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Inclusion-Exclusion Principle

Theorem (Inclusion-Exclusion Principle, intersection version)
Let Ay, ..., A, C U, where U is a finite set. Then:

N oAl= Y GOXIIN A

ie{l,...,n} XC{1,...,n} ieX

= U.

where Aj = U — Aj and N,y Ai

Example. |ANB| = |U| — |A| — |B| +|AN B|

U 1 U -1 U 0

Ul \U| —|A] — |B] |U| —|A| — |B| + |AN B
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Inclusion-Exclusion Principle, intersection version

Theorem (Inclusion-Exclusion Principle, intersection version)

Let Ay,...,An C U, where U is a finite set. ({A;}]_; ="requirements”.)
Denote A =U-—Ajand N = U.
Then:

IE(Z)
) Al= Z X N Al
ie{1,...,n} XC{1,...,n} ieX

———
“simplified problem”

A common algorithmic application

Reduce a hard task to 2" “simplified problems” (solvable in poly-time).
N
NGRS
VAV EVEVEWE
ARG
&
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lverson’s Notation

1 « s true

o] =

0 otherwise

Example:

100

Z[i is even] = 50

i=1
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The number of Hamiltonian cycles (Karp 1982)

Hamiltonian cycle: a cycle that contains all the vertices.

Problem

Given an n-vertex undirected graph G = (V/, E) compute the number of
Hamiltonian cycles.
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The number of Hamiltonian cycles (Karp 1982)

Hamiltonian cycle: a cycle that contains all the vertices.

Problem

Given an n-vertex undirected graph G = (V/, E) compute the number of
Hamiltonian cycles.

o A walk of length k in G (shortly, a k-walk) is a sequence of vertices
Vo, V1, ..., Vg such that vjvj 1 € E foreach i =0,... kK —1.

o A walk is closed, when vy = vy.
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Given an n-vertex undirected graph G = (V/, E) compute the number of
Hamiltonian cycles.

o A walk of length k in G (shortly, a k-walk) is a sequence of vertices
Vo, V1, ..., Vg such that vjvj 1 € E foreach i =0,... kK —1.
o A walk is closed, when vy = vy.

o U is the set of closed n-walks from vertex 1.
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The number of Hamiltonian cycles (Karp 1982)

Hamiltonian cycle: a cycle that contains all the vertices.

Problem

Given an n-vertex undirected graph G = (V/, E) compute the number of
Hamiltonian cycles.

o A walk of length k in G (shortly, a k-walk) is a sequence of vertices
Vo, V1, ..., Vg such that vjvj 1 € E foreach i =0,... kK —1.
o A walk is closed, when vy = vy.

o U is the set of closed n-walks from vertex 1.

o A, = the walks from U that visit v, v € V.

tukasz Kowalik (UW) Algebraic approach... August 2013 5 /37



The number of Hamiltonian cycles (Karp 1982)

Hamiltonian cycle: a cycle that contains all the vertices.

Problem

Given an n-vertex undirected graph G = (V/, E) compute the number of
Hamiltonian cycles.

o A walk of length k in G (shortly, a k-walk) is a sequence of vertices
Vo, V1, ..., Vg such that vjvj 1 € E foreach i =0,... kK —1.

A walk is closed, when vy = vy.

U is the set of closed n-walks from vertex 1.
A, = the walks from U that visit v, v € V.
Then the solution is |, cy Avl-
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The number of Hamiltonian cycles (Karp 1982)

Hamiltonian cycle: a cycle that contains all the vertices.

Problem

Given an n-vertex undirected graph G = (V/, E) compute the number of
Hamiltonian cycles.

o A walk of length k in G (shortly, a k-walk) is a sequence of vertices
Vo, V1, ..., Vg such that vjvj 1 € E foreach i =0,... kK —1.

A walk is closed, when vy = vy.

°
o U is the set of closed n-walks from vertex 1.
o A, = the walks from U that visit v, v € V.
@ Then the solution is |,y Avl-

°

The simplified problem: |
from Uin G’ = G[V — X].

vex Av| = the number of closed walks
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The number of Hamiltonian cycles, cont’d

The simplified problem
Compute the number of closed n-walks in G’ that start at vertex 1.

Dynamic programming
e T(d,x) = the number of length d walks from 1 to x.
o T(d, X) == ZyXEE(G/) T(d - 1,y)
o We return T(n,1), DP works in O(n®) time.
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The number of Hamiltonian cycles, cont’d

The simplified problem
Compute the number of closed n-walks in G’ that start at vertex 1.

Dynamic programming
e T(d,x) = the number of length d walks from 1 to x.
o T(d, X) - ZyXEE(G/) T(d - 1’y)
o We return T(n,1), DP works in O(n®) time.

We can solve the Hamiltonian Cycle problem (and even find the number of
such cycles) in O(2"n3) = O*(2") time and polynomial space.

Notation: f(n)n®() = O*(f(n)).
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Coloring

k-coloring

k-coloring of a graph G = (V, E) is a function ¢ : V — {1,..., k} such
that for every edge xy € E, c(x) # c(y).

Problem

Given a graph G = (V, E) and k € N decide whether there is a k-coloring
of G.

| A\

Note: If we can do it in time T(n) then we can also find the coloring in
O*(T(n)) time when it exists, due to self-reducibility.
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Coloring

k-coloring

k-coloring of a graph G = (V/,E) is a function ¢ : V — {1,..., k} such
that for every edge xy € E, c(x) # c(y).

Problem

Given a graph G = (V, E) and k € N decide whether there is a k-coloring
of G.

| \

Note: If we can do it in time T(n) then we can also find the coloring in
O*(T(n)) time when it exists, due to self-reducibility.

o (naive) O*(k")

o Lawler 1976: Dynamic programming O(2.45")
e Bjorklund, Husfeldt, Koivisto 2006: Inclusion-Exclusion O*(2")
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Coloring via inclusion-exclusion in O*(2") time

Observation

We can color a vertex with many colors at the same time — existence of
such a coloring is equivalent to the existence of the classic coloring.
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Coloring in 2", cont'd

@ U is the set of tuples (h,..., k), where /; are independent sets (not
necessarily disjoint nor even different!)
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Coloring in 2", cont'd

@ U is the set of tuples (h,..., k), where /; are independent sets (not
necessarily disjoint nor even different!)

o Ay ={(h,....lx) el : ve Jl-(zllj}
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Coloring in 2", cont'd

@ U is the set of tuples (h,..., k), where /; are independent sets (not
necessarily disjoint nor even different!)

o Ay ={(h,....lx) el : ve Jl-(zllj}

e Then |, cy Av| # 0 iff G is k-colorable.
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Coloring in 2", cont'd

@ U is the set of tuples (h,..., k), where /; are independent sets (not
necessarily disjoint nor even different!)

o Ay ={(h,....lx) el : ve Jl-(zllj}
e Then |, cy Av| # 0 iff G is k-colorable.
@ The simplified problem:

N A=

veX
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Coloring in 2", cont'd

@ U is the set of tuples (h,..., k), where /; are independent sets (not
necessarily disjoint nor even different!)

o Ay ={(h,....lx) el : ve Jl-(zllj}
e Then |, cy Av| # 0 iff G is k-colorable.
@ The simplified problem:

VAl =K(h . h) €U = by e CV =X}

veX
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Coloring in 2", cont'd

@ U is the set of tuples (h,..., k), where /; are independent sets (not
necessarily disjoint nor even different!)

o Ay ={(h,....lx) el : ve Jl-(zllj}
e Then |, cy Av| # 0 iff G is k-colorable.
@ The simplified problem:

VAl =K(h - h) €U = b e SV =X} =s(V—X)
veX

where s(Y) = the number of independent sets in G[Y].
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Coloring in 2", cont'd

@ U is the set of tuples (h,..., k), where /; are independent sets (not
necessarily disjoint nor even different!)

o Ay ={(h,....lx) el : ve Jl-(zllj}
e Then |, cy Av| # 0 iff G is k-colorable.
@ The simplified problem:

‘ﬂA‘ ’{/177 )GU I]_,,Ikgv—x}’:S(V—X)k
veX
where s(Y) = the number of independent sets in G[Y].

@ s(Y) can be computed at the beginning for all subsets Y C V:
s(Y)=s(Y —{y}) +s(Y — N[y]). This takes time (and space)
O*(2"), since the number of covers takes O(nlog k) bits.
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Coloring in 2", cont'd

@ U is the set of tuples (h,..., k), where /; are independent sets (not
necessarily disjoint nor even different!)

o Ay ={(h,....lx) el : ve Jl-(zllj}
e Then |, cy Av| # 0 iff G is k-colorable.
@ The simplified problem:

‘ﬂA‘ ’{/177 )GU I]_,,Iké\/—X}’:s(V-X)k
veX
where s(Y) = the number of independent sets in G[Y].

@ s(Y) can be computed at the beginning for all subsets Y C V:
s(Y)=s(Y —{y}) +s(Y — N[y]). This takes time (and space)
O*(2"), since the number of covers takes O(nlog k) bits.

o Next, we compute |, cx Av| easily in O*(1) time, so we get
|MNyev Avl in O*(27) time.
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Coloring in 2", cont'd

In O*(2") time and space we can

@ find a k-coloring or conclude it does not exist,

o find the chromatic number.
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Coloring in 2", cont'd

In O*(2") time and space we can
@ find a k-coloring or conclude it does not exist,

o find the chromatic number.

Theorem

In 0*(2.25") time and polynomial space we can find a k-coloring of a
given graph G or conclude that it does not exist.

We compute s(Y) in O(1.2377") time and polynomial space by the
algorithm of Wahlstrém (2008). Total time:

n
> 137X =3 <Z>1.2377k = (14 1.2377)" = 0(2.24").
XCV k=0

v
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Steiner Tree in 2k Nederlof 2009

Unweighted version

Given graph G = (V/, E), the set of terminals K C V and a number ¢ € N.
Is there a tree T C G such that K C V(T) and |E(T)| < c?
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Steiner Tree in 2k Nederlof 2009

Unweighted version

Given graph G = (V/, E), the set of terminals K C V and a number ¢ € N.
Is there a tree T C G such that K C V(T) and |E(T)| < c?

v

Weighted version

Additionally: weights on edges w : E — N. Is there a tree T C G such
that K C V(T) and w(E(T)) < ¢?
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Steiner Tree in 2k Nederlof 2009

Unweighted version

Given graph G = (V/, E), the set of terminals K C V and a number ¢ € N.
Is there a tree T C G such that K C V(T) and |E(T)| < c?

v

Weighted version

Additionally: weights on edges w : E — N. Is there a tree T C G such
that K C V(T) and w(E(T)) < ¢?

Denote n = |V|, k = |K].

The classical algorithm [Dreyfus, Wagner 1972]

Dynamic programming, works in O*(3%) time and O*(2¥) space, even in
the weighted version.
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Branching walks

Definition
Let G = (V, E) be an undirected graph and let s € V.
A branching walk is a pair B = (T, h), where
@ T is an ordered rooted tree and
@ h:V(T)— Visahomomorphism,
i.e. if (x,y) € E(T) then h(x)h(y) € E(G).

We say that B is from s, when h(r) = s, where r is the root of T.
The length of B is defined as |E(T)|.
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Branching walks

Example 1 Every walk is a branching walk

@ @ *—© o*—@ ® ®
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Branching walks

Example 1 Every walk is a branching walk

1 2 3 4 5 6 7 8
@ @ @ -@ @- @ ® ®

7
S
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Branching walks

Example 2 Even this one.

1 2 3 4 5 6 7 8
[ @ @ -@ ®- & & ®

S
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Branching walks
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Branching walks

Example 3 An injective homomorphism.
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Branching walks

Example 4 A non-injective homomorphism.

SR
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Branching walks

Example 5 An even more non-injective homomorphism.
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Steiner Tree, unweighted

For a branching walk B = (Tg, h) denote V(B) = h(V(Tg)).
Let s € K be any terminal.

Observation

G contains a tree T such that K C V/(T) and |E(T)| < c iff
G contains a branching walk B = (Tg, h) from s in G such that
K C V(B) and |E(Tg)| < c.
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Let s € K be any terminal.

Observation

G contains a tree T such that K C V/(T) and |E(T)| < c iff
G contains a branching walk B = (Tg, h) from s in G such that
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@ U is the set of all length ¢ branching walks from s.
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Steiner Tree, unweighted

For a branching walk B = (Tg, h) denote V(B) = h(V(Tg)).
Let s € K be any terminal.

Observation

G contains a tree T such that K C V/(T) and |E(T)| < c iff
G contains a branching walk B = (Tg, h) from s in G such that
K C V(B) and |E(Tg)| < c.

@ U is the set of all length ¢ branching walks from s.
e Ay={BeU : veV(B)}forvekK.
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Steiner Tree, unweighted

For a branching walk B = (Tg, h) denote V(B) = h(V(Tg)).
Let s € K be any terminal.

Observation

G contains a tree T such that K C V/(T) and |E(T)| < c iff
G contains a branching walk B = (Tg, h) from s in G such that
K C V(B) and |E(Tg)| < c.

@ U is the set of all length ¢ branching walks from s.
e Ay={BeU : veV(B)}forvekK.
o Then |, cx Av| # 0 iff there is the desired Steiner Tree.
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Steiner Tree, unweighted

For a branching walk B = (Tg, h) denote V(B) = h(V(Tg)).
Let s € K be any terminal.

Observation

G contains a tree T such that K C V/(T) and |E(T)| < c iff
G contains a branching walk B = (Tg, h) from s in G such that
K C V(B) and |E(Tg)| < c.

U is the set of all length ¢ branching walks from s.

A, ={BelU : veV(B)}forvekK.

Then |(,cx Av| # 0 iff there is the desired Steiner Tree.
The simplified problem: for every X C K compute

) Al = b (s),

veX

where b}/\x(a) = the number of length j branching walks from a in
G[V\ X].
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Steiner Tree, the simplified problem

bjy\x(a) = the number of length j branching walks from a in G[V \ X].

The simplified problem

For any X C K compute bé/\x(s).
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Steiner Tree, the simplified problem

bjy\x(a) = the number of length j branching walks from a in G[V \ X].

The simplified problem

For any X C K compute bé/\x(s).

Dynamic Programming: computing bé/\x(s) in polynomial time

Compute b}/\x(a) forall j=0,...,cand a € V\ X using DP:
é

tukasz Kowalik (UW) Algebraic approach... August 2013 19 / 37

1 if j =0,
V\X
b; ) (a) = Z Z bX\X(a)bJZ\X(t) otherwise.
teN(a)\X jit+j2=j—1




Steiner Tree, finish

Corollary [Nederlof 2009]

The unweighted Steiner Tree problem can be solved in O*(2) time and
polynomial space.
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Steiner Tree, finish

Corollary [Nederlof 2009]

The unweighted Steiner Tree problem can be solved in O*(2) time and
polynomial space.

Theorem [Nederlof 2009]

The weighted Steiner Tree problem can be solved in O*(C - 2¥) time and
O*(C) space. (We skip the proof here)
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The zeta ( transform and the M&bius o transform

We consider functions from subsets of a finite set V' to some ring — for
simplicity let us fix the ring (Z, +, -).

f.2Y>7z
The transforms below transform f into another function g : 2¥Y — Z.
The Zeta transform

(CH(X) = Zygx f(Y).

The Mobius transform
(nf)(X) = Zygx(_l)w\y‘f(y)-

tukasz Kowalik (UW)
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Why ¢ and g are cool?

The Zeta and Maobius transforms
(CH(X) = Eygx f(Y) (wf)(X) = Zygx(_l)lx\y|f(y)-

Inversion formula
For every X C V, we have f(X) = ucf(X).

Intuition why it is useful

@ Assume we want to compute f(X) efficiently, but we do not know how
to do it.

@ Say that we can compute (¢f)(Y) for all Y C X efficiently. So we
compute, and we get the function g = (f...

o ... and we compute ug(X) in O*(2IY!) time (say it is efficient).

tukasz Kowalik (UW) Algebraic approach... August 2013 22 /37



Why ¢ and g are cool?

The Zeta and Mabius transforms
(CH(X) = Zygx £(Y) (wf)(X) = Zygx(—l)lx\ylf(y)-

Inversion formula
For every X C V, we have f(X) = uCf(X).

Proof. uCf(X) = > (-1)XWIcH(Y) =D ()XW 3" #(2)

YCX YCX zCcy

— Zf(z). Z (_1)\X\YI

ZCX ZCYCX

= fX)+ > f(2) Y (-nxv

ZgX ZCYCX

= fX)+ > f(2)- > (-nxV

ZGX X\YCX\Z

0
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Hamiltonian cycle revisited

Counting HCs in a directed graph G = (V,E), V ={1,...,n}

For X C V, let f(X) be the number of closed n-walks W from vertex 1
such that V(W) = X.
Then:
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For X C V, let f(X) be the number of closed n-walks W from vertex 1
such that V(W) = X.
Then:

o (V) is the number of Hamiltonian cycles in G.
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Hamiltonian cycle revisited

Counting HCs in a directed graph G = (V,E), V ={1,...,n}

For X C V, let f(X) be the number of closed n-walks W from vertex 1
such that V(W) = X.
Then:

o (V) is the number of Hamiltonian cycles in G.

o (f(X) =) scx f(X) is the number of closed n-walks W from vertex
1 such that V(W) C X.
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Hamiltonian cycle revisited

Counting HCs in a directed graph G = (V,E), V ={1,...,n}

For X C V, let f(X) be the number of closed n-walks W from vertex 1
such that V(W) = X.
Then:

o (V) is the number of Hamiltonian cycles in G.

o (f(X) =) scx f(X) is the number of closed n-walks W from vertex
1 such that V(W) C X.

o Hence for every X, the value of (f(X) can be computed in O(n%)
time (DP).
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Hamiltonian cycle revisited

Counting HCs in a directed graph G = (V,E), V ={1,...,n}

For X C V, let f(X) be the number of closed n-walks W from vertex 1
such that V(W) = X.
Then:

o (V) is the number of Hamiltonian cycles in G.

o (f(X) =) scx f(X) is the number of closed n-walks W from vertex
1 such that V(W) C X.

o Hence for every X, the value of (f(X) can be computed in O(n%)
time (DP).
@ So we compute (V) = u¢f(V) in O*(2") time and polynomial space.
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Computing ¢ and g for all subsets X C V

(CH)(X) = Zygx f(Y) (nf)(X) = Zygx(_l)lx\y|f(y)-

Naive algorithm

o evaluating at single X: O(2X)).
@ evaluating at all X C V: O(ZXQVQW) = 0(3IVD.

Yates' algorithm (1937), described in Knuth's TAOCP

Given a function f : 2¥ — 7Z, we can compute all the 2" values of (f in
O*(2") time. Similarly uf.
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Fast Zeta Transform: all values of (f in O(2" - n) time

Let V ={1,...,n}. Represent subsets as characteristic vectors:
0 xa) = > b <xa,yn < xalf(yis s ya)-
y1,~--,}/n€{071}

Consider fixing the last n — j bits:

Cj(xlv"'axn): Z [)/1§X17--~7yj§Xj]f()/h---a)/jan+17-~~7Xn)-
N———
¥1,-,y;€{0,1} fixed

Consistently, Co(x1,...,xn) = f(x1,...,x,). Note that (,(X) = (f(X).
Dynamic programming:
Gi—1(x1, ..., xn) when x; =0,
Cj(Xl, ... ,Xn) = Cj—l(xla cey X1, 1,Xj+1, ce. ,Xn)+

G-1(x1s-- -y Xj—1,0,Xj41,...,Xa)  when x; = 1.
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Fast zeta transform trimmed from above

G—1(x1, ..., xn) when x; =0,
Cj(Xl, ... ,Xn) = Cj—l(xla ceey X1, 1,XJ‘+1,. .. ,Xn)—l-
G-1(x1s-- -3 Xj—1,0,Xj41,...,Xa)  when x; = 1.

DP in subset notation
G(X) = ¢-1(X) . when _j Z X,
G-1(X) + -1 (X = {j}) whenje X.

If we need to find ((X) only for X € G for some
G C 2Y, it suffices to compute (;(X) only for X € |G;

Lower closure
1G={Y CV : forsome X €G, Y C X}.

Corollary (Bjorklund, Husfeldt, Kaski, Koivisto)

If we store the values of (;(X) for X C |G in a dictionary, all values of
(CF)(X) for X € G can be computed in O*(| 1G|) time. Similarly for uf.

August 2013 26 / 37
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Fast zeta transform trimmed from below

Support, upper closure
For f : 2V — Z and F C 2V define
e supp(f) ={X CV : f(X)#0}
e 1F={YCV : forsome Xe€F, X C Y}

Recall: (¢F)(X) = > ycxf(Y)

Observation
e supp(¢f) C tsupp(f).
@ supp(¢if) € supp(¢f) € tsupp(f).

Corollary (Bjorklund, Husfeldt, Kaski, Koivisto)

If we store only the nonzero values of (;(X) in a dictionary, all the values
of (f can be computed in O*(| Tsupp(f)|) time. Similarly for pf.
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Up-zeta transform ('

Definition

(CTf)(X) = ZYQX f(y)_

Trimmed up-zeta transform (Bjorklund, Husfeldt, Kaski, Koivisto)

o (Trimming from above) For any set family G C 2" we can compute
all values of (Tf|g in O*(| 1§|) time.

o (Trimming from below) We can compute all the values of ¢'f in
O*(| Isupp(f)]) time.
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k-coloring, revisited

For X C V, let f(X) be the number of tuples (/,...

independent sets in G and U L li=X
Then:

,Ix), where [; are
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k-coloring, revisited

For X C V, let f(X) be the number of tuples (/..

independent sets in G and U L li=X
Then:

f(X) # 0 iff G[X] is k-colorable.
o (f(X) =) scx f(X) is the number of tuples (/,.
independent sets in G and Ujl'(:1 i € X.

-, Ix), where [; are

.., Ix), where [; are
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For X C V, let f(X) be the number of tuples (/,.

independent sets in G and U L li=X
Then:

f(X) # 0 iff G[X] is k-colorable.
o (f(X) =) scx f(X) is the number of tuples (/,.
independent sets in G and Ujl'(:1 i € X.

@ As before, all 2" values of (f can be found in O*(2") time and space.
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k-coloring, revisited

For X C V, let f(X) be the number of tuples (/,.

independent sets in G and U L li=X
Then:

f(X) # 0 iff G[X] is k-colorable.
o (f(X) =) scx f(X) is the number of tuples (/,.
independent sets in G and Ujl'(:1 i € X.

@ As before, all 2" values of (f can be found in O*(2") time and space.
@ Using the Yates' algorithm we find £ = u(f.

.., Ix), where [; are

.., Ix), where [; are
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k-coloring, revisited

For X C V, let f(X) be the number of tuples (/,..., /), where [; are
independent sets in G and U L li=X

Then:

f(X) # 0 iff G[X] is k-colorable.

CF(X) =D scx F(X) is the number of tuples (1, ..., /), where /; are
independent sets in G and Ujl'(:1 i € X.

As before, all 2" values of (f can be found in O*(2") time and space.

Using the Yates' algorithm we find £ = u(f.

Thus we found all the induced k-colorable subgraphs of G in O*(2")
time and space.
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The cover product

The cover product

The cover product of two functions f, g : 2¥ — Z is a function
(f *c g) : 2¥ — Z such that for every Y C V,

(f xc g)(Y Z f(A

AUB=Y
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The cover product

The cover product

The cover product of two functions f, g : 2¥ — Z is a function
(f *c g) : 2¥ — Z such that for every Y C V,

(f*xcg)(Y Z f(A

AUB=Y

Why do we define it? Because it is natural. Besides, e.g.:

Let F be the family of all independent sets in a given graph G. Let
15 :2Y — {0,1} be the characteristic function of F, i.e. 15(X) = [X € F].
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The cover product

The cover product

The cover product of two functions f, g : 2¥ — Z is a function
(f *c g) : 2¥ — Z such that for every Y C V,

(f*xcg)(Y Z f(A

AUB=Y

Why do we define it? Because it is natural. Besides, e.g.:

Let F be the family of all independent sets in a given graph G. Let
15 :2Y — {0,1} be the characteristic function of F, i.e. 15(X) = [X € F].
Th

en 1g %o 1g %c--- 15;(V) % 0 iff G is k-colorable.

k times
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Computing the cover product

As usual: We cannot compute (f * g)? Then we compute ((f *. g).

(Freg)YV)=D0 > f(A) = Y f(A)

XCY AuB=X AUBCY

_ (2 f(A)) (Z g<B>) = (CF(Y))(Ca(Y)).
ACY BCY
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Computing the cover product

As usual: We cannot compute (f * g)? Then we compute ((f *. g).

(Freg)YV)=D0 > f(A) = Y f(A)

XCY AuB=X AUBCY

_ (2 f(A)) (Z g(B>) = (CF(Y))(Ca(Y)).
ACY BCY

Hence (f xc g)(Y) = n((¢F(Y))(Cg(Y))). We use the Yates' algorithm 3x
and we get O*(2") time (and space).
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Computing the cover product

As usual: We cannot compute (f * g)? Then we compute ((f *. g).

(Freg)YV)=D0 > f(A) = Y  f(A)

XCY AuB=X AUBCY

_ (Z f(A)) (Z g(B>) = (CF(Y))(Ca(Y)).
ACY BCY

Hence (f xc g)(Y) = n((¢F(Y))(Cg(Y))). We use the Yates' algorithm 3x
and we get O*(2") time (and space).

In order to compute 15 *¢ 14 % - - - 15(V) it suffices to perform O(log k)

k times
such operations. Hence we obtain yet another algorithm which finds all

k-colorable induced subgraphs in O*(2") time.
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Subset convolution

Subset convolution

The subset convolution of two functions f,g : 2¥ — Z is a function
(f xg) : 2¥ — Z such that for every Y C V,

(fxg)(Y) = f(X)g(Y = X).

XCY

Equivalently...

(Fxg)(Y)= ) f(A)g(B).

AUB=Y
ANB=0
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Subset convolution

Subset convolution

The subset convolution of two functions f,g : 2¥ — Z is a function
(f xg) : 2¥ — Z such that for every Y C V,

(fxg)(Y) = f(X)g(Y = X).

XCY

v

Equivalently.

(Fxg)(Y)= ) f(A)g(B).

AUB=Y
ANB=0

Why do we define it? Because it is natural. Besides, e.g.:
if k=x(G) then 15 x15%---14(V) is the number of k-colorings of G.
—_———

k times
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Computing the subset convolution

For f : 2V — Z let f; denote f trimmed to the cardinality k subsets, i.e.:

f(5) = 1(5) - [I5] = Kl.
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Computing the subset convolution

For f : 2¥ — Z let f; denote f trimmed to the cardinality k subsets, i.e

f(5) = 1(5) - [I5] = Kl.

Then
(Frg)(Y)= Y f(Ag(B)=
v v
=3 > f(AeB)=Y_ Y f(Aa(B
sy e
A= 1Bl=I]|-i
Y| Y|
i=0 AUB=Y

i=0
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Computing the subset convolution

We got:
Y]

() (F*g)(Y) =D (fixcgv-)(Y)-

i=0
Algorithm:
@ Compute and store f; . gj(Y) forall i,j =0,...,nand Y C 2V,
@ Compute (f * g)(Y) for all Y C 2V using (x).

One can compute f *x g in O*(2") time.

There is an algorithm which, for every induced subgraph H of G, finds the
number of k-colorings of H in total O*(2") time and space.
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Coloring below the 2" barrier: the bounded degree case

Observation

Let F be the family of (inclusion-wise) maximal independent sets.

15 ¢ 1g % -+~ 15(V) # 0 iff G is k-colorable.

~~

k times
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Coloring below the 2" barrier: the bounded degree case

Observation

Let F be the family of (inclusion-wise) maximal independent sets.

15 ¢ 1g % -+~ 15(V) # 0 iff G is k-colorable.

k times

Denote 15 = 15 *¢ 15 *¢ - -+ 15.

r times

(f xc g)(Y) = pu((¢f(Y))(Cg(Y))). so
(15 xc 15)(Y) = u((C15(Y))(C15(Y))).
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r times
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o supply =&,
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Coloring below the 2" barrier: the bounded degree case

Observation

Let F be the family of (inclusion-wise) maximal independent sets.

15 ¢ 1g % -+~ 15(V) # 0 iff G is k-colorable.

k times

Denote 15 = 15 *¢ 15 *¢ - -+ 15.

-~

r times

(f xc g)(Y) = pu((¢f(Y))(Cg(Y))). so
(15 xc 15)(Y) = u((C15(Y))(C15(Y))).

o supply =&,
@ supply *c 15 %, --- 14 C Tsupply = 17,
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Coloring below the 2" barrier: the bounded degree case

Observation

Let F be the family of (inclusion-wise) maximal independent sets.

15 ¢ 1g % -+~ 15(V) # 0 iff G is k-colorable.

k times

Denote 15 = 15 *¢ 15 *¢ - -+ 15.

-~

r times

(f xc g)(Y) = pu((¢f(Y))(Cg(Y))). so
(15 xc 15)(Y) = u((C15(Y))(C15(Y))).

@ supply =5,

@ supply *c 1y *c -+ 15 C Tsupply = 15,

e Corollary: One can compute 15 %¢---15 in O*(| 1F|) time.
—_—

k times
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Coloring below the 2" barrier: the bounded degree case

One can compute 15 % --- 15 in O*(| 1F|) time and space.
—_————

k times

tukasz Kowalik (UW) Algebraic approach... August 2013 36 /37



Coloring below the 2" barrier: the bounded degree case

One can compute 15 % --- 15 in O*(| 1F|) time and space.
—_————

k times

Theorem (Bjorklund, Husfeldt, Kaski, Koivisto 2008)

In any n-vertex graph of maximum degree A there are
< (2A+1 — 1)"/(A+1) dominating sets.
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Coloring below the 2" barrier: the bounded degree case

One can compute 15 ¢ --- 15 in O*(| 1F|) time and space.
—_———

k times

Theorem (Bjorklund, Husfeldt, Kaski, Koivisto 2008)

In any n-vertex graph of maximum degree A there are
< (2A+1 — 1)"/(A+1) dominating sets.

Aaaaha!
But 1F contains only dominating sets!

Corollary (Bjorklund, Husfeldt, Kaski, Koivisto 2008)

One can find a k-coloring of a graph of maximum degree A in
O*((22+1 — 1)"/(A+1)) time.
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Coloring below the 2" barrier: the bounded degree case

Theorem (Bjorklund, Husfeldt, Kaski, Koivisto 2008)

One can find a k-coloring of a graph of maximum degree A in
O*((22+1 — A — 1)/ (A+1)) time.

(2A+1 A — 1)n/(A+1)
1.86121
1.93318
1.96745
1.98400
1.99208
1.99606
1.99804
1.99902
1.99951
1.99976

= =
o m oV ~NOo o w D
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