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Given: A a matroid (M, J), and a family of p-sized subsets from J:
S])SZ)'-')St

There is a subfamily 5 of 5 of size at most (P9) such that:

Forany X < [n] of size at most g,

ifthereisaset SinFsuchthat X nS=gand X U S € J,
thenthereisaset Sin Fsuchthat X n S = gfand X U S e J.

Lovasz, 1977



Given: A a matroid (M, J), and a family of p-sized subsets from J:
S1,82y..+,S¢

There is an efficiently computable subfamily T of F of size at most (p;q) such that:

For any X < [n] of size at most q,

ifthereisaset Sin Fsuchthat X n S = gfand X U S € J,
thenthereisaset SinFsuchthat X n S = gand X U S e J.

Marx (2009) and Fomin, Lokshtanov, Saurabh (2013)



Summary.

We have at hand a p-uniform collection of independent sets, 3 and a number q.
Let X be any set of size at most q. For any set S € &, if:

a Xis disjoint from S, and
b Xand S together form an independent set,
then a g-representative family 7 contains a set S that is:
a disjoint from X, and
b forms an independent set together with X.

Such a subfamily is called a g-representative family for the given family.
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Digraph Pair Cut Problem

Input: A directed graph D = (V, A), a source vertex s € V and a set P of
pairs of vertices.

Parameter: k

Question: Does there exist a set X < V \ {s} of size at most k such that every
pair in P is not fromsinD \ X?




REACHABILITY OF VERTEX PAIRS

Reachable pair : A pair of vertices, say (u, v) such that both are reachable by
paths (need not be disjoint) from S.
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REACHABILITY OF VERTEX PAIRS

Reachable pair : A pair of vertices, say (u, v) such that both are reachable by
paths (need not be disjoint) from S.

Want to delete vertex w.
w
.T\‘._ﬂg u
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REACHABILITY OF VERTEX PAIRS

Reachable pair : A pair of vertices, say (u, v) such that both are reachable by
paths (need not be disjoint) from S.
Deleting w makes the pair (u, v) non-reachable from S.
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Digraph Pair Cut Problem

Input: A directed graph D = (V, A), a source vertex s € V and a set P of
pairs of vertices.

Parameter: k

Question: Does there exist a set X < V \ {s} of size at most k such that every
pair in P is not reachable from s in D \ X?







+ Let X be a solution to the problem.

ImpoRTANT OBSERVATION
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* Let X be a solution to the problem.
¢ Clearly no pair (u,v) € P is reachable from s in D \ X.



ImpoRTANT OBSERVATION

+ Let X be a solution to the problem.

« Let T be a set consisting of vertices, say u € {u, v}, from each pair (u, v),
such that there is no path froms towin D \ X.
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* Let X be a solution to the problem.

¢ Clearly, X is a s-T separator in D. In fact, X could be any minimum cut
between sand T in D.



ImpoRTANT OBSERVATION

¢ Let X be a solution to the problemand T = {qa, c, f, g}.

¢ Clearly, X is a s-T separator in D. In fact, X could be any minimum cut
between sand T in D.
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(D,s, T =10)
O

@ Initialiseaset T = &

@ |If the size of the (s, T)-minimum cut is at least k + 1, then we stop and
say NO.

© Ifthereisan (s, T)-minimum cut C of size at most k such that no pairs of
P are reachable from s, return YES.



A FIrsT ATTEMPT AT AN FPT ALGORITHM: BRANCHING ALGORITHM
(D,s, T =10)

(D,s,T m: {v})
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@ |Initialiseaset T = ¥

@ |If the size of the (s, T)-minimum cut is at least k + 1, then we stop and
say NO.

@ Ifthereisan (s, T)-minimum cut C of size at most k such that no pairs of
P are reachable from s, return YES.

O Else, there is a pair (1, v) € P which is reachable from s in D \ C

© Pick any such reachable pair and make a two-way branch for adding w or v
to T. Return to step 2



DRrAwBACKS

We do not know how many iterations are required before all pairs of P
become nonreachable from s. The algorithm could take 2’/ time.



A nEw STRATEGY

+ Show that some parameter, which has to be positive in any graph, drops at
every iteration of the branching algorithm.



A nEw STRATEGY

+ Show that some parameter, which has to be positive in any graph, drops at
every iteration of the branching algorithm.

+ Parameter be L = k — A. Here A is the size of a (s, T)-minimum cut for
the local T of an iteration.



A nEw STRATEGY

(D,s, T =10)

(D7s,T;W()O(N= {v})
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+ Show that some parameter, which has to be positive in any graph, drops at
every iteration of the branching algorithm.

+ Suppose, at the beginning of iteration i we find a (s, T)-minimum cut C,
we find a reachable pair (u,v)in D \ C.



A nEw STRATEGY

(D,s,T =0)

(D,s,T /“i}% {v})
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¢ Show that some parameter, which has to be positive in any graph, drops at
every iteration of the branching algorithm.

* Suppose, at the beginning of iteration i we find a (s, T)-minimum cut C,
we find a reachable pair (u,v) inD \ C.

+ Look at any one of the branches (say the one which picks u for T). The size
of the minimum cut in the (i + 1)* iteration could be of the same size as
C.



A nEw STRATEGY

(D,s, T =0)

(D,s,T mz {v})
O/KQ oﬁ\o

+ Show that some parameter, which has to be positive in any graph, drops at
every iteration of the branching algorithm.

+ Suppose, at the beginning of iteration i we find a (s, T)-minimum cut C,
we find a reachable pair (u,v) inD \ C.

¢ Is there a minimum cut which will strictly increase in size in every step of
the iteration, on both the branches?
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disconnecting other pairs.



YES THERE IS!

¥

¢ Inputis adigraph D = (V, A) and a set S of vertices (here S = {s}) that
we will call source set. Want to disconnect T from S such that it helps in
disconnecting other pairs.

« It seems natural that find a minimum cut that is “closest” to S - as this may
help in disconnecting other pairs.



YES THERE IS!

¥

¢ Inputis adigraph D = (V, A) and a set S of vertices (here S = {s}) that
we will call source set. Want to disconnect T from S such that it helps in
disconnecting other pairs.

« It seems natural that find a minimum cut that is “closest” to S - as this may
help in disconnecting other pairs.



YES THERE IS!

T = {g} Z}

¢ Inputis adigraph D = (V, A) and a set S of vertices (here S = {s}) that
we will call source set. Want to disconnect T from S such that it helps in
disconnecting other pairs.

« It seems natural that find a minimum cut that is “closest” to S - as this may
help in disconnecting other pairs.



YES THERE IS!

« Inputisadigraph D = (V, A) and a set S of vertices (here S = {s}) that
we will call source set. Want to disconnect T from S such that it helps in
disconnecting other pairs.

¢ Closest set : Aset X < Vis closest to S if X is the unique (S, X)-mincut .
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is called closest set.



YES THERE IS!

« Inputis adigraph D = (V, A) and a set S of vertices (here S = {s}) that
we will call source set. Want to disconnect T from S such that it helps in
disconnecting other pairs.

¢ Closest set : Aset X < Vis closest to S if X is the unique (S, X)-mincut .
That is, the only cut of size at most |X|, for paths from S to X, is X itself. X
is called closest set.

¢ Closest set of a set T: For any set of vertices T, the induced closest set
C(T) is the unique (S, T)-mincut which is closest to S. Clearly, if X is
closest set then C(X) = X.



ExampLE
+ S is the source set; X’ is the closest set of X; X’ is a closest set.




ExampLE

+ S is the source set; X’ is the closest set of X; X’ is a closest set.
+ Analogy with important separators.
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(D,s, T =10)
O

@ |Initialiseaset T = &
@ If the size of the (s, T)-mincut is at least k + 1, then we stop and say NO.

@ Ifthereis an closest (s, T)-set C(T) of size at most k such that no pairs of
P are reachable from s, return YES.



ImpRrovED BrAncHING ALGORITHM

(D,s, T =10)

(D,s, T = ) (DT = {v})

O ©, ) O

@ |Initialiseaset T = &
@ |[f the size of the (s, T)-mincut is at least k + 1, then we stop and say NO.

@ Ifthereis an closest (s, T)-set C(T) of size at most k such that no pairs of
P are reachable from s, return YES.

O Else, there is a pair (1, v) € P which is reachable from s in D \ C(T)

© Pick any such reachable pair and make a two-way branch for adding w or v
to T. Return to step 2



AnaLysis
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C(T)

¢ Initerationilet C(T) = C be the closest (s, T) set and let (u,v) € P be
reachable froms in D \ C.

+ Pick any branch (say the branch where 1. is picked in T). Any minimum cut
C’of (s, T uu)isalsoacut for (s, T),so |C’| = |C|. Want to show
IC'] > IC|
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+ Consider a mincut between s-C U {u}in D[R(s, T) u C] - say Z.



AnaLysis

O O OO0
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C(T)

R(s,C(T))

« Consider a mincut between s-C U {u}in D[R(s, T) u C] - say Z.

¢ Clearly |Z| = |C|. Suppose |Z| = |C|. Then clearly Z # C - else it can
not disconnect path from s to u. But then it contradicts that C(T) is
closest set to s.
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+ Consider a mincut between s-C U {u}in D[R(s, T) u C] - say Z.

« Suppose |Z| > |C|. Then there are |Z| + 1 internally vertex disjoint paths
fromsto C U {u}in D[R(s,T) u C].

« Using this we get that there are |C| + 1 internally vertex disjoint paths
fromsto T U {u}. Thus,|C’| > |C]|.



ABSTRACTING OUT A STATEMENT FROM THE PROCF..

Let D be a digraph S and T be two vertex sets and C(T) be the induced closest
set. Furthermore, let R(S, C(T)) denotes the set of vertices that are reachable
fromSinD \ C(T).



ABSTRACTING OUT A STATEMENT FROM THE PROCF..

Let D be a digraph S and T be two vertex sets and C(T) be the induced closest
set. Furthermore, let R(S, C(T)) denotes the set of vertices that are reachable
fromSinD \ C(T). Then

for every vertex u € R(S, C(T)) we have that there are |C| + 1
vertex disjoint paths (internally vertex disjoint if S = {s}) from S to
Cu {v}in DIR(S,C(T)) u C(T)].
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* If the algorithm finds a set of size at most k then that is a solution for the
Digraph Pair Cut problem.
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Anaysis:

* If the algorithm finds a set of size at most k then that is a solution for the
Digraph Pair Cut problem.

+ Suppose the answer returned is NO. Can there be a solution set that the
algorithm has missed? (Think about it!)

« Algorithm runs in 2¥n2(1) time.
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DigraPH Pair Cut PRoBLEM; KERNEL

+ The number of pairs in the input set P could be as large as O (n?).

+ Notice that if we have a solution X of size at most k, then the closest set
C(X) from s is also a solution.



FIRST ATTEMPT

-0 -

s O >
S

+ Let U be the set of vertices that appear in pairs of P. Need to make sure
that we find a solution which does not contain s: we make k + 1 copies of
s (and give the same adjacencies) and call this set S the source set.
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+ Look at the gammoid (D, S, U) (source set 8 = S and sink set T = U)
and look at its representation matrix A.
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+ Look at the gammoid (D, S, U) (source set 8 = S and sink set T = U)
and look at its representation matrix A.

+ Consider a subset of columns which correspond to a set W of vertices such
that V(u,v) € P, W n (u,v) # ¢ and such that the rank of these
columns is at most k, then we know that the minimum (S, W) cutis a
solution to the Digraph Pair cut problem.



FIRST ATTEMPT

+ Look at the gammoid (D, S, U) (source set 8 = S and sink set T = U)
and look at its representation matrix A.

+ Consider a subset of columns which correspond to a set W of vertices such
that V(u,v) € P, W n (u,v) # ¢ and such that the rank of these
columns is at most k, then we know that the minimum (S, W) cutis a
solution to the Digraph Pair cut problem.

+ But, since U could be a very large set, the representation matrix A could be
large!



+ Suppose we knew that the size of P was small, then the representation of
the gammoid (D, S, U) is a compression for Digraph Pair cut .

o If|P] is very large, then we want to find a small subset of P, such that
making this set of pairs non-reachable is as good as making all pairs of P
nonreachable.



+ Suppose we knew that the size of P was small, then the representation of
the gammoid (D, S, U) is a compression for Digraph Pair cut .

o If|P] is very large, then we want to find a small subset of P, such that
making this set of pairs non-reachable is as good as making all pairs of P
nonreachable.

We S E E M to be looking for something like a

representative Set o tesetof pais.



MAnTRA oF RePReSENTATIVE SETS BASED KERNELIZATION

Keep a certificate for every k sized
subset that tells why it can not a
solution.
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that is not a solution there is a corresponding witness in W.



WHAT DOES IT mEAN?

Keep a certificate for every k sized subset that tells why it can not be a solution.

Consider Vertex Cover

+ What is a certificate that a particular k-sized subset is not a solution?
+ An edge that it does not cover - or intersects!

+ So keep a subset of edges, say W, such that every for every k-sized subset
that is not a solution there is a corresponding witness in W.

Idea is to find this desired W using appropriate matroids.
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(HAT DOES IT MEAN CONTINUES WITH REFINEMENT..?

+ Sometimes we can also describe a potential solution by saying a subset of
size at most k that looks like - - -.

|dea is to find this desired W using appropriate matroids.

+ The idea is to encode the desired witness as an independent set of an
appropriate matroid. Clearly, the size of the solution + constraint gives a
lower bound on the rank of the matroid.



Digraph D, vertex sets S and pairs P.
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Digraph D, vertex sets S and pairs P.

* Solution are k-sized subset. In fact if X is a solution then induced closest
set C(X) is also a solution.

¢ Let us keep witness for why a particular closest set X (of size at most k) to
S is not a solution.

+ Aset X is not a solution because a pair (u,v) € P is reachable from S in
D\ X.

+ So there are |X| + 1 vertex disjoint paths from S to X U {u}in
DIR(S, X) u X] as well as |X| -+ 1 vertex disjoint paths from S to X U {v}
in D[R(S, X) u X].



AppLying THE 1DEA TO DIGRAPH PAIRS

Digraph D, vertex sets S and pairs 2.

+ Solution are k-sized subset. In fact if X is a solution then induced closest
set C(X) is also a solution.

o Let us keep witness for why a particular closest set X (of size at most k) to
S is not a solution.

¢ Aset X is not a solution because a pair (u,v) € P is reachable from S in
D\ X.

« So there are |X| + 1 vertex disjoint paths from S to X u {u}in
DIR(S, X) u X] as well as |X| + 1 vertex disjoint paths from S to X U {v}
in D[R(S, X) u XI.

A closest set X is not a solution if and only if there exists a pair
(u,v) € Psuchthat Sis linked to X U {u}and S is linked to
Xu{v}



AppLying THE 1DEA TO DIGRAPH PAIRS

Digraph D, vertex sets S and pairs 2.

A closest set X is not a solution if and only if there exists a pair
(u,v) € Psuchthat Sis linked to X U {u}and S is linked to
Xu{vhL

So we encode this to get our desired W.
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+ Build a matroid M, consisting of 2 disjoint copies of the gammoid (D, S).
Call the first gammoid - M - (D', S') and the second - M, -
(D2, S2). Refer to all objects of gammoid i with superscript i. Thus,
M=M; d M.
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DEFINING THE PROBLEM IN TERMS OF A TIATROID

+ Build a matroid M, consisting of 2 disjoint copies of the gammoid (D, S).
Call the first gammoid - M - (D', S') and the second - M, -
(D2, S2). Refer to all objects of gammoid i with superscript i. Thus,
M=M; d M.
o Let
P ={(u',v*) [ (u,v) € PL.

Compute 2k-representative for ... There is a representative set @m of
P that extends all independent sets of M of size at most 2k. Size of P,
is at most O (k?).

Let PP’ be the set of pairs in PP whose corresponding pairs are in Pon.
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Lemma
(G, P, k) is a yes instance if and only if (G, P’, k) is a yes instance.
= Obvious as P’ < P.
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< Let X be a solution to the problem - assume that X is a closest setto S. If X
is not a solution then there exists a pair (1, v) € P such that S is linked to

X u {u}and Sis linked to X U {v}. Since P’ corresponds to 2k representative
we have that there exists a pair (u/,v’) € P’ such that S is linked to X U {u'}
and Sis linked to X U {v'}.



FINISHING THE PROCF...

Lemma

(G, P, k) is a yes instance if and only if (G, P, k) is a yes instance.

< Let X be a solution to the problem - assume that X is a closest setto S. If X
is not a solution then there exists a pair (1, v) € P such that S is linked to

X u {u}and Sis linked to X U {v}. Since P’ corresponds to 2k representative
we have that there exists a pair (u/,v’) € P’ such that S is linked to X U {u'}
and Sis linked to X U {v’}. Contradiction that X is a solution to (G, P’, k)!



Cut-Covering Problem



Cut-Covering PRoBLEM

Cut-Covering Problem

Input: A digraph D and vertex subsets S and T.

Question: Findaset Zsuchthatforany A < S, B < T, Z contains a minimum
(A, B)-cut.




Cut-Covering PRoBLEM

Cut-Covering Problem

Input: A digraph D and vertex subsets S and T.

Question: Findaset Zsuchthatforany A < S, B < T, Z contains a minimum
(A, B)-cut.

Clearly Z = V(D) suffices!
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Cut-Covering Problem

Input: A digraph D and vertex subsets S and T.

Question: Find a set Z (as small as possible) such that forany A < S,B < T,
Z contains a minimum (A, B)-cut.

It is not yet clear what this small should be. We will see at the end that it is

not too large
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Cut-Covering Problem

Input: A digraph D and vertex subsets S and T.

Question: Find a set Z (as small as possible) such that forany A < S,B < T,
Z contains a minimum (A, B)-cut.

» Which vertices must be in the set Z?

We will show that just having these essential vertices in Z are almost
sufficient”

More precisely we will show that (a) either all the vertices are essential; or (b) we
can obtain an equivalent instance of the problem with strictly smaller number of
vertices.



¢ Question 1: How to find the set of essential vertices?

¢ Question 2: If there are non-essential vertices then how do we obtain the
equivalent instance.



¢ Question 1: How to find the set of essential vertices?

¢ Question 2: If there are non-essential vertices then how do we obtain the
equivalent instance.

We first answer Question 2.



DEALING WITH NONESSENTIAL VERTICES

S N (v) NT(v)

~

+ Let v be a non-essential vertex.



DEALING WITH NONESSENTIAL VERTICES

5 N (v) N+ m

Transformed Digraph

« Delete v and transform D to digraph D’ such that there is a complete
bipartite graph between the in-neighbours N~ (v) and out-neighbours
N (v) of v, with edges directed from N~ (v) to N (v).



Want to argue that the size of minimum cuts remains exactly the same for D and
D’. In fact, we show that a minimum cut in the new graph D’ is actually a
minimum cut in D itself.



Want to argue that the size of minimum cuts remains exactly the same for D and
D’. In fact, we show that a minimum cut in the new graph D' is actually a
minimum cut in D itself.

This implies our construction.

Since forevery A < Sand B < T there is a minimum cut that avoids v, we have
that D and D’ are equivalent instance of Cut-Covering Problem.



Bounoing THECuTIn D

Ca C Cp

+ Take a minimum cut C of (A, B) in D that did not contain v. Such a cut
exists. Let Ca, Cp be the components containing A and B respectively in
D\ C.



Bounomg THEGUTIN D/

Ca C Cg
D/

« Suppose this is not a cut of A, B in D’. This implies that the
transformation introduced an edge from a vertex uw € C5 tow € Cg.

« This happensifu e N~ (v)and w € N (v).



Bounomg THEGUTIN D/

A
Uu

Ca

v C Cp
D

+ This implies that there was a path from A to B through v, v,win D \ C
(contradiction to C being an (A, B)-cut in D).

+ So, forany (A, B) size of a minimum cut in D’ is at most the size of a
minimum cut in D.



C'y

¢ Takeacut C’ of (A,B)inD’.

Cl

Bounoing THE cuT In D




Bounoing THE cut In D

+ Suppose this is not a cut of A, B in D. This implies there is a path P from
AtoBinD\C’andveP.

« This happensifue N~ (v) nPandw e N (v) nPandu,w ¢ C’.



Bounoing THE cut In D

Jgl
u
'y C’

D/
¢ In D’ there was an arc a = (u, w) and a path P’ = PuawP from A to
B avoiding C’ (contradiction to C’ being an (A, B)-cut on D’).

+ So, forany (A, B) size of a minimum cut in D’ is equal to the size of a
minimum cut in D.

Ch



+ Start from the given graph D.
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+ Start from the given graph D.

* Iteratively throw out a nonessential vertex of the present graph and make
the above transformation, that preserves the size of the minimum cut
betweenany A = S,B = T.



ALGORITHM FOR FINDING SET Z

+ Start from the given graph D.

* Iteratively throw out a nonessential vertex of the present graph and make
the above transformation, that preserves the size of the minimum cut
betweenany A = S,B = T.

+ Stop when there are no more nonessential vertices in the current graph.



REmARKS

+ Notice that there may a nonessential vertex of D that became essential in
one of the iterations.
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+ Notice that there may a nonessential vertex of D that became essential in
one of the iterations.

+ An essential vertex remains essential throughout the algorithm: we showed
that by the property of the transformation from D to D’, any minimum cut
of D’ is a minimum cut of D.



REmARKS

+ Notice that there may a nonessential vertex of D that became essential in
one of the iterations.

+ An essential vertex remains essential throughout the algorithm: we showed
that by the property of the transformation from D to D’, any minimum cut
of D’ is a minimum cut of D.

+ By the property of the transformation, the final graph contains a minimum
cutin D forany A, B.



¢ Question 1: How to find the set of essential vertices?

¢ Question 2: If there are non-essential vertices then how do we obtain the
equivalent instance.



¢ Question 1: How to find the set of essential vertices?

¢ Question 2: If there are non-essential vertices then how do we obtain the
equivalent instance.

We now answer Question 1.



EssenTiaL VERTICES

¢ Recall that we have a directed graph D = (V, E) and two sets of vertices
Sand T. A vertex is called essential for A < Sand B < T if it occurs in
every minimum (A, B) cut



How Do ESSENTIAL VERTICES LODK LIKE

Sﬁ%




PROPERTIES OF ESSENTIAL VERTICES

Lemma
Suppose that v is essential for A and B and let C be any minimum (A, B) cut.
Then,

@ thereisaset of |C| + 1 paths from A to C in R(A, C) which are pairwise
vertex disjoint, except for 2 of these paths which intersect in v and

@ thereis a set of |C| + 1 paths from C to B in NR(A, C) which are
pairwise vertex disjoint, except for 2 of these paths which intersect in v.



EssenTiaL VERTICES

C

A

\Y%
G

« Construct the graph G’ by taking G[R(A, C)] u C and adding a new
vertex v/ and adding all arcs from the in-neighborhood of v to v'.



EssenTiaL VERTICES

A ¢

’N
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S V'
G

+ What is the value of the maximum flow from A to C U v/ in G”?



EssenTiaL VERTICES

A ¢

’N
;\O@

S V'
G

+ What is the value of the maximum flow from A to C U v/ in G”?
« If this value is |C| + 1, then we are done!



EssenTiaL VERTICES
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G

+ Value of the max flow is not |C| + 1 = an A-(C u Vv’) separator Z of
size at most |C|.



EssenTiaL VERTICES

A C
’Q
3@:\7
s v'
G

¢ Value of the max flow is not |C| +1 = an A-(C U V') separator Z of
size at most |C|.

¢ If Z contains v and v/, then at least one of the vertex disjoint paths from A
to C \ visnot hit. = Z does not contain both v and v’.



EssenTiaL VERTICES

A C
’3
———L
g

* Value of the max flow is not |C| +1 = an A-(C u V') separator Z of
size at most |C|.

« If Z contains neither v nor v/, then Z is a minimum (A, B) cut disjoint
fromv = contradiction.



EssenTiaL VERTICES

C

\Y
G

* Value of the max flow is not |C| +1 = an A-(C u V') separator Z of
size at most |C|.

¢ If Z contains v but not v/, then v’ is reachable from A in G’ \ Z —
contradiction.



Proor of Cut Covering LEmmA

* Recall that we have a directed graph G(V, E) and two sets of vertices S
and T. A vertex is called essential if it occurs in every minimum (A, B) cut,

forsome A€ SandB € T.
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* Recall that we have a directed graph G(V, E) and two sets of vertices S
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forsome A€ SandB € T.
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* We wish to compute the set of essential vertices, Z in the graph G.



Proor of Cut Covering LEmmA

* Recall that we have a directed graph G(V, E) and two sets of vertices S
and T. A vertex is called essential if it occurs in every minimum (A, B) cut,

forsome A€ SandB € T.

S T
A C
Ly
>
>
//N./\ e
\_/Y V\//Y
S T
G

* We wish to compute the set of essential vertices, Z in the graph G.
o It will be sufficient to compute a set R(G) such that Z < R(G),and R(G)
is of bounded size.



Proor o THE Cut Covering Lemma

Observe the following :

Let r the size of the minimum (S, T) cut. Observe that the size of any (A, B) cut
is bounded by r.
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» We will describe a linear matroid M.



Proor o THE Cut Covering Lemma

Observe the following :

Let r the size of the minimum (S, T) cut. Observe that the size of any (A, B) cut
is bounded by r.

We will compute Z in the following manner :

» We will describe a linear matroid M.

+ Then we will describe a family & of independent sets of rank 3, such that
each independent set corresponds to a vertex of G.



Constrcution oF THE MATROID M

The Matroid M is a direct-sum of the following three matroids.



Constrcution oF THE MATROID M

The Matroid M is a direct-sum of the following three matroids.

o MI[0] is the uniform matroid of rank .
It is defined on the universe V/[0], where V/[0] is a copy of V. For a vertex
v € V, we will use v[0] to denote the corresponding vertex in V[0].
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* MJ0] is the uniform matroid of rank r.
« M[1] is a gammoid defined using S. It is defined as follows,
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+ Let G[1] be the graph constructed as
follows,



Constrcurion or THE MaTroi0 M
The Matroid M is a direct-sum of the following three matroids.

* MJ0] is the uniform matroid of rank r.
« M[1] is a gammoid defined using S. It is defined as follows,

+ Let G[1] be the graph constructed as
follows,

* Make a copy of the graph G, called
G[1] with vertex set V[1].

s T[]




Constrcurion or THE MaTroi0 M
The Matroid M is a direct-sum of the following three matroids.

* MJ0] is the uniform matroid of rank r.
« M[1] is a gammoid defined using S. It is defined as follows,

+ Let G[1] be the graph constructed as
follows,

* Make a copy of the graph G, called
G[1] with vertex set V/[1].

* Introduce a sink only vertex v[1]”
for every vertex v[1].

s T[]




Constrcurion or THE MaTroi0 M
The Matroid M is a direct-sum of the following three matroids.

* MJ0] is the uniform matroid of rank r.
« M[1] is a gammoid defined using S. It is defined as follows,

+ Let G[1] be the graph constructed as
follows,

* Make a copy of the graph G, called
G[1] with vertex set V/[1].

* Introduce a sink only vertex v[1]”
for every vertex v[1].

« M[1] is a gammoid S[1] & ]
(v vay, 11]) where I[1] «
consists of all the vertices linked to V[10] /

the set S[1].
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* MJ0] is the uniform matroid of rank r.
« M[1] is a gammoid defined using S.
+ M[2] is a gammoid defined using T. It is defined as follows,



Constrcution oF THE MMATRoID M
The Matroid M is a direct-sum of the following three matroids.
* MJ0] is the uniform matroid of rank r.
« M[1] is a gammoid defined using S.
+ M[2] is a gammoid defined using T. It is defined as follows,

* Let G[2] be the graph constructed as
follows,
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* MJ0] is the uniform matroid of rank r.
« M[1] is a gammoid defined using S.
+ M[2] is a gammoid defined using T. It is defined as follows,

* Let G[2] be the graph constructed as

follows,

¢ Make a copy of the graph G, called
G|[2] with vertex set V/[2].
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Constrcurion or THE MaTroi0 M
The Matroid M is a direct-sum of the following three matroids.

* MJ0] is the uniform matroid of rank r.
« M[1] is a gammoid defined using S.
+ M[2] is a gammoid defined using T. It is defined as follows,

* Let G[2] be the graph constructed as

follows,

¢ Make a copy of the graph G, called
G [2] with vertex set V/[2].
* Reverse every arc of G[2].

S[2]

TI2]




Constrcurion or THE MaTroi0 M
The Matroid M is a direct-sum of the following three matroids.

* MJ0] is the uniform matroid of rank r.
« M[1] is a gammoid defined using S.
+ M[2] is a gammoid defined using T. It is defined as follows,

* Let G[2] be the graph constructed as
follows,

¢ Make a copy of the graph G, called
G|[2] with vertex set V/[2].

* Reverse every arc of G[2].

* Introduce a sink only vertex v[2]”
for every v[2].

S[2]

TI2]




Constrcurion or THE MaTroi0 M
The Matroid M is a direct-sum of the following three matroids.

* MJ0] is the uniform matroid of rank r.
« M[1] is a gammoid defined using S.
+ M[2] is a gammoid defined using T. It is defined as follows,

* Let G[2] be the graph constructed as
follows,

¢ Make a copy of the graph G, called
G|[2] with vertex set V/[2].

* Reverse every arc of G[2].

* Introduce a sink only vertex v[2]”
for every v[2].

+ M[2] is a gammoid Stz - T4
(V21U V12V, 1(2]) where I[2] %
consists of all the vertices linked to V[S]/

the set T[2].



Constrcution oF THE MATROID M

The Matroid M is a direct-sum of the following three matroids.

« MJ0] is the uniform matroid of rank r.

« M[1] is a gammoid defined using S.

* M|[2] is a gammoid defined using T.

+ Observe that the rank of M is S| + [T| + .
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We compute F which is a IS| + [T| +  — 3 representative set for 7.
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We have to show that every essential vertex is in R(G).
It is sufficient to show the following :



Proor: THE FamILY 5 Ano THE SET R(G)
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* The set F is defined as follows,
+ Forvertexv e V let f(v) = {v[0],v[1]/,v[2]'}.
+ Observe that, f(v) is an independent set of rank 3 in M.
o F={f(v)|veV\(SuUT)L
¢+ We compute F which is a IS| + [T| + r — 3 representative set for 7.
¢ LetR(G) ={ve VIf(v) e T}
+ We have to show that every essential vertex is in R(G).
« Itis sufficient to show the following :

For every essential vertex q, there is a independent set C, € M such that,

¢ f(q) and C are disjoint,and f(q) U C4 is an independent set in M.

* For any other vertex s € V,

¢ either f(s) U Cq is not independent,
¢ or f(s) and C, are not disjoint.
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Cbea A, B minumum cut.
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* Let g be an essential vertex in G,
wrtA < SandB < T. And let
Cbea A, B minumum cut.

¢ Recall that by Proposition
ICl < |Al, [BI.

* Let C be the union of
(ClOI\{ql01}),

(SIT\ A[1]) u C[1] and
(T21\ B[2]) v C[2].
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Let g be an essential vertex in G,
wrtA < SandB < T. And let
Cbea A, B minumum cut.

Recall that by Proposition

ICl < |A],[BI.

Let C4 be the union of

(CloI \ {ql01}),

(S[IT\ A[1]) u C[1] and
(TR21\ B[2]) v C[2].
Observe that C is an
independent set of rank at most
(ISI+ [T[ +r—3).

ProOF: THE SET Cq.




 Observe that

f(q) ={ql0], q[1)’, q[2)'} and
Cq are disjoint.

ProOF: THE SET Cq.




* We will show that f(q) U Cg is
an independent set.
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* We will show that f(q) U Cg is
an independent set.
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mdependent in M[0].
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* We will show that f(q) U Cg is
an independent set.
* q[0] U (CIO]\ ql0]) is
mdependent in M[0].
+ By Proposition there are two
vertex disjoint paths from A to
qinG\ (C\{q}).

ProOF: THE SET Cq.




* We will show that f(q) U Cq is
an independent set.

* q[0 01\ q[0]
mdependent in M[O]

+ By Proposition there are two
vertex disjoint paths from A to
qinG\ (C\{q}).

Therefore

NINADD v CTu{qll]’}
is independent in M[1].
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ProOF: THE SET Cq.

* We will show that f(q) U Cq is
an independent set.
* q[0 01\ q[0]
|ndependentn1nA[O]
+ By Proposition there are two
vertex disjoint paths from A to
qinG\ (C\{q)).
Therefore
OI\A[) v Cllu{ql1]’}
is independent in M[1].
« Similarly,
(TRINB[2)) u C[2l u{q[2]'}

is an independent set.




+ Now for any other vertex s, one of
the following three cases happen,
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o Eithers € C.
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ProOF: THE SET Cq.

* Now for any other vertex s, one of
the following three cases happen,
+ Eithers € C.
Therefore, f(s) and C have
s[0] as a common element.



+ Now for any other vertex s, one of
the following three cases happen,
o Eithers € C.
¢ Or s is not reachable from A in
G\C

ProOF: THE SET Cq.
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* Now for any other vertex s, one of
the following three cases happen,
¢ Eithers € C. Cl1]
¢ Or s is not reachable from A in
G\C.
Therefore, all paths from A[1]
to q[1]’ must pass through
C[1]. So f(s) U Cq isnot an s
independent set.

”




+ Now for any other vertex s, one of
the following three cases happen,
o Eithers € C.
¢ Or s is not reachable from A in
G\ C.
¢ Or s is not reachable from B in
G\C.
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* Now for any other vertex s, one of
the following three cases happen,
o Eithers € C.
+ Or s is not reachable from A in
G\C.
¢ Or s is not reachable from B in
G\C.
Therefore, all paths from B[2]
to q[2]’ must pass through
Cl[2]. So f(s) U Cq isnotan
independent set.

ProOF: THE SET Cq.




ProOF: THE SET Cq.

+ Therefore for every essential vertex q, f(q) is present in F and q itselfis
present in R(G).

« Since the size of 7 is bounded by (IS| + [T| + )3, we have that the size of
R(G) is bounded by the same quantity.
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Let G be a directed graph and X < V a set of terminals. In polynomial time one
can identify a set Z of O(|X|3) vertices such that forany S, T,R < X, a
minimum (S, T)-vertex cut in G \ R is contained in Z.
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Theorem

Let G be a directed graph and X < V a set of terminals. In polynomial time one
can identify a set Z of O(|X|3) vertices such that forany S, T,R < X, a
minimum (S, T)-vertex cut in G \ R is contained in Z.

0dd Cycle Transversal: Get Q - the approximate solution of size O(k'->) and
compute Z. Delete all the vertices of G \ Z and take parity torso for Z. Return
this as an equivalent instance.

Digraph Pair

Exercise :D



Thank You!
Any Questions?

FinaL Suioe
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