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Our Memory Access Optimization Problem

What are we doing?
SIMD paradigm, vectorization

data-parallel languages: OpenCL, CUDA, etc. focusing on GPUs

goal: compile OpenCL for SIMD capable CPUs

Definition
kernel = function to be compiled to vectorized code
work item = one entity executing “one coordinate” of the vectorized code
SIMD width w = number of entities
ID = unique identifier of an entity

One central problem when switching from GPUs to SIMD CPUs
vectorized CPU instructions resemble to GPU instructions

but: CPUs lack hardware support for recognizing aligned memory accesses

our idea: solve this consecutivity question in software at compile time
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A Standard OpenCL Benchmark Kernel

__kernel void

fastWalshTransform(float* tArray ,

int step) {

int tid = get_global_id ();

int group = tid % step;

int pair = 2*step*(tid/step) + group;

int match = pair + step;

float T1 = tArray[pair];

float T2 = tArray[match];

tArray[pair] = T1 + T2;

tArray[match] = T1 - T2;

}

One arithmetically non-trivial memory access expression
e(x , a) = 2a� diva(x) + moda(x)
x – the ID of a work item
a – the function argument
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Our Approach (1)

1. Formalize the consecutivity question:

ϕ(w , a) = ∀x
(

x ≥ 0 ∧ x ≡w 0 −→
w−2∧
i=0

e(x + i , a) + 1 = e(x + i + 1, a)
)

2. Solve it, obtaining a set of values a, for which ϕ(w , a) holds.

3. Generate code: More efficient code is executed when the consecutivity
question is true for the value of the input parameter.

The input parameter is treated as a constant and instantiated.
Reason: Integer arithmetic with binary division and/or modulo is undecidable.
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Our Approach (2)

Instantiation of a leads to many SMT problems, e.g., a = 1, . . . , 216.
Direct use of Z3 turned out to be infeasible in practice.

Our Solution
modulo elimination as a preprocessing step: Systematically apply
moda(x)→ a− a diva(x) before SMT-solving.

solving 216 instances by Z3 (v4.3.1):

w Timeouts CPU Time Elim Timeouts Elim CPU Time Speedup
4 361 14 h 0 4 min 210×
8 3,331 97 h 0 5 min 1164×

16 10,294 256 h 312 334 min 46×

performance gain: The generated code is from 1.03 to 2 times faster.
significant advantage of our approach: performance can not be worse
better performance than any state-of-the-art compilers including Intel and
AMD on examples from AMD APP SDK
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Proof of Concept “System”

input

expression

files output as a

set of integers

solving in
Z3

formula generation

modulo elimination

in Redlog

Drawbacks
redundant combination of two systems

communication through files

scripting needed to make it work

no library available→ Usage within a more complex system is not possible.

Advantages
flexible environment for rapid prototyping
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Current Work in Progress

compactly represented

input

expression

output setformula generation

modulo elimination

SMT solving

Z3
library

pthreads

Design Aims

multithreading for the e.g. 216 instances of a

directly linkable to a compiler with a suitable API

minimal infrastructure needed

fast and portable
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Short System Description

Solving Process

Input: a memory access expression e(x , a) and interval [u; l]
Output: a sorted list of disjoint periodic sets

1. Construct the formula ϕ(w , a) and divide [u; l] into n parts.

2. Spawn n working threads.

3. Collect and merge partial solutions.

Problem with Threads

The real running time does not scale!

Reason for this is unacceptable increase in the user time.

We are in contact with Z3 developers about this issue.

Workaround Solution
Each thread spawns a process, which carries the actual computation.
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Compact Representation of the Answer Set

At present we restrict ourselves to sorted lists of disjoint periodic sets:

A periodic set is {x | x ∈ Z ∧ a ≤ x ≤ b ∧ x ≡m c}.
straightforward representation

Implemented operations: add point and merge (union).

Pros
(in practice) constant space

add point and merge operations
take constant time

compatible with concurrency

Cons
limited expressive power
possible generalizations:

– non-disjoint sets in the list
– incremental automata

minimization
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SMT vs. ILP

Characteristics of our formulas
simple Boolean structure

numerous different but comparatively simple instances

linear integer arithmetic with division and modulo by constants

This can be transformed into ILP.

Surprise: Gurobi v5.5 cannot compete with Z3.

Key Observation
ILP solver: better performance in SAT cases

SMT solver: outperforms ILP in UNSAT cases
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Future Work

combination with a compiler (cooperation with S. Hack and R. Karrenberg at
Saarland University)

study possible combinations of ILP and SMT

consider other theories than integers to the extent supported by SMT solvers

more experiments

more expressive and still efficient representation of the answer set
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Summary

1. Introduced memory access optimization problem.

2. Formalized the consecutivity question.

3. Described the old “system”, which was used for some experimentation.

4. Current work: Development of a monolithic system.

5. Properties: Parallelism, compact answer sets representation, and
easy-to-use in combination with a compiler.

6. Reported on implementation issues, which need to be resolved.
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Additional Kernel Example
__kernel void

bitonicSort(__global uint * tArray ,

const uint stage ,

const uint passOfStage ,

const uint width ,

const uint direction) {

uint tid = get_global_id ();

uint pairDistance = 1 << (stage - passOfStage );

uint blockWidth = 2 * pairDistance;

uint leftId = (tid % pairDistance) + (tid / pairDistance) * blockWidth;

uint rightId = leftId + pairDistance;

uint leftElement = tArray[leftId ];

uint rightElement = tArray[rightId ];

. .

. .

. .

if (. . .) {

tArray[leftId] = lesser;

tArray[rightId] = greater;

} else

. . .

}

Memory access expression

e(x , a) = 2a+1 � div2a(x) + mod2a(x) + 2a
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