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Introduction and Kernelization
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Fixed Parameter Tractable (FPT)
Algorithms

For decision problems with input size n, and a parameter k, (which
typically is the solution size), the goal here is to design an algorithm with
running time f (k) · nO(1), where f is a function of k alone.

Problems that have such an algorithm are said to be fixed parameter
tractable (FPT).
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A Few Examples

Vertex Cover
Input: A graph G = (V ,E ) and a positive integer k.
Parameter: k
Question: Does there exist a subset V ′ ⊆ V of size at most k such
that for every edge (u, v) ∈ E either u ∈ V ′ or v ∈ V ′?

Path
Input: A graph G = (V ,E ) and a positive integer k.
Parameter: k
Question: Does there exist a path P in G of length at least k?
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Kernelization: A Method for Everyone

Informally: A kernelization algorithm is a polynomial-time
transformation that transforms any given parameterized instance to an
equivalent instance of the same problem, with size and parameter
bounded by a function of the parameter.
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Kernel: Formally

Formally: A kernelization algorithm, or in short, a kernel for a
parameterized problem L ⊆ Σ∗ × N is an algorithm that given
(x , k) ∈ Σ∗ ×N, outputs in p(|x |+ k) time a pair (x ′, k ′) ∈ Σ∗ ×N such
that

• (x , k) ∈ L ⇐⇒ (x ′, k ′) ∈ L ,

• |x ′|, k ′ ≤ f (k),

where f is an arbitrary computable function, and p a polynomial. Any
function f as above is referred to as the size of the kernel.

Polynomial kernel =⇒ f is polynomial.
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Example 1: Vertex Cover

Rule 1: Remove any isolated vertices.
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Example 1: Vertex Cover

Rule 1: Remove any isolated vertices.

Rule 2: If there is a vertex v of degree at least k + 1 then include
v in solution and (G − {v}, k − 1)

... k + 1
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Example 1: Vertex Cover

Rule 1: Remove any isolated vertices.

Rule 2: If there is a vertex v of degree at least k + 1 then include
v in solution and (G − {v}, k − 1)

Apply these rules until no longer possible.
What conclusions can we draw ?

Outcome 1: If G is not empty and k drops to 0 — the answer is No.

Observation: Every vertex has degree at most k — number of edges
they can cover is at most k2.

Outcome 2: If |E | > k2 — the answer is No. Else |E | ≤ k2, |V | ≤ 2k2

and we have polynomial sized kernel of O(k2).
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Iterative Compression and Odd Cycle

Transversal

Result from
Bruce A. Reed, Kaleigh Smith, Adrian Vetta: Finding odd cycle
transversals. Operation Resarch Letters 32(4): 299-301 (2004)
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Iterative compression

• A surprisingly small, but very powerful trick.

• Most useful for deletion problems: delete k things to achieve some
property.

• Demonstration: Odd Cycle Transversal aka Bipartite
Deletion aka Graph Bipartization: Given a graph G and an
integer k , delete k vertices to make the graph bipartite.

• Forbidden induced subgraphs: odd cycles. There is no bound on the
size of odd cycles.
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Odd Cycle Transversal

Odd Cycle Transversal
Input: A graph G = (V ,E ) and a positive integer k.
Parameter: k
Question: Does there exist a subset V ′ ⊆ V of size at most k such
that G \ V ′ is bipartite?
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Odd Cycle Transversal

Solution based on iterative compression:

• Step 1: Solve the annotated problem for bipartite graphs:

Given a bipartite graph G, two sets B,W ⊆ V (G ), and an
integer k, find a set S of at most k vertices such that G \S
has a 2-coloring where B \ S is black and W \ S is white.

• Step 2: Solve the compression problem for general graphs:

Given a graph G , an integer k, and a set Q of k + 1
vertices such that G \ Q is bipartite, find a set S of k
vertices such that G \ S is bipartite.

• Step 3: Apply the idea of iterative compression . . .
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Step 1: The annotated problem

Given a bipartite graph G, two sets B,W ⊆ V (G ), and an integer k, find
a set S of at most k vertices such that G \ S has a 2-coloring where
B \ S is black and W \ S is white.

B

W

Find an arbitrary 2-coloring (B0,W0) of G .
C := (B0 ∩W ) ∪ (W0 ∩ B) should change color, while
R := (B0 ∩ B) ∪ (W0 ∩W ) should remain the same color.

Lemma: G \ S has the required 2-coloring if and only if S separates C
and R, i.e., no component of G \ S contains vertices from both C \ S
and R \ S .
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Step 1: The annotated problem

Lemma: G \ S has the required 2-coloring if and only if S separates C
and R, i.e., no component of G \ S contains vertices from both C \ S
and R \ S .

Proof:
=⇒ In a 2-coloring of G \ S , each vertex either remained the same color

or changed color. Adjacent vertices do the same, thus every component
either changed or remained.

⇐ Flip the coloring of those components of G \ S that contain vertices
from C \ S . No vertex of R is flipped.

Algorithm: Using max-flow min-cut techniques, we can check if there is a
set S that separates C and R. It can be done in time O(k|E (G )|) using
k iterations of the Ford-Fulkerson algorithm.
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Step 2: The compression problem

Given a graph G , an integer k , and a set Q of k + 1 vertices such that
G \ Q is bipartite, find a set S of k vertices such that G \ S is bipartite.

Q
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Step 2: The compression problem

Given a graph G , an integer k , and a set Q of k + 1 vertices such that
G \ Q is bipartite, find a set S of k vertices such that G \ S is bipartite.

Q

deletedwhiteblack

Branch into 3k+1 cases: each vertex of Q is either black, white, or
deleted. Trivial check: no edge between two black or two white vertices.
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Step 2: The compression problem

black white deleted

Q

W

Branch into 3k+1 cases: each vertex of Q is either black, white, or
deleted. Trivial check: no edge between two black or two white vertices.
Neighbors of the black vertices in Q should be white and the neighbors of
the white vertices in Q should be black.

17



Step 2: The compression problem

W

black deletedwhite

Q

B

Branch into 3k+1 cases: each vertex of Q is either black, white, or
deleted. Trivial check: no edge between two black or two white vertices.
Neighbors of the black vertices in Q should be white and the neighbors of
the white vertices in Q should be black.

17



Step 2: The compression problem

Given a graph G , an integer k , and a set Q of k + 1 vertices such that
G \ Q is bipartite, find a set S of k vertices such that G \ S is bipartite.

W B

The vertices of Q can be disregarded. Thus we need to solve the
annotated problem on the bipartite graph G \ Q.

Running time: O(3k · k |E (G )|) time.
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Step 3: Iterative compression

How do we get a solution of size k + 1?
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Step 3: Iterative compression

How do we get a solution of size k + 1?

We get it for free!
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Step 3: Iterative compression

How do we get a solution of size k + 1?

We get it for free!
Let V (G ) = {v1, . . . , vn} and let Gi be the graph induced by {v1, . . . , vi}.

For every i , we find a set Si of size k such that Gi \ Si is bipartite.

• For Gk , the set Sk = {v1, . . . , vk} is a trivial solution.

• If Si−1 is known, then Si−1 ∪ {vi} is a set of size k + 1 whose
deletion makes Gi bipartite =⇒ We can use the compression
algorithm to find a suitable Si in time O(3k · k |E (Gi )|).
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Step 3: Iterative Compression

Bipartite-Deletion(G , k)

1 Sk = {v1, . . . , vk}
2 for i := k + 1 to n

3 Invariant: Gi−1 \ Si−1 is bipartite.

4 Call Compression(Gi ,Si−1 ∪ {vi})
5 If the answer is “NO” =⇒ return “NO”

6 If the answer is a set X =⇒ Si := X

7 Return the set Sn

Running time: the compression algorithm is called n times and everything
else can be done in linear time.
=⇒ O(3k · k |V (G )| · |E (G )|) time algorithm.
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Useful Reformulation of the Algorithm

Given a graph G , an integer k , and a set Q of k + 1 vertices such that
G \ Q is bipartite.
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Useful Reformulation of the Algorithm

Given a graph G , an integer k , and a set Q of k + 1 vertices such that
G \ Q is bipartite.

A B

Q
x y zw

G
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Useful Reformulation of the Algorithm
Given a graph G , an integer k , and a set Q of k + 1 vertices such that
G \ Q is bipartite.

A B

Q
x y zw

G
A B

wawb

xb xa

ya
yb

zb za

G�

QAQB

• Vertices in G ′ are A ∪ B ∪ QA ∪ QB . Edges within G ′[A ∪ B] are as
in G , while for q ∈ Q a vertex qa is connected to NG (q) ∩ A and qb

to NG (q) ∩ B.
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For a partition Q = L ∪ R ∪ C we are going to compute the minimum
(RA ∪ LB), (LA ∪ RB)-cut in G ′ \ (CA ∪ CB).
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Example

A B

Q
x y zw

G
A B

wawb

xb xa

ya
yb

zb za

G�

QAQB

A B

wawb

xb xa

ya
yb

QAQB

G� \ (CA ∪ CB)

For L = {w},R = {x , y},C = {z} =⇒ LA ∪ RB = {wa, xb, yb} and
LB ∪ RA = {wb, xa, ya} and CA ∪ CB = {za, zb}
Want to compute cut between LA ∪ RB = {wa, xb, yb} and
LB ∪ RA = {wb, xa, ya} in G ′ \ (CA ∪ CB).
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Final Result

For a partition Q = L ∪ R ∪ C we are going to compute the minimum
(RA ∪ LB), (LA ∪ RB)-cut in G ′ \ (CA ∪ CB). This is sufficient due to the
following lemma:'

&

$

%

Lemma: Let G = (V ,E ) be a graph and Q ⊆ V be such that G \ Q
is bipartite with color classes A,B. Then, the size of the minimum odd
cycle transversal is the minimum over all partitions Q = L ∪ R ∪ C of the
following value:

|C |+ mincut
G ′\(CA∪CB )

((RA ∪ LB), (LA ∪ RB))
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Final Result: Restated

Let S , T and R be a partition of QA ∪ QB . We say that (S ,T ,Z ) is a
valid partition if for all x ∈ Q either

• |{x1, x2} ∩ S | = |{x1, x2} ∩ T | = 1; or

• |{x1, x2} ∩ Z | = 2.'

&

$

%

Lemma: Let G = (V ,E ) be a graph and Q ⊆ V be such that G \ Q is
bipartite with color classes A,B. Then, the size of the minimum odd cycle
transversal is the minimum over all valid partitions of QA∪QB = S∪T ∪Z
of the following value:

|Z |
2

+ mincut
G ′\Z

(S ,T )
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Matroids and its Representation
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Matroids

Definition
A pair M = (E , I), where E is a ground set and I is a family of subsets
(called independent sets) of E , is a matroid if it satisfies the following
conditions:

(I1) ∅ ∈ I or I 6= ∅.
(I2) If A′ ⊆ A and A ∈ I then A′ ∈ I.
(I3) If A,B ∈ I and |A| < |B|, then ∃ e ∈ (B \ A) such that

A ∪ {e} ∈ I.

The axiom (I2) is also called the hereditary property and a pair
M = (E , I) satisfying (I1) and (I2) is called hereditary family or
set-family.
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Rank and Basis

Definition
A pair M = (E , I), where E is a ground set and I is a family of subsets
(called independent sets) of E , is a matroid if it satisfies the following
conditions:

(I1) ϕ ∈ I or I 6= ∅.
(I2) If A′ ⊆ A and A ∈ I then A′ ∈ I.
(I3) If A,B ∈ I and |A| < |B|, then ∃ e ∈ (B \ A) such that

A ∪ {e} ∈ I.

An inclusion wise maximal set of I is called a basis of the matroid. Using
axiom (I3) it is easy to show that all the bases of a matroid have the
same size. This size is called the rank of the matroid M, and is denoted
by rank(M).
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Examples Of Matroids
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Uniform Matroid

A pair M = (E , I) over an n-element ground set E , is called a uniform
matroid if the family of independent sets is given by

I =
{

A ⊆ E | |A| ≤ k
}
,

where k is some constant. This matroid is also denoted as Un,k .
Eg: E = {1, 2, 3, 4, 5} and k = 2 then

I =
{
{}, {1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3}, {1, 4},

{1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}
}
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Partition Matroid

A partition matroid M = (E , I) is defined by a ground set E being
partitioned into (disjoint) sets E1, . . . ,E` and by ` non-negative integers
k1, . . . , k`. A set X ⊆ E is independent if and only if |X ∩ Ei | ≤ ki for all
i ∈ {1, . . . , `}. That is,

I =
{

X ⊆ E | |X ∩ Ei | ≤ ki , i ∈ {1, . . . , `}
}
.

• If X ,Y ∈ I and |Y | > |X |, there must exist i such that
|Y ∩ Ei | > |X ∩ Ei | and this means that adding any element e in
Ei ∩ (Y \ X ) to X will maintain independence.

• M in general would not be a matroid if Ei were not disjoint. Eg:
E1 = {1, 2} and E2 = {2, 3} and k1 = 1 and k2 = 1 then both
Y = {1, 3} and X = {2} have at most one element of each Ei but
one can’t find an element of Y to add to X .
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Partition Matroid
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Graphic Matroid

Given a graph G , a graphic matroid is defined as M = (E , I) where and

• E = E (G ) – edges of G are elements of the matroid

•
I =

{
F ⊆ E (G ) : F is a forest in the graph G

}
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Co-Graphic Matroid

Given a graph G , a co-graphic matroid is defined as M = (E , I) where
and

• E = E (G ) – edges of G are elements of the matroid

•
I =

{
S ⊆ E (G ) : G \ S is connected

}
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Direct Sum

Let M1 = (E1, I1), M2 = (E2, I2), · · · , Mt = (Et , It) be t matroids with
Ei ∩ Ej = ∅ for all 1 ≤ i 6= j ≤ t.
The direct sum M1 ⊕ · · · ⊕Mt is a matroid M = (E , I) with
E :=

⋃t
i=1 Ei and X ⊆ E is independent if and only if for all i ≤ t,

X ∩ Ei ∈ Ii .

I =
{

X | X ⊆ E , (X ∩ Ei ) ∈ Ii , i ∈ {1, . . . , t}
}
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Transversal Matroid

Let G be a bipartite graph with the vertex set V (G ) being partitioned as
A and B.

A B
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Transversal Matroid
Let G be a bipartite graph with the vertex set V (G ) being partitioned as
A and B. The transversal matroid M = (E , I) of G has E = A as its
ground set,

I =
{

X | X ⊆ A, there is a matching that covers X
}

BA

X
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Gammoids

Let D = (V ,A) be a directed graph, and let S ⊆ V be a subset of
vertices. A subset X ⊆ V is said to be linked to S if there are |X | vertex
disjoint paths going from S to X .

The paths are disjoint, not only internally disjoint. Furthermore,
zero-length paths are also allowed if X ∩ S = ∅.
Given a digraph D = (V ,A) and subsets S ⊆ V and T ⊆ V , a gammoid
is a matroid M = (E , I) with E = T and

I =
{

X | X ⊆ T and X is linked to S
}
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Gammoid: Example

S T

D

X
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Strict Gammoids

Given a digraph D = (V ,A) and subset S ⊆ V , a strict gammoid is a
matroid M = (E , I) with E = V and

I =
{

X | X ⊆ V and X is linked to S
}
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Matroid Representation

40



Remark

• Need a compact representation for the family of independent sets.

• Also should be able to test easily, whether a set belongs to the
family of independent sets.
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Linear Matroid

Let A be a matrix over an arbitrary field F and let E be the set of
columns of A. Given A we define the matroid M = (E , I) as follows.
A set X ⊆ E is independent (that is X ∈ I) if the corresponding columns
are linearly independent over F.

A =


∗ ∗ ∗ · · · ∗
∗ ∗ ∗ · · · ∗
∗ ∗ ∗ · · · ∗
...

...
...

...
...

∗ ∗ ∗ · · · ∗

 ∗ are elements of F

The matroids that can be defined by such a construction are called linear
matroids.
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Linear Matroids and Representable
Matroids

If a matroid can be defined by a matrix A over a field F, then we say that
the matroid is representable over F.
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Linear Matroids and Representable
Matroids

A matroid M = (E , I) is representable over a field F if there exist vectors
in F` that correspond to the elements such that the linearly independent
sets of vectors precisely correspond to independent sets of the matroid.
Let E = {e1, . . . , em} and ` be a positive integer.



e1 e2 e3 · · · em
1 ∗ ∗ ∗ · · · ∗
2 ∗ ∗ ∗ · · · ∗
3 ∗ ∗ ∗ · · · ∗
...

...
...

...
...

...
` ∗ ∗ ∗ · · · ∗


`×m

A matroid M = (E , I) is called representable or linear if it is
representable over some field F.
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Linear Matroid

Let M = (E , I) be linear matroid and Let E = {e1, . . . , em} and
d=rank(M).
We can always assume (using Gaussian Elimination) that the matrix has
following form: [

Id×d D

]
d×m

Here Id×d is a d × d identity matrix.
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Transversal Matroid

For the bipartite graph with partition A and B, form an incidence matrix
T as follows. Label the rows by vertices of B and the columns by the
vertices of A and define:

aij =

{
zij if there is an edge between ai and bj ,

0 otherwise.

where zij are in-determinants. Think of them as independent variables.

T =



a1 a2 · · · aj · · · a`
b1 z11 z12 · · · z1j · · · z1`
...

...
...

...
...

...
...

bi zi1 zi2 · · · zij · · · zi`
...

...
...

...
...

...
...

bn zn1 zn2 · · · znj · · · zn`


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Example of the Construction

a1

a2

a3

a4

a5

a6

b1

b2

b3


a1 a2 a3 a4 a5 a6

b1 z11 z12 z13 0 z15 0
b2 0 z22 z23 z24 z25 0
b3 0 0 0 0 z35 z36


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Permutation expansion of Determinants

Theorem: Let
A = (aij)n×n

be a n × n matrix with entries in F. Then

det(A) =
∑
π∈Sn

sgn(π)
n∏

i=1

aiπ(i).
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Proof that Transversal Matroid is
Representable over F [~z ]

Forward direction: (Board for Picture)

• Suppose some subset X = {a1, . . . , aq} is independent.

• Then there is a matching that saturates X . Let Y = {b1, b2, . . . , bq}
be the endpoints of this matching and aibi are the matching edges.
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Proof that Transversal Matroid is
Representable over F [~z ]

Forward direction: (Board for Picture)

• Suppose some subset X = {a1, . . . , aq} is independent.

• Then there is a matching that saturates X . Let Y = {b1, b2, . . . , bq}
be the endpoints of this matching and aibi are the matching edges.

• Consider T [Y ,X ] – a submatrix with rows in Y and columns in X .
Consider the determinant of T [Y ,X ] then we have a term

q∏
i=1

zii

which can not be cancelled by any other term! So these columns
are linearly independent.
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Proof that Transversal Matroid is
Representable over F [~z ]

Reverse direction: (Board for Picture)

• Suppose some subset X = {a1, . . . , aq} of columns is independent in
T .

• Then there is a submatrix of T [?,X ] that has non-zero determinant
– say T [Y ,X ].
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Representable over F [~z ]

Reverse direction: (Board for Picture)

• Suppose some subset X = {a1, . . . , aq} of columns is independent in
T .

• Then there is a submatrix of T [?,X ] that has non-zero determinant
– say T [Y ,X ].

• Consider the determinant of T [Y ,X ]

0 6= det(T [Y ,X ]) =
∑

π∈S(Y )

sgn(π)
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i=1

ziπ(i).
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∑

π∈S(Y )

sgn(π)

q∏
i=1

ziπ(i).

• This implies that we have a term

q∏
i=1

ziπ(i) 6= 0

and this gives us that there is a matching that saturates X in and
hence X is independent.
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Proof that Transversal Matroid is
Representable over F [~z ]

Reverse direction: (Board for Picture)

• This implies that we have a term

q∏
i=1

ziπ(i) 6= 0

and this gives us that there is a matching that saturates X in and
hence X is independent.

• For this direction we do not use zij , the very fact that X forms
independent set of column is enough to argue that there is a
matching that saturates X .

51



Removing zij

To remove the zij we do the following.

Uniformly at random assign zij from values in finite field F of
size P.

What should be the upper bound on P? What is the probability that the
randomly obtained T is a representation matrix for the transversal
matroid.
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Using Zippel-Schwartz Lemma

Theorem: Let p(x1, x2, . . . , xn) be a non-zero polynomial of degree d
over some field F and let S be an N element subset of F. If each xi
is independently assigned a value from S with uniform probability, then
p(x1, x2, . . . , xn) = 0 with probability at most d

N .
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Theorem: Let p(x1, x2, . . . , xn) be a non-zero polynomial of degree d
over some field F and let S be an N element subset of F. If each xi
is independently assigned a value from S with uniform probability, then
p(x1, x2, . . . , xn) = 0 with probability at most d

N .

• We think det(T [Y ,X ]) as polynomial in zij ’s of degree at most
n = |A|.

• Probability that det(T [Y ,X ]) = 0 is less than n
P . There are at most

2n independent sets in A and thus by union bound probability that
not all of them are independent in the matroid represented by T is
at most 2nn

P .
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Using Zippel-Schwartz Lemma

• We think det(T [Y ,X ]) as polynomial in zij ’s of degree at most
n = |A|.

• Probability that det(T [Y ,X ]) = 0 is less than n
P . There are at most

2n independent sets in A and thus by union bound probability that
not all of them are independent in the matroid represented by T is
at most 2nn

P .

• Thus probability that T is the representation is at least 1− 2nn
P .

Take P to be some field with at least 2nn2n elements :-).

• size of this representation with be like nO(1) bits!
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Representation of Gammoids

• Let D = (V ,A) be a directed graph, ε > 0 be a given real number,
and let S and T be possibly overlapping subsets of V .

• Let M = (T , I), where I = {Z ⊆ T : Z is linked to S}, be the
gammoid formed by (D,S) restricted to T .

• We can compute a representation of M as an |S | × |T | matrix over
the rationals with entries of bit-length
O(min{|T |, |S | log |T |}+ log(1/ε) + log |V |) in randomized
polynomial time with one-sided error bounded by ε.
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Representation of Gammoids

• Let D = (V ,A) be a directed graph, ε > 0 be a given real number,
and let S and T be possibly overlapping subsets of V .

• Let M = (T , I), where I = {Z ⊆ T : Z is linked to S}, be the
gammoid formed by (D,S) restricted to T .

• We can compute a representation of M as an |S | × |T | matrix over
the rationals with entries of bit-length
O(min{|T |, |S | log |T |}+ log(1/ε) + log |V |) in randomized
polynomial time with one-sided error bounded by ε.

Stefan Kratsch, Magnus Wahlström: Compression via matroids: A
randomized polynomial kernel for odd cycle transversal. SODA 2012:
94-103
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Kernelization for Odd Cycle

Transversal

Result from
Stefan Kratsch, Magnus Wahlström: Compression via matroids: A
randomized polynomial kernel for odd cycle transversal. SODA 2012:
94-103
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Algorithm for OCT

'

&

$

%

Lemma: Let G = (V ,E ) be a graph and Q ⊆ V be such that G \ Q is
bipartite with color classes A,B. Then, the size of the minimum odd cycle
transversal is the minimum over all valid partitions of QA∪QB = S∪T ∪Z
of the following value:

|Z |
2

+ mincut
G ′\Z

(S ,T )

• The idea is to encode the algorithm given by the above lemma using
matroids.
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Lemma: Let G = (V ,E ) be a graph and Q ⊆ V be such that G \ Q is
bipartite with color classes A,B. Then, the size of the minimum odd cycle
transversal is the minimum over all valid partitions of QA∪QB = S∪T ∪Z
of the following value:

|Z |
2

+ mincut
G ′\Z

(S ,T )

• The idea is to encode the algorithm given by the above lemma using
matroids.

• Note that if M = (E , I) is representable then the corresponding
matrix M succinctly represents all the sets in I.

• The size of I could be huge, however the size of M is polynomial in
the universe size and whether a set is in I or not can be tested by
looking at the corresponding columns in M.
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Algorithm for OCT

'

&

$

%

Lemma: Let G = (V ,E ) be a graph and Q ⊆ V be such that G \ Q is
bipartite with color classes A,B. Then, the size of the minimum odd cycle
transversal is the minimum over all valid partitions of QA∪QB = S∪T ∪Z
of the following value:

|Z |
2

+ mincut
G ′\Z

(S ,T )

• The idea is to encode the algorithm given by the above lemma using
matroids.

• Want to exploit this tiny representation of matroids compared to |I|.
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Towards the kernel for OCT

Let |Q| = q.

• There are 3q steps in the OCT algorithm. Want each step to be
encoded by an independent set of a matroid whose representation
matrix has size only qO(1).

• Each step finds a minimum cut between a pair of subsets of
QA ∪ QB .
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Towards the kernel for OCT

Let |Q| = q.

• There are 3q steps in the OCT algorithm. Want each step to be
encoded by an independent set of a matroid whose representation
matrix has size only qO(1).

• Each step finds a minimum cut between a pair of subsets of
QA ∪ QB .

Does this ring a bell about which matroid to
use for our purpose?
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Menger’s Theorem

Let D be a (un)-directed graph and S and T (may not be disjoint) be
vertex subsets.

max-dis-path(S ,T )(D) denotes the maximum number of vertex disjoint
paths (even at ends).

mincut(S ,T )(D) denotes the minimum number of vertices required to
disconnect S from T in D.

Mengers Theorem:

max-dis-path(S ,T )(D) = mincut(S ,T )(D)
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Menger’s Theorem

Let D be a (un)-directed graph and S and T (may not be disjoint) be
vertex subsets.

max-dis-path(S ,T )(D) denotes the maximum number of vertex disjoint
paths (even at ends).

mincut(S ,T )(D) denotes the minimum number of vertices required to
disconnect S from T in D.

Mengers Theorem:

max-dis-path(S ,T )(D) = mincut(S ,T )(D)

So rather than remembering minimum cut we can remember maximum
number of vertex disjoint paths.
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Menger’s Theorem

Let D be a (un)-directed graph and S and T (may not be disjoint) be
vertex subsets.

max-dis-path(S ,T )(D) denotes the maximum number of vertex disjoint
paths (even at ends).

mincut(S ,T )(D) denotes the minimum number of vertices required to
disconnect S from T in D.

Mengers Theorem:

max-dis-path(S ,T )(D) = mincut(S ,T )(D)

Gammoid!
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Recall: Example

A B

Q
x y zw

G
A B

wawb

xb xa

ya
yb

zb za

G�

QAQB

A B

wawb

xb xa

ya
yb

QAQB

G� \ (CA ∪ CB)

For L = {w},R = {x , y},C = {z} =⇒ LA ∪ RB = {wa, xb, yb} and
LB ∪ RA = {wb, xa, ya} and CA ∪ CB = {za, zb} Want to compute cut
between LA ∪ RB = {wa, xb, yb} and LB ∪ RA = {wb, xa, ya} in
G ′ \ (CA ∪ CB).
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Gammoid for our purpose

Given QA ∪ QB , we need a gammoid that does the following job:

• For every valid partition of QA ∪ QB = S ∪ T ∪ Z , remembers the
size of minimum cut/maximum number of vertex disjoint paths
between S and T in G ′ \ Z .

We also need to encode deletion of vertices of Z .
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Gammoid for our purpose

Abstractly the problem we want to solve is the following:

• Input: A directed graph D and a subset X of terminals.

• Output: A representation of a gammoid of size |X |O(1) which for
every partition of X as S ∪ T ∪ R ∪ U, has an independent set I
from which we can infer the maximum number of vertex disjoint
paths between S and T in D \ R.
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Solving the Problem

z

z�

w x

x�

y

y�
X �

Xzyxw

w�

X

D�D

• Let X ′ = {x ′ | x ∈ X} be a vertex set. The vertices x ′ and x are
called conjugates of each other.

• Add X ′ to D and arcs (x ′, x) to D for every x ∈ X . Let the resulting
digraph be D ′.
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Solving the Problem

z

z�

w x

x�

y

y�
X �

Xzyxw

w�

X

D�D

• Obtain a gammoid with S = X ′ and T = X ′ ∪ X .

• Clearly, the size of the representation matrix is |X | × 2|X | (not the
number of bits).
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Correspondence between an Independent
Set and a Partition

v ∈ I v ∈ Iv /∈ Iv /∈ I

v� /∈ I v� /∈ Iv� ∈ I v� ∈ I

U

U � S�

S T R

R�

X �

X

T �

Let I ⊆ X ∪X ′. Given I we define a partition of X , called PI , as follows:

• S contains all vertices v ∈ X with v , v ′ /∈ I

• T contains all vertices v ∈ X with v , v ′ ∈ I

• R contains all vertices v ∈ X with v ∈ I but v ′ /∈ I

• U = X \ (R ∪ T ∪ U)
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Correspondence between an Independent
Set and a Partition

v ∈ I v ∈ Iv /∈ Iv /∈ I

v� /∈ I v� /∈ Iv� ∈ I v� ∈ I

U

U � S�

S T R

R�

X �

X

T �

Given a partition X = S ∪ T ∪ R ∪ U, the corresponding subset
I (S ,T ,R,U) ⊆ X ∪ X ′ is T ∪ R ∪ T ′ ∪ U ′.
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Proof

I ⊆ X ∪ X ′ is independent in the gammoid if and only if T is linked to S
in D \ R.
Proof:
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Proof

I ⊆ X ∪ X ′ is independent in the gammoid if and only if T is linked to S
in D \ R.

Proof: ⇒

v ∈ I v ∈ Iv /∈ Iv /∈ I

v� /∈ I v� /∈ Iv� ∈ I v� ∈ I

U

U � S�

S T R

R�

X �

X

T �

There exists |I | vertex disjoint paths from X ′ to I . For every vertex in
X ′ ∩ I = T ′ ∪U ′ the only path that is possible has the form v ′. For every

vertex w in R there is either a path of the form w ′w or v ′v · · ·w with
v ′ ∈ S ′. In later case we can replace the path v ′v · · ·w with w ′w .
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Proof

I ⊆ X ∪ X ′ is independent in the gammoid if and only if T is linked to S
in D \ R.

Proof: ⇒

v ∈ I v ∈ Iv /∈ Iv /∈ I

v� /∈ I v� /∈ Iv� ∈ I v� ∈ I

U

U � S�

S T R

R�

X �

X

T �

There exists |I |
vertex disjoint paths from X ′ to X ∪ X ′. For every vertex in T there

exists a path of the form v ′v · · ·w with v ′ ∈ S ′. All these paths do not
contain any vertices of R and are vertex disjoint and in fact v · · ·w is a

path in D \ R. T is linked to S in D \ R.
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Proof

I ⊆ X ∪ X ′ is independent in the gammoid if and only if T is linked to S
in D \ R.
Proof:

⇐

v ∈ I v ∈ Iv /∈ Iv /∈ I

v� /∈ I v� /∈ Iv� ∈ I v� ∈ I

U

U � S�

S T R

R�

X �

X

T �

This obviously follows by
taking paths v ′ and w ′w and appending paths from S to T by its

conjugate in S ′. So there exists vertex disjoint paths from X ′ to I . Thus
I is independent.
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Key Lemma

Given a partition X = S ∪ T ∪ R ∪ U let I = I (S ,T ,R,U) ⊆ X ∪ X ′ be
the corresponding set. That is, I = T ∪ R ∪ T ′ ∪ U ′. Then

mincut(S ,T )(D \ R) = r(I )− |X \ S |.
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Compression Algorithm for OCT

A B

Q
x y zw

G
A B

wawb

xb xa

ya
yb

zb za

G�

QAQB

Step 1: Create an auxiliary graph (G ′,QA ∪ QB) from (G ,Q).
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Compression Algorithm for OCT

A B

wawb

xb xa

ya
yb

zb za

G�

QAQB

A B

wawb

xb xa

ya
yb

zb za

QAQB

D

Step 1: Create an auxiliary graph (G ′,QA ∪ QB) from (G ,Q).

Step 2: Now we make directed graph (adding arcs in both directions) (D,X )
from (G ′,X = QA ∪ QB).
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Compression Algorithm for OCT

A B

wawb

xb xa

ya
yb

zb za

QAQB

D
A B

wa
wb

xb xa

yayb

zb za

QA

QB

Q�
B

z�b
y�

b

x�
b

w�
b

Q�
A

D�

Step 1: Create an auxiliary graph (G ′,QA ∪ QB) from (G ,Q).

Step 2: Now we make directed graph (adding arcs in both directions) (D,X )
from (G ′,X = QA ∪ QB).

Step 3: Obtain an auxiliary directed graph (D ′,X ∪ X ′) and consider the
gammoid with S = X ′ and T = X ∪ X ′.
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Compression Algorithm for OCT

A B

wawb

xb xa

ya
yb

zb za
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D
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xb xa

yayb
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QA
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Q�
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z�b
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b

x�
b

w�
b

Q�
A

D�

Step 3: Obtain an auxiliary directed graph (D ′,X ∪ X ′) and consider the
gammoid with S = X ′ and T = X ∪ X ′.

Step 4: Let A be the matrix representing the gammoid. Output A, k.
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Compression Algorithm for OCT

v ∈ I v ∈ Iv /∈ Iv /∈ I

v� /∈ I v� /∈ Iv� ∈ I v� ∈ I

U

U � S�

S T R

R�

X �

X

T �

Let I ⊆ X ∪X ′. Given I we define a partition of X , called PI , as follows:

• S contains all vertices v ∈ X with v , v ′ /∈ I

• T contains all vertices v ∈ X with v , v ′ ∈ I

• R contains all vertices v ∈ X with v ∈ I but v ′ /∈ I

• U = X \ (R ∪ T ∪ U)
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Compression Algorithm for OCT

v ∈ I v ∈ Iv /∈ Iv /∈ I

v� /∈ I v� /∈ Iv� ∈ I v� ∈ I

U

U � S�

S T R

R�

X �

X

T �

We call I ⊆ X ∪ X ′ an interesting set if PI = S ∪ T ∪ R(= Z ) is a valid
partition of X = QA ∪ QB .
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Compression Algorithm for OCT

v ∈ I v ∈ Iv /∈ Iv /∈ I

v� /∈ I v� /∈ Iv� ∈ I v� ∈ I

U

U � S�

S T R

R�

X �

X

T �

We call I ⊆ X ∪ X ′ an interesting set if PI = S ∪ T ∪ R(= Z ) is a valid
partition of X = QA ∪ QB .

(G , k) has an odd cycle transversal of size k if and only if there exists an
interesting set I ⊆ X ∪ X such that rank(I )− |Z \ S | ≤ k.
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Compression Algorithm for OCT

v ∈ I v ∈ Iv /∈ Iv /∈ I

v� /∈ I v� /∈ Iv� ∈ I v� ∈ I

U

U � S�

S T R

R�

X �

X

T �

We call I ⊆ X ∪ X ′ an interesting set if PI = S ∪ T ∪ R(= Z ) is a valid
partition of X = QA ∪ QB .

(G , k) has an odd cycle transversal of size k if and only if there exists an
interesting set I ⊆ X ∪ X such that rank(I )− |Z \ S | ≤ k.

For proof recall...

mincut(S ,T )(D \ R) = r(I )− |X \ S |.
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Size of A

• Let D = (V ,A) be a directed graph, ε > 0 a given real, and let S
and T be possibly overlapping subsets of V .

• Let M = (T , I), where I = {Z ⊆ T : Z is linked to S}, be the
gammoid formed by (D,S) restricted to T .

• We can compute a representation of M as an |S | × |T | matrix over
the rationals with entries of bit-length
O(min{|T |, |S| log |T |}+ log(1/ε) + log |V |) in randomized
polynomial time with one-sided error bounded by ε.
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Size of A

• Let D = (V ,A) be a directed graph, ε > 0 a given real, and let S
and T be possibly overlapping subsets of V .

• Let M = (T , I), where I = {Z ⊆ T : Z is linked to S}, be the
gammoid formed by (D,S) restricted to T .

• We can compute a representation of M as an |S | × |T | matrix over
the rationals with entries of bit-length
O(min{|T |, |S| log |T |}+ log(1/ε) + log |V |) in randomized
polynomial time with one-sided error bounded by ε.

Size of A in terms of bits = O(|Q|3 log |Q|+ |Q|2 log(1/ε) + |Q|2 log |V |)
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How do we get Q and the final size.

• If k ≤ log n then run the O(3kmn) FPT algorithm and find solution
in polynomial time.

• Apply the known α
√

log n approximation algorithm for OCT and get
a set Q. If the size of |Q| > kα

√
log n output NO.

• Else k > log n and thus |Q| ≤ kα
√

log n ≤ O(k1.5)

• So the size of A in terms of bits is at most O(k4.5 log k).
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Finally Kernel for OCT

Given (G ,Q) and A checking whether a set I is interesting or not is
within NP. And thus there exists a reduction from the compressed
instance to an instance of Odd Cycle Transversal such that the
size of the graph is kO(1).
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Final Slide

Thank You!

Any Questions?
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