}$., both v (optsTAT $)$ and $v\left(o p t_{\text {FIXED }}\right)$ are lower-bounded by $v(o p t) \cdot \epsilon / 4$.

An analogous statement holds wrt opt ${ }^{*}$, opt $t_{S T A T}^{*}$, and opt $t_{\text {FIXED }}^{*}$.

Analyzing the approximation ratio

Analysis of fixed price auction

Suppose that the following conditions hold:

- There is no \sqrt{m}-dominant bidder.
- The item price p satisfies: $\frac{\epsilon^{2} v\left(o p t^{*}\right)}{32 m} \leq p \leq \frac{\epsilon v\left(o p t^{*}\right)}{8 m}$.
- $v\left(o p t_{\text {FIXED }}^{*}\right) \geq v\left(o p t^{*}\right) \cdot \epsilon / 4$.

We will show that the revenue of the fixed-price auction is $\Omega\left(\epsilon^{3} v\left(o p t_{\text {FIXED }}^{*}\right) / \sqrt{m}\right)$.

This gives

Theorem [Dobzinski et. al, 2010]

The mechanism provides an approximation ratio of $O\left(\sqrt{m} / \epsilon^{3}\right)$ with probability at least $1-\epsilon$.

Analysis of fixed price auction

Let $\left\{y_{i, S}\right\}$ be the values of the variables in opt $t_{F I X E D}^{*}$.
Let \mathcal{T} be the set of pairs (i, S) with $y_{i, S}>0$ and $v_{i}(S) \geq p \cdot|S|$.
Let opt ${ }_{\text {FIXED } \mid \mathcal{T}}^{*}=\left\{y_{i, s}\right\}_{(i, S) \in \mathcal{T}}$.

Claim

$$
v\left(o p t_{F|X E D| \mathcal{T}}^{*}\right)=\sum_{(i, S) \in \mathcal{T}} y_{i, S} v_{i}(S) \geq \frac{1}{2} \cdot v\left(o p t_{F \mid X E D}^{*}\right) .
$$

Proof:

Define $\overline{\mathcal{T}}$ to be the complement of \mathcal{T}. It holds

$$
\begin{aligned}
\sum_{(i, S) \in \overline{\mathcal{T}}} y_{i, S} \cdot v_{i}(S) & \leq \sum_{(i, S) \in \overline{\mathcal{T}}} y_{i, S} \cdot|S| \cdot p \leq m \cdot p \\
& \leq m \cdot \frac{\epsilon v\left(o p t^{*}\right)}{8 m} \leq \frac{\epsilon v\left(o p t_{F I X E D}^{*}\right)}{2}
\end{aligned}
$$

Analysis of fixed price auction

It remains to show $v(F P)=\Omega\left(v\left(o p t_{\text {FIXED| } \mathcal{T}}^{*}\right)\right)$, where $F P$ denotes the allocation of the fixed price auction.

We consider bidders in the order of the fixed price auction and study the following

dynamic process:

Whenever the fixed price auction chooses a bundle S_{i} for a bidder i, we remove the following bundles from \mathcal{T} :
(1) (i, S) for any bundle S
(2) (j, S) for any bidder j and any bundle S with $S \cap S_{i} \neq \emptyset$

At the end of the process the set \mathcal{T} is empty!

Analysis of fixed price auction

When adding S_{i} to FP, the set \mathcal{T} loses the following values
(1) $\sum_{(i, S) \in \mathcal{T}} y_{i, S} \cdot v_{i}(S) \leq \sum_{(i, S) \in \mathcal{T}} y_{i, S} \cdot v_{i}(M) \leq v_{i}(M) \leq \frac{v\left(o p t^{*}\right)}{\sqrt{m}}$
(2) $\sum_{(i, S) \in \mathcal{T} \mid j \in S} y_{i, S} \cdot v_{i}(S) \leq \frac{v\left(\text { opt }^{*}\right)}{\sqrt{m}}$, for every $j \in S_{i}$

That is, for each item that we add to FP, the set \mathcal{T} loses a value of at most $2 \cdot \frac{v\left(o p t^{*}\right)}{\sqrt{m}}$.

On the other hand, FP achieves revenue $p \geq \epsilon^{2} \cdot \frac{v\left(o p t^{*}\right)}{32 m}$, for each of the picked items.

Overview

0 : Introduction

1: Approximation algorithms

- single-minded bidders -
- multi-dimensional bidders -

2: Online algorithms

- overselling algorithm -
- oblivious randomized rounding -

Online mechanisms - model and approach

We assume that there are n bidders with arbitrary valuations.
The n bidders arrive one by one in random order.
The bidder arriving at time $i, 1 \leq i \leq n$, is called the i ith bidder.

The iterative pricing approach

When the i-th bidder arrives the mechanism calls the demand oracle with prices p_{e}^{i} that only depend on vauations of bidders $1, \ldots, i-1$ but not on the valuations of bidders i, \ldots, n.

By the direct characterization, this approach yields incentive compatible mechanisms.

Online mechanisms - competitive ratio

What do we achieve?

- Suppose each items is available with multiplicity $b \geq 1$.

Competitive ratio: $O\left(m^{1 /(b+1)} \log (b m)\right)$.

- For $b=\log m$ this gives competitive ratio $O(\log m)$.
- Suppose bundles have size at most d.

Competitive ratio: $O\left(d^{1 / b} \log (b m)\right)$.

- Suppose valuations are submodular or XOS.

Competitive ratio: $O(\log m)$.

Overview

0 : Introduction

1: Approximation algorithms

- single-minded bidders -
- multi-dimensional bidders -

2: Online algorithms

- overselling algorithm -
- oblivious randomized rounding -

Analytic trick: Violate constraints

Overselling MPU algorithm [inspired by Bartal, Gonen, Nisan 2003]

For each good $e \in U$ do $p_{e}^{1}:=p_{0}$.
For each bidder $i=1,2, \ldots, n$ do
Set $S_{i}:=\operatorname{Oracle}_{i}\left(U_{i}, p^{i}\right)$.
Update for each good $e \in S_{i}: p_{e}^{i+1}:=p_{e}^{i} \cdot 2^{1 / b}$.

Suppose L is a lower bound of $v(o p t)$ such that at most one bidder exceeds L. We set $p_{0}=L / 4 b m$.

For the time being, assume that $U_{i}=M$.
Oracle $_{i}\left(U_{i}, p^{i}\right)$ returns the utility-maximal bundle for bidder i for prices p^{i} restricted to items in $U_{i} \subseteq M$.

How many copies per item are sold?

Lemma 1

At most $s b$ copies of each item are sold, where $s=\log (4 b m)+\frac{2}{b}$.

Proof:

- Suppose $\lceil s b-2\rceil \geq b \log (4 b m)$ copies of item e have been sold after some step.
- Then the price of e is larger than $p_{0} \cdot 2^{\log (4 b m)} \geq L$.
- After this step, only one further copiy of e might be given to that bidder whose maximum valuation exceeds L.
- Hence, at most $\lceil s b-1\rceil \leq s b$ copies of e are assigned, which proves the lemma.

Lower bounding social welfare achieved by the algorithm

Let p_{e}^{*} denote the final prices (after the algorithm stopped).

Lemma 2

$v(S) \geq b \sum_{e \in U} p_{e}^{*}-b m p_{0}$.

Proof:

As bidders are individually rational, $v_{i}\left(S_{i}\right) \geq \sum_{e \in S_{i}} p_{e}^{i}$. Thus
$v(S) \geq \sum_{i=1}^{n} \sum_{e \in S_{i}} p_{e}^{i}=\sum_{i=1}^{n} \sum_{e \in S_{i}} p_{0} r^{\ell_{e}^{i}}=p_{0} \sum_{e \in U} \sum_{k=0}^{\ell_{e}^{*}-1} r^{k}=p_{0} \sum_{e \in U} \frac{r_{e}^{\ell_{e}^{*}}-1}{r-1}$
where $r=2^{1 / b}, \ell_{e}^{i}$ is the number of copies of e sold before bidder i, and ℓ_{e}^{*} is the number of copies sold at the end of the execution.
Applying $p_{e}^{*}=p_{0} r_{e}^{\ell_{e}^{*}}$ and $1 /(r-1)=1 /\left(2^{1 / b}-1\right) \geq b$ gives the lemma.

Lower bounding social welfare achieved by the algorithm

Lemma 3

$v(S) \geq v(o p t)-b \sum_{e \in M} p_{e}^{*}$, provided $U_{1}=\cdots U_{n}=M$.

Proof:

Consider any feasible allocation $T=\left(T_{1}, \ldots, T_{n}\right)$.
As the algorithm uses a utility-maximizing demand oracle, we have

$$
v_{i}\left(S_{i}\right)-\sum_{e \in S_{i}} p_{e}^{i} \geq v_{i}\left(T_{i}\right)-\sum_{e \in T_{i}} p_{e}^{i}
$$

which implies

$$
v_{i}\left(S_{i}\right) \geq v_{i}\left(T_{i}\right)-\sum_{e \in T_{i}} p_{e}^{i}
$$

As $p_{e}^{*} \geq p_{e}^{i}$, for every i and e, we obtain

$$
\begin{equation*}
v_{i}\left(S_{i}\right) \geq v_{i}\left(T_{i}\right)-\sum_{e \in T_{i}} p_{e}^{*} \tag{*}
\end{equation*}
$$

Lower bounding social welfare achieved by the algorithm

Summing over all bidders gives

$$
v(S)=\sum_{i=1}^{n} v_{i}\left(S_{i}\right) \geq \sum_{i=1}^{n} v_{i}\left(T_{i}\right)-\sum_{i=1}^{n} \sum_{e \in T_{i}} p_{e}^{*} \geq v(T)-b \sum_{e \in M} p_{e}^{*}
$$

because T is feasible so that each item is given to at most b sets.
Taking for T_{i} to be the bundle assigned to bidder i in an optimal solution gives

$$
v(S) \geq v(o p t)-b \sum_{e \in U} p_{e}^{*}
$$

Lower bounding social welfare achieved by the algorithm

Lemma 2

$v(S) \geq b \sum_{e \in U} p_{e}^{*}-b m p_{0}$.

Lemma 3

$v(S) \geq v(o p t)-b \sum_{e \in U} p_{e}^{*}$, provided $U_{1}=\cdots U_{n}=M$.

Substituting Lemma 2 into Lemma 3 gives

$$
v(S) \geq v(o p t)-v(S)-b m p_{0} \geq v(o p t)-v(S)-\frac{1}{4} v(o p t)
$$

as $p_{0}=L / 4 b m \leq v(o p t) / 4 b m$.
This gives $2 v(S) \geq \frac{3}{4} v(o p t)$ and, hence, $v(S) \geq \frac{3}{8} v(o p t)$.

The algorithm is $\frac{3}{8}$-competitive with respect to the optimal offline social welfare.

However, its output is not feasible as it oversells items by a factor of $O(\log b m)$.

Is the algorithm incentive compatible?

Overview

0 : Introduction

1: Approximation algorithms

- single-minded bidders -
- multi-dimensional bidders -

2: Online algorithms

- overselling algorithm -
- oblivious randomized rounding -

Algorithmic trick: Use randomization to ensure feasibility

MPU algorithm with oblivious randomized rounding

For each good $e \in U$ do $p_{e}^{1}:=p_{0}, b_{e}^{1}:=b$.
For each bidder $i=1,2, \ldots, n$ do
Set $S_{i}:=$ Oracle $_{i}\left(U_{i}, p^{i}\right)$, for $U_{i}=\left\{e \in U \mid b_{e}^{i}>0\right\}$.
Update for each good $e \in S_{i}: p_{e}^{i+1}:=p_{e}^{i} \cdot 2^{1 / b}$.
With probability q set $R_{i}:=S_{i}$ else $R_{i}:=\emptyset$.
Update for each good $e \in R_{i}: b_{e}^{i+1}:=b_{e}^{i}-1$.

Lower bounding social welfare achieved by the algorithm

Lemma 4

Suppose the probability $q>0$ is chosen sufficiently small such that, for any $1 \leq i \leq n$, and any bundle $T \subseteq U$,

$$
\underbrace{\mathbf{E}\left[v_{i}\left(T \cap U_{i}\right)\right] \geq \frac{1}{2} v_{i}(T)}_{\text {expected value assumption }} .
$$

Then $\mathbf{E}[v(S)] \geq \frac{1}{8} v(o p t)$ and $\mathbf{E}[v(R)] \geq \frac{q}{8} v(o p t)$.

Proof:

Consider any feasible allocation T_{1}, \ldots, T_{n}.
The set S_{i} is chosen by $\operatorname{Oracle}_{i}\left(U_{i}, p^{i}\right)$ so that

$$
v_{i}\left(S_{i}\right) \geq v_{i}\left(T_{i} \cap U_{i}\right)-\sum_{e \in T_{i} \cap U_{i}} p_{e}^{i},
$$

for any outcome of the algorithm's random coin flips.

Lower bounding social welfare achieved by the algorithm

This implies

$$
\mathbf{E}\left[v_{i}\left(S_{i}\right)\right] \geq \mathbf{E}\left[v_{i}\left(T_{i} \cap U_{i}\right)\right]-\sum_{e \in T_{i} \cap U_{i}} \mathbf{E}\left[p_{e}^{i}\right]
$$

Applying the expected value assumption, we obtain

$$
\mathbf{E}\left[v_{i}\left(S_{i}\right)\right] \geq \frac{1}{2} v_{i}\left(T_{i}\right)-\sum_{e \in T_{i}} \mathbf{E}\left[p_{e}^{i}\right] .
$$

Observe that this equation is similar to equation $\left(^{*}\right)$ in the proof of Lemma 3 so that the rest of the analysis proceeds analogous to the analysis for the overselling MPU algorithm.

Lower bounding social welfare achieved by the algorithm

Lemma 5

The expected value assumption holds for

$$
q=\frac{1}{2 e d^{1 / b}\left(\log (4 b m)+\frac{2}{b}\right)}
$$

where b denotes the multiplicity and d the maximum bundle size.

This implies
Theorem [Krysta, V., 2012]
The algorithm is $O\left(d^{1 / b} \log (b m)\right)$-competitive.

Lower bounding social welfare achieved by the algorithm

Proof of Lemma 5:

By Lemma 1, item $e \in U$ is contained in at most $\ell:=b \cdot \log (4 b m)+2$ of the provisional bundles S_{1}, \ldots, S_{i-1}.

Each of these ℓ bundles is turned into a final bundle with probability $q=b /\left(2 e d^{1 / b} \ell\right)$.

Observe that $e \notin U_{i}$ if at least b of the ℓ bundles became final.
The probability that $e \notin U_{i}$ is thus

$$
\binom{\ell}{b} \cdot q^{b} \leq\left(\frac{\mathrm{e} \ell}{b}\right)^{b} \cdot\left(\frac{b}{2 \mathrm{e} d^{1 / b} \ell}\right)^{b}=\frac{1}{2 d} .
$$

By the union bound, we have $\operatorname{Pr}\left[\exists e \in T: e \notin U_{i}\right] \leq|T| \cdot \frac{1}{2 d} \leq \frac{1}{2}$.
Thus, $\mathbf{E}\left[v_{i}\left(T \cap U_{i}\right)\right] \geq v_{i}(T) \cdot \operatorname{Pr}\left[\neg \exists e \in T: e \notin U_{i}\right] \geq \frac{1}{2} v_{i}(T) . \square$

Submodular and XOS valuations

Submodular:

$v_{i}(S \cup T) \leq v_{i}(S)+v_{i}(T)-v_{i}(S \cap T)$, for every S, T
Subadditive (a.k.a. complement free):
$v_{i}(S \cup T) \leq v_{i}(S)+v_{i}(T)$, for every S, T
Fractional-subadditive (a.k.a. XOS):
$v_{i}(S) \leq \sum_{K \subseteq S} \alpha_{K} v_{i}(K)$ for every fractional cover α_{K}, i.e.,

- $0 \leq \alpha_{K} \leq 1$, for all $K \subseteq S$, and
- $\sum_{i \mid j \in K} \alpha_{K} \geq 1$, for every item $j \in S$

Submodular \subseteq Fractional-Subadditive \subseteq Subadditive

Fractional-subadditive valuations

Lemma 6

If valuation functions are fractional-subadditive then the expected value assumption holds for

$$
q=\frac{1}{2(\log (4 \mu m)+2)}
$$

This implies
Theorem [Krysta, V., 2012]
The algorithm is $O(\log (m)$-competitive for XOS valuations.

Fractional-subadditive valuations

Proof of Lemma 6:

Any item $e \in U$ is contained in at most $\ell:=b \cdot \log (4 b m)+2$ of the provisional bundles S_{1}, \ldots, S_{i-1}. Each of these ℓ bundles is turned into a final bundle with probability $q=1 /(2 \ell)$.

$$
\operatorname{Pr}\left[e \notin U_{i}\right]=\operatorname{Pr}[\text { one of the } \ell \text { bundles becomes final }] \leq \frac{1}{2} .
$$

Now fix T arbitrarily. For any given subset $K \subseteq T$, let $\alpha(K)$ denote the probability that $T \cap U_{i}=K$. For any $e \in T$,

$$
\sum_{T \supseteq K \ni e} \alpha(K)=\operatorname{Pr}\left[e \in U_{i}\right] \geq \frac{1}{2}
$$

That is, α is a fractional half-cover of T. By fractional subadditivity,

$$
\mathbf{E}\left[v_{i}\left(T \cap U_{i}\right)\right]=\sum_{K \subseteq T} \alpha(K) v_{i}(K) \geq \frac{1}{2} v_{i}(T)
$$

Recommended Reading

- Chapter 9, 11, and 12 in "Algorithmic Game Theory," Nisan N., Roughgarden T., Tardos E., Vazirani V. (Eds.), 2007.
- D. Lehmann, L. O'Callaghan, and Y. Shoham. Truth revelation in approximately efficient combinatorial auctions. J. ACM, 49(5), 2002.
- S. Dobzinski, N. Nisan, and M. Schapira. Truthful randomized mechanisms for combinatorial auctions. J. Comput. Syst. Sci. 78(1): 15-25, 2012.
- S. Dobzinski. Two randomized mechanisms for combinatorial auctions. APPROX 2007.
- R. Lavi and C. Swamy. Truthful and near-optimal mechanism design via linear programming. J. ACM 58(6), 2011.

Recommended Reading

- U. Feige. On maximizing welfare when utility functions are subadditive. SIAM J. Comput., 39(1), 2009. (see also the STOC 2006 version which contains some addtional content)
- P. Krysta and B. Vöcking, Online Mechanism Design (Randomized Rounding on the Fly). ICALP 2012.
- Y. Bartal, R. Gonen, and N. Nisan. Incentive compatible multi unit combinatorial auctions. TARK 2003.
- B. Awerbuch, Y. Azar, A. Meyerson. Reducing truth-telling online mechanisms to online optimization. STOC 2003.

