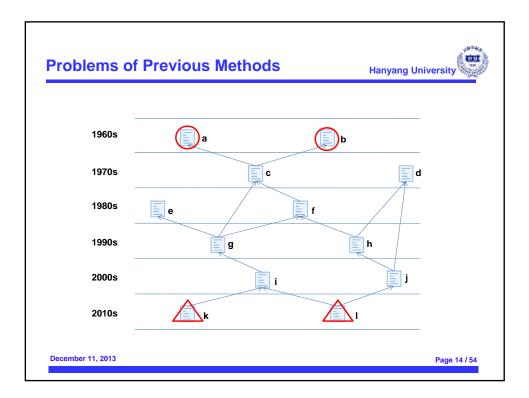
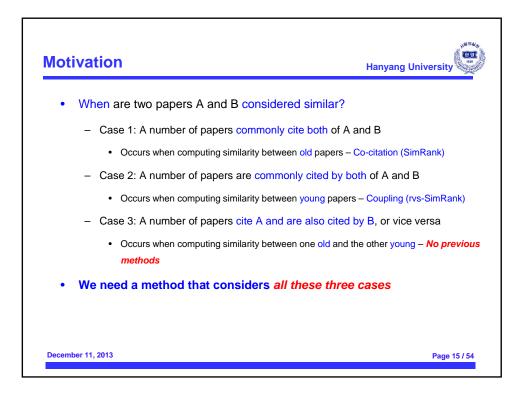
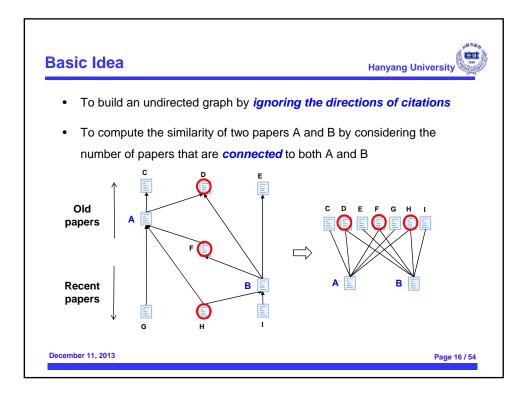
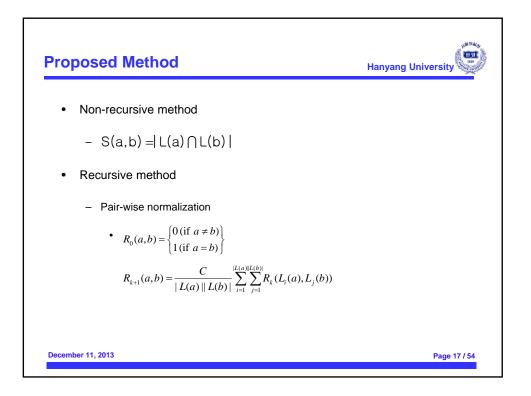
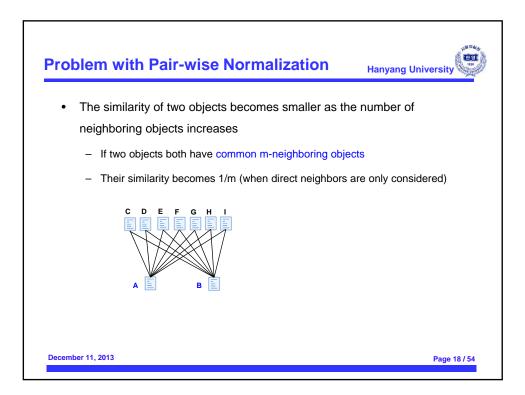

	Based Similarity Methods	Hanyang University
•	Non-Recursive Methods	
	- Co-citation	
	 Bibliographic coupling (Coupling) 	
	– Amsler	
	Recursive Methods	
	– SimRank	
	– rvs-SimRank	
	– P-Rank	

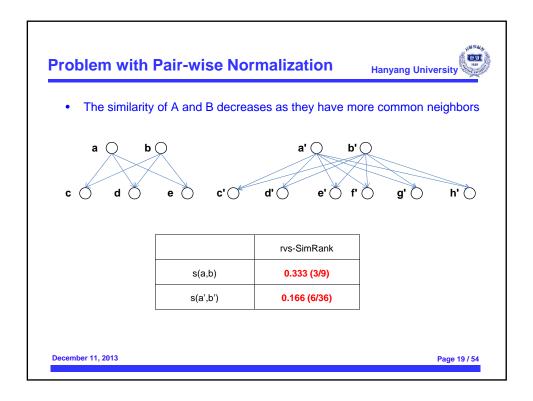


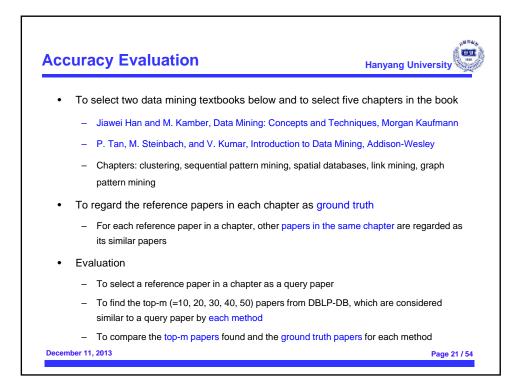


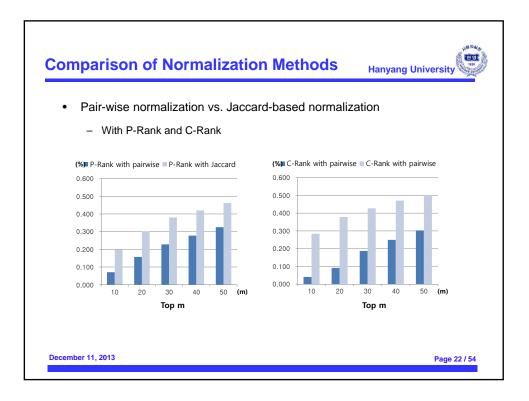




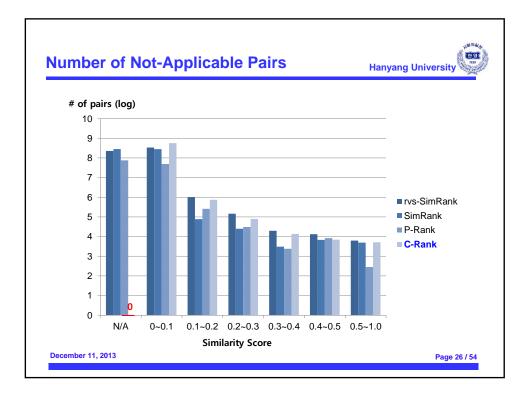


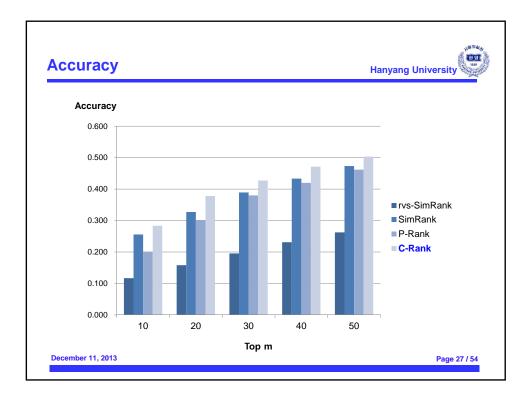


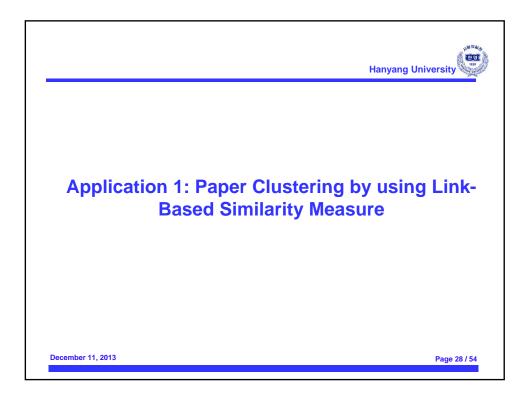


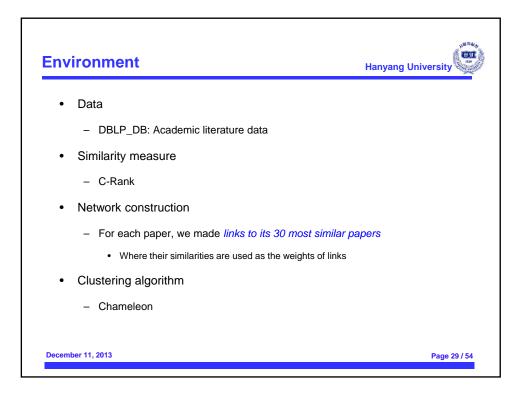


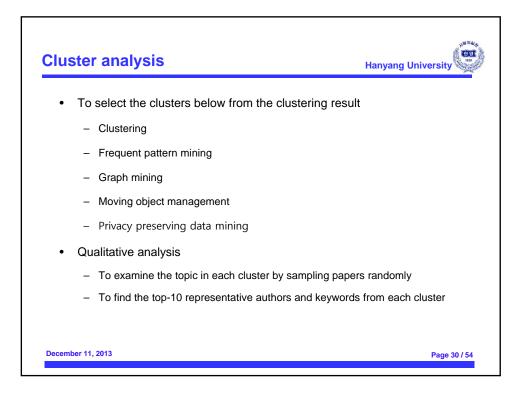
valuation		Hanyang University
Data		
 Papers i 	n a database area: DBLP_DB	
• Num	ber of papers: 55,569	
• Num	ber of citations: 142,604	
J	ournals and conferences related to a da	atabase area
	ADBIS, ADC, ARTDB, BNCOD, CDB, CoopIS, DANTE, DASFAA, DAWAK, DB DBSEC, DEXA, DKD, DKE, DL, DMKI DOLAP, DOOD, DPD, DPDS, DS, EDI FODO, FOIKS, FQAS, GIS, HPTS, ICDE ICDT, ICIS, IDA, IDEAL, IDEAS, IC Process. Lett., Inf. Sci., Inf. Syst IQIS, ISF, ISR, IW-MMDBMS, IWDM JIIS, JMIS, K-CAP, KA, KDD, KER, K MDA, MFDBS, MLDM, MMDB, MSS, OODBS, PAKDD, PKDD, PODS, RIDE SIGKDD Exp., SIGMOD, SIGMOD Re SSDBM, TKDE, TODS, TOIS, TSDM, VDB, VLDB, VLDB-J, WebDB, WIDM XMLEC	, DBPL, , DNIS, BT, ER, , ICDM, IS, Inf. , JDM, IS, KR, NLDB, , RIDS, c., SSD, UIDIS,

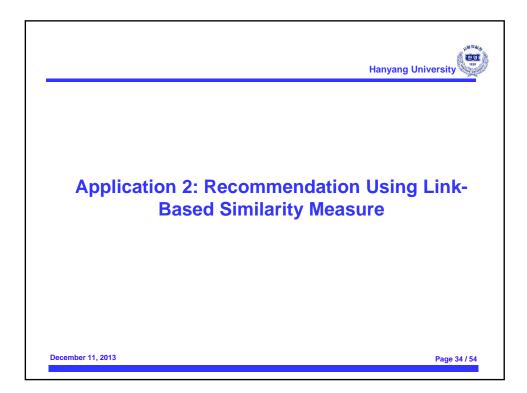


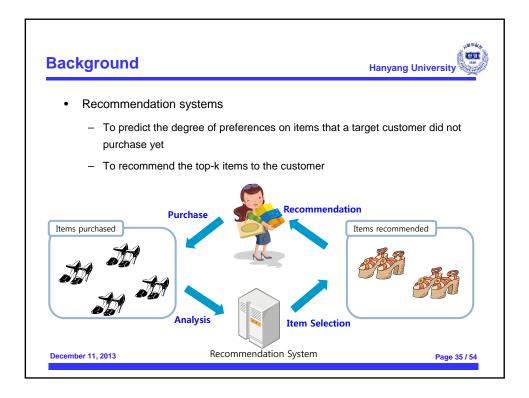



	: Top-10 Similar Papers Hanyang University
Rank	Paper Title
Query	BIRCH: an Efficient Data Clustering Method for Very Large
1	Efficient and Effective Clustering Methods
2	CURE: An Efficient Clustering Algorithm
3	A Density-Based Algorithm for Discovering Clusters
4	Automatic Subspace Clustering of High Dimensional
5	Scaling Clustering Algorithms to Large Databases
6	WaveCluster: A Multi-Resolution Clustering Approach
7	Fast Algorithms for Projected Clustering
8	STING: A Statistical Information Grid Approach
9	An Efficient Approach to Clustering in Large
10	OPTICS: Ordering Points To Identify the Clustering


mple: Top-10 Sim	lar Papers	Hanyang University
Previous methods		
 BIRCH: An Efficient Data 	ata Clustering Method for Very	Large Databases
SimRank	rvs-SimRank	P-Rank
CURE: An Efficient Clustering Algorithm for Large Datab ses.	^a A Unified Notion of Outliers: Properties and Computation.	A Unified Notion of Outliers: Properties and Com
WaveCluster: A Multi-Resolution Clustering Approach fo Very Large Spatial Databases.	r Cure: An Efficient Clustering Algorithm for Large Databas es.	Cure: An Efficient Clustering Algorithm for Large es.
Knowledge Discovery in Large Spatial Databases: Focus ng Techniques for Efficient Class Identification.	si A Density-Based Algorithm for Discovering Clusters in La ge Spatial Databases with Noise.	A Density-Based Algorithm for Discovering Clust ge Spatial Databases with Noise.
An Efficient Approach to Clustering in Large Multimedia atabases with Noise.	D Scaling Clustering Algorithms to Large Databases.	Scaling Clustering Algorithms to Large Database
Efficient and Effective Clustering Methods for Spatial Da a Mining.	t ROCK: A Robust Clustering Algorithm for Categorical Attr ibutes.	WaveCluster: A Multi-Resolution Clustering Appl Very Large Spatial Databases.
Scaling Clustering Algorithms to Large Databases.	WaveCluster: A Multi-Resolution Clustering Approach for Very Large Spatial Databases.	ROCK: A Robust Clustering Algorithm for Catego ibutes.
STING: A Statistical Information Grid Approach to Spatia Data Mining.	A Linear Method for Deviation Detection in Large Databa ses.	Efficient Algorithms for Discovering Association F
Streaming-Data Algorithms for High-Quality Clustering.	MAFIA: A Maximal Frequent Itemset Algorithm for Transa ctional Databases.	A Linear Method for Deviation Detection in Large ses.
A Density-Based Algorithm for Discovering Clusters in La ge Spatial Databases with Noise.	ar Efficient Algorithms for Discovering Association Rules.	What Makes Patterns Interesting in Knowledge D Systems.
A Linear Method for Deviation Detection in Large Databa	Metarule-Guided Mining of Multi-Dimensional Association Rules Using Data Cubes.	Mining Association Rules between Sets of Items Databases.

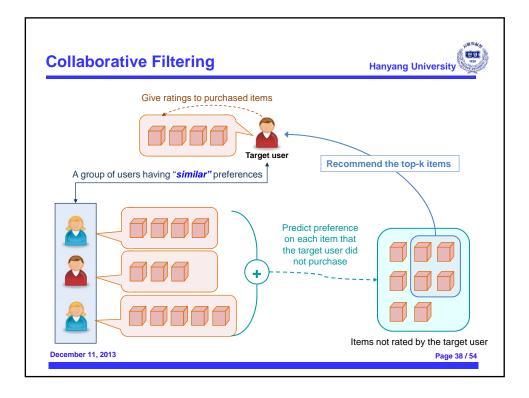

Rank	Paper Title	
Query	R-Trees: A Dynamic Index Structure for Spatial Searching	
1	The R*-Tree: An Efficient and Robust Access Method	
2	The R+-Tree: A Dynamic Index for Multi-Dimensional	
3	Nearest Neighbor Queries	
4	The K-D-B-Tree: A Search Structure For Large	
5	The X-tree : An Index Structure or	
6	On Packing R-trees	
7	The Grid File: An Adaptable, Symmetric Multikey	
8	Efficient Processing of Spatial Joins Using R-Trees	
9	Hilbert R-tree: An Improved R-tree using Fractals	
10	The SR-tree: An Index Structure for High-Dimensional	
mber 11, 201	3	Page 25 /

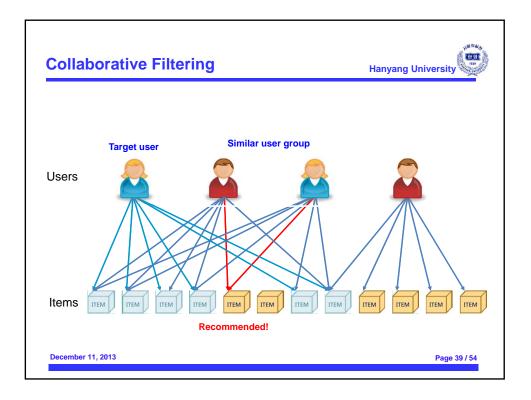


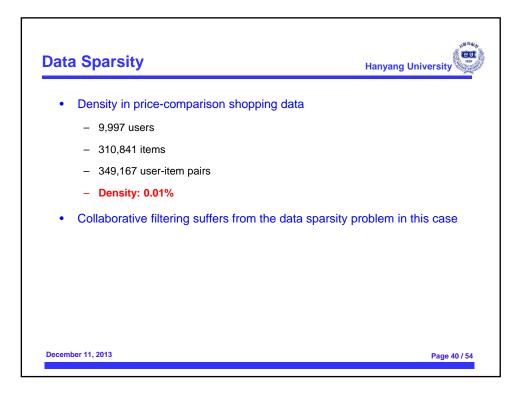


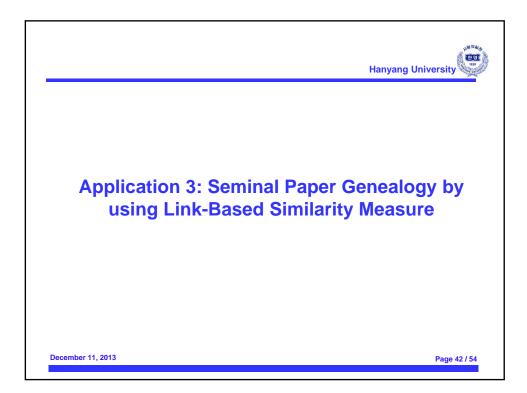
Рар	ers Rando	mly Sample	d in Clust	ers Hanyang U	Iniversity
Topics	Clustering	Frequent pattern mining	Moving Object	Privacy preserving data mining	Graph mining
#objects	441	228	191	140	135
1	Non-Redundant Data Clustering.	CT-ITL : Efficient Frequent Item Set Mining Using a Compressed Prefix T ree with Pattern Growth.	Moving Objects in Networks Databases.	Enhancing User Privacy Through Data Ha ndling Policies.	Indexing and Mining Free T ees.
2	Effective and Efficient Distributed Model-Based Clustering.	Mining Frequent Closed Patterns in Microarray Data.	Aggregation and compariso n of trajectories.	Privacy and Ownership Preserving of Out sourced Medical Data.	Efficient Mining of Frequent Subgraphs in the Presence of Isomorphism.
3	CACTUS - Clustering Categorical Data Using Summaries.	Information-Based Classification by Aggregating Emerging Patterns.	ASPEN: an adaptive spatial peer-to-peer network.	Privacy-Preserving Top-K Queries.	Efficient Discovery of Comn on Substructures in Macron olecules.
4	An Incremental Hierarchical Data Clustering Algorithm Based on Gr avity Theory.	Distribution-Based Synthetic Databa se Generation Techniques for Item-s et Mining.	Modeling and Querying Mo ving Objects.	Improved Privacy-Preserving Bayesian N etwork Parameter Learning on Vertically Partitioned Data.	Mining for Tree-Query Asso ciations in a Graph.
5	Electricity Based External Similari ty of Categorical Attributes.	From frequent itemsets to semantica Ily meaningful visual patterns.	R-trees with Update Memos	Hiding in the Crowd: Privacy Preservation on Evolving Streams through Correlation Tracking.	MARGIN: Maximal Frequen Subgraph Mining.
6	On the complexity of finding bala nced one-way cuts.	Statistical Supports for Frequent Ite msets on Data Streams.	STRIPES: An Efficient Inde x for Predicted Trajectories.	Privacy Preserving Nearest Neighbor Sea rch.	Razor: mining distance-con trained embedded subtrees
7	On the Efficiency of Best-Match Cluster Searches.	Mining Top-k Covering Rule Groups for Gene Expression Data.	A data model for multi-dime nsional transportation appli cations.	Ask a Better Question, Get a Better Answ er A New Approach to Private Data Analy sis.	Discovering frequent topolo gical structures from graph atasets.
8	Hierarchical Taxonomy Preparati on for Text Categorization Using Consistent Bipartite Spectral Gra ph Copartitioning.	Optimization of Constrained Freque nt Set Queries with 2-variable Const raints.	Relaxed space bounding fo r moving objects: a case for the buddy tree.	Deriving Private Information from Arbitraril y Projected Data.	Clustering Document Image s Using Graph Summaries.
9	Efficient Disk-Based K-Means Cl ustering for Relational Databases	On compressing frequent patterns.	Querying Imprecise Data in Moving Object Environment s.	On the Design and Quantification of Priva cy Preserving Data Mining Algorithms.	A Quantitative Comparison of the Sub-graph Miners Mo Fa, gSpan, FFSM, and Gas on.
10	Iterative Projected Clustering by Subspace Mining.	Research issues in data stream ass ociation rule mining.	Indexing Animated Objects Using Spatiotemporal Acce ss Methods.	Revealing information while preserving pri vacy.	Graph Indexing: A Frequent Structure-based Approach.

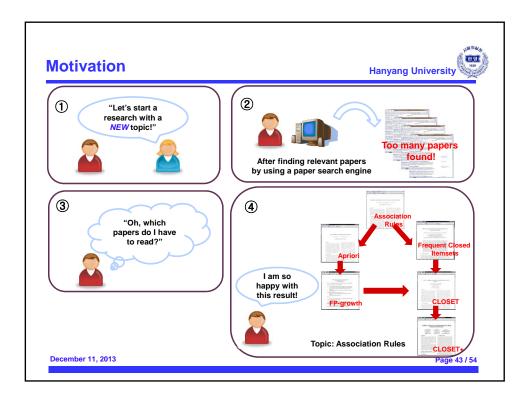
		nors and K	.,	Hanyang U	Inversity			
Торіс		Clustering						
Rank	Author	RWR Score	Frequency	Keyword	Frequenc			
1	Jiawei Han	9.644	12	clustering	283			
2	Hans-Peter Kriegel	6.083	29	data	132			
3	Martin Ester	4.919	8	algorithm	46			
4	Xiaowei Xu	4.769	6	large	41			
5	Jorg Sander	3.227	12	hierarchical	37			
6	Inderjit S. Dhillon	3.212	9	mining	35			
7	Philip S. Yu	2.740	15	clusters	34			
8	Charu C. Aggarwal	2.262	8	high	32			
9	Wei Wang	1.822	9	cluster	31			
10	Jiong Yang	1.737	6	dimensional	30			

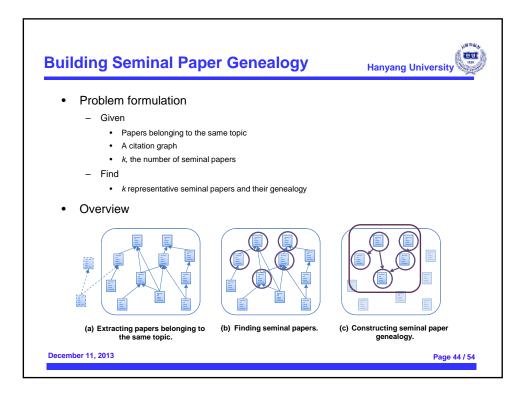

	entative Authors and Keywords Hanyang Universit						
Торіс		Frequent	pattern mining	9			
Rank	Author	RWR Score	Frequency	Keyword	Frequency		
1	Jiawei Han	4.367	25	frequent	125		
2	Jian Pei	3.115	13	mining	113		
3	Heikki Mannila	1.414	8	patterns	55		
4	Mohammed Javeed Zaki	1.043	9	itemsets	44		
5	Laks V. S. Lakshmanan	1.014	7	pattern	39		
6	Toon Calders	0.891	6	data	37		
7	Jianyong Wang	0.499	6	closed	24		
8	Osmar R. Zaiane	0.486	8	efficient	24		
9	Hong Cheng	0.483	7	itemset	23		
10	Anthony K. H. Tung	0.471	6	algorithm	17		

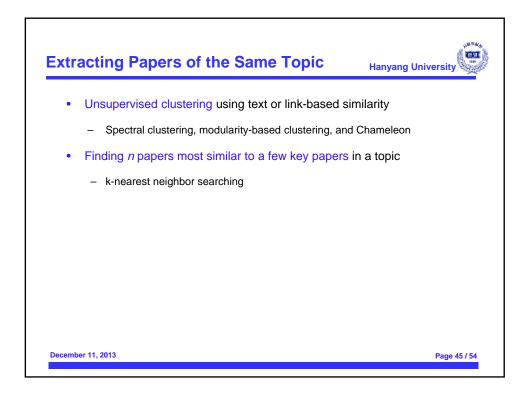


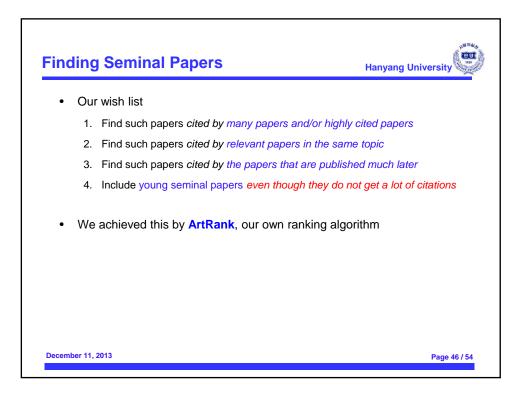


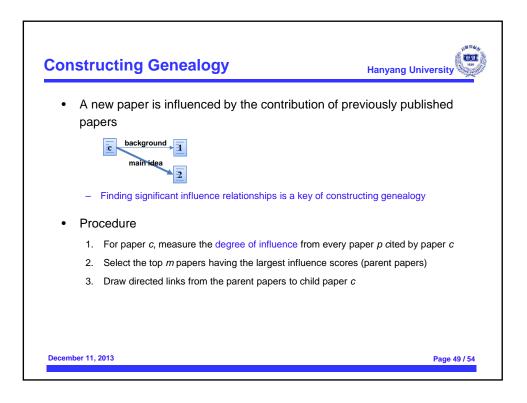


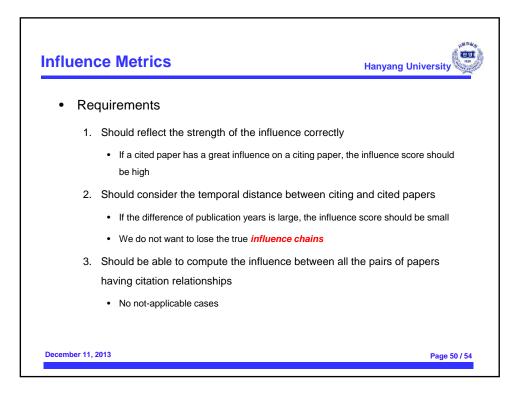


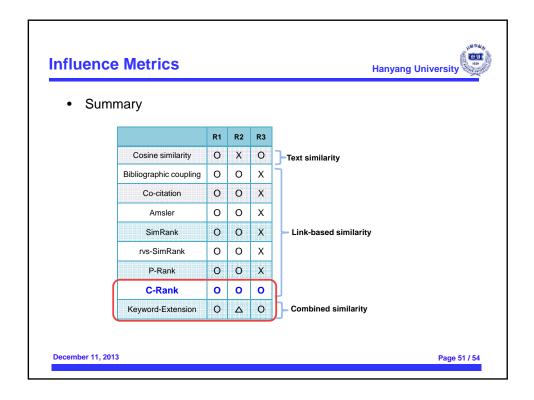


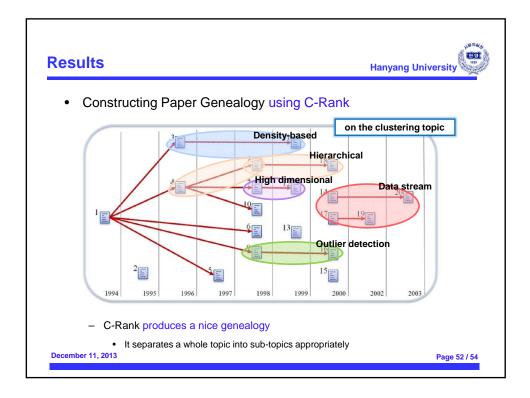


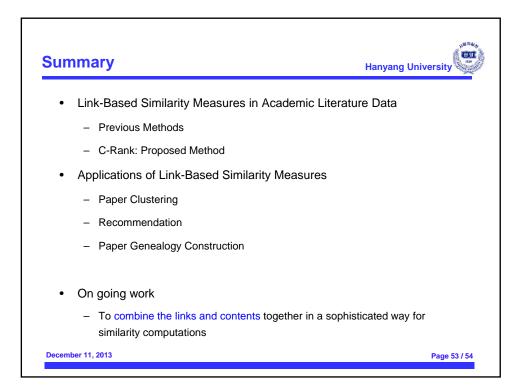

Recall@10Recall@20Precision@10Precision@20Our Approach23.8327.673.702.15Graph-Based RS13.1718.171.901.40User-Based CF16.1621.873.152.19	Accuracy (%)				
Graph-Based RS 13.17 18.17 1.90 1.40		Recall@10	Recall@20	Precision@10	Precision@20
	Our Approach	23.83	27.67	3.70	2.15
User-Based CF 16.16 21.87 3.15 2.19	Graph-Based RS	13.17	18.17	1.90	1.40
	User-Based CF	16.16	21.87	3.15	2.19
Item-Based CF 12.00 19.06 2.25 1.68	Item-Based CF	12.00	19.06	2.25	1.68








esults	Hanyang	J Universit	y
Seminal paper list on the clustering to	pic		
Title	Author	Publisher	Year
Efficient and Effective Clustering Methods for Spatial Data Mining	Raymond T. Ng, Jiawei Han	VLDB	1994
A Database Interface for Clustering in Large Spatial Databases	Martin Ester, Hans-Peter Kriegel, Xiaowei Xu	KDD	1995
A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise	Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu	KDD	1996
BIRCH: An Efficient Data Clustering Method for Very Large Databases	Tian Zhang, Raghu Ramakrishnan, Miron Livny	SIGMOD	1996
STING: A Statistical Information Grid Approach to Spatial Data Mining	Wei Wang, Jiong Yang, Richard Muntz	VLDB	1997
Scaling Clustering Algorithms to Large Databases	Paul S. Bradley, Usama M. Fayyad, Cory Reina	KDD	1998
Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications	Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, Prabhakar Raghavan	SIGMOD	1998
CURE: An Efficient Clustering Algorithm for Large Databases	Sudipto Guha, Rajeev Rastogi, Kyuseok Shim	SIGMOD	1998
Algorithms for Mining Distance-Based Outliers in Large Datasets	Edwin M. Knorr, Raymond T. Ng	VLDB	1998
Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values	Zhexue Huang	DMKD	1998


esults	Hanyan	g Universit	y
Seminal paper list on the clu	ustering topic		
Title	Author	Publisher	Year
OPTICS: Ordering Points To Identify the Clustering Structure	Mihael Ankerst, MarkusM. Breunig, Hans-Peter Kriegel, Jorg Sander	SIGMOD	1999
Fast Algorithms for Projected Clustering	Charu C. Aggarwal, Cecilia Magdalena Procopiuc, Joel L. Wolf, Philip S. Yu, Jong Soo Park	SIGMOD	1999
Chameleon: Hierarchical Clustering using Dynamic Modeling	George Karypis, Eui-Hong Han, Vipin Kumar	IEEE Computer	1999
Clustering Data Streams: Theory and Practice	Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, Liadan O'Callaghan	IEEE TKDE	2000
Biclustering of Expression Data	Y. Cheng, G.M. Church	ISMD	2000
LOF: Identifying Density-Based Local Outliers	Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, Jorg Sander	SIGMOD	2000
NiagaraCQ: A Scalable Continuous Query System for Internet Databases	Jianjun Chen, David J. DeWitt, Feng Tian, Yuan Wang	SIGMOD	2000
ROCK: A Robust Clustering Algorithm for Categorical Attributes	Sudipto Guha, Rajeev Rastogi, Kyuseok Shim	Inf. Syst.	2000
Models and Issues in Data Stream Systems	Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, Jennifer Widom	PODS	2002
A Framework for Clustering Evolving Data Streams	Charu C. Aggarwal, Jiawei Han, Jianyong Wang, Philip S. Yu	VLDB	2003

