l l I I I max planck institut
informatik

SMT-Based Compiler Support for Memory Access
Optimization for Data-Parallel Languages

Marek Kosta

Max Planck Institute for Informatics

MACIS 2013, Nanning, China
December 12, 2013



Introduction Previous Work Current Work Future Work and Summary
e0 [e]e]e} [e]e]e} 000

Our Memory Access Optimization Problem

What are we doing?

= SIMD paradigm, vectorization
= data-parallel languages: OpenCL, CUDA, etc. focusing on GPUs
= goal: compile OpenCL for SIMD capable CPUs

l l I I I max planck institut
informatik



Introduction Previous Work Current Work Future Work and Summary
e0 [e]e]e} [e]e]e} 000

Our Memory Access Optimization Problem

What are we doing?

= SIMD paradigm, vectorization
= data-parallel languages: OpenCL, CUDA, etc. focusing on GPUs
= goal: compile OpenCL for SIMD capable CPUs

Definition

kernel = function to be compiled to vectorized code

work item = one entity executing “one coordinate” of the vectorized code
SIMD width w = number of entities

ID = unique identifier of an entity

l l I I I max planck institut
informatik



Introduction Previous Work Current Work Future Work and Summary

e0 [e]e]e} [e]e]e} 000

Our Memory Access Optimization Problem

What are we doing?

= SIMD paradigm, vectorization

= data-parallel languages: OpenCL, CUDA, etc. focusing on GPUs
= goal: compile OpenCL for SIMD capable CPUs

Definition

kernel = function to be compiled to vectorized code

work item = one entity executing “one coordinate” of the vectorized code
SIMD width w = number of entities

ID = unique identifier of an entity

One central problem when switching from GPUs to SIMD CPUs

® vectorized CPU instructions resemble to GPU instructions
= put: CPUs lack hardware support for recognizing aligned memory accesses
® our idea: solve this consecutivity question in software at compile time

l l I I I max planck institut
informatik



Introduction Previous Work Current Work Future Work and Summary
oe [e]e]e} [e]e]e} 000

A Standard OpenCL Benchmark Kernel

__kernel void
fastWalshTransform(float* tArray,
int step) {
int tid = get_global_id ();
int group = tid % step;
2*step*(tid/step) + group;

int pair

int match = pair + step;
float T1 = tArray[pair];
float T2 = tArray[match];
tArray[pair] = T1 + T2;

tArray[match] = T1 - T2;

l l I I I max planck institut
informatik



Introduction Previous Work Current Work Future Work and Summary

oe

A Standard OpenCL Benchmark Kernel

__kernel void
fastWalshTransform(float* tArray,
int step) {
int tid = get_global_id ();
int group = tid % step;
2+«step*(tid/step) + group;

int pair

int match = pair + step;
float T1 = tArray[pair];
float T2 = tArray[match];
tArray[pair] = T1 + T2;

tArray[match] = T1 - T2;

One arithmetically non-trivial memory access expression

e(x,a) = 2a® diva(x) + moda(x)
x —the ID of a work item
a— the function argument

l l I I I max planck institut
informatik



Introduction Previous Work Current Work Future Work and Summary
(e} @00 [e]e]e} 000

Our Approach (1)

1. Formalize the consecutivity question:

w—2
<,0(W7a):VX(XZO/\XEWO—> A

e(x+i,a)+1 :e(x+i+1,a))
i=0

l l I I I max planck institut
informatik



Introduction Previous Work Current Work Future Work and Summary
(e} @00 [e]e]e} 000

Our Approach (1)

1. Formalize the consecutivity question:
-2

w
<,0(W7a):VX(XZO/\XEWO—> A

e(x+i,a)+1 :e(x+i+1,a))
i=0

2. Solve it, obtaining a set of values a, for which ¢(w, a) holds.

l l I I I max planck institut
informatik



Introduction Previous Work Current Work Future Work and Summary
(e} @00 [e]e]e} 000

Our Approach (1)

1. Formalize the consecutivity question:

w—2
<,0(W7a):VX(XZO/\XEWO—> A

e(x+i,a)+1 :e(x+i+1,a))
i=0

2. Solve it, obtaining a set of values a, for which ¢(w, a) holds.

3. Generate code: More efficient code is executed when the consecutivity
question is true for the value of the input parameter.

l l I I I max planck institut
informatik



Introduction Previous Work Current Work Future Work and Summary
(e} @00 [e]e]e} 000

Our Approach (1)

1. Formalize the consecutivity question:

w—2
w(w, a) :Vx(xz OAX=40— A e(x+ia)+1= e(x+i+1,a))
i=0

2. Solve it, obtaining a set of values a, for which ¢(w, a) holds.

3. Generate code: More efficient code is executed when the consecutivity
question is true for the value of the input parameter.

The input parameter is treated as a constant and instantiated.
Reason: Integer arithmetic with binary division and/or modulo is undecidable.

l l I I I max planck institut
informatik



Introduction Previous Work Current Work Future Work and Summary
(e} (o] lo} [e]e]e} 000

Our Approach (2)

= |nstantiation of a leads to many SMT problems, e.g., a=1,...,2.
= Direct use of Z3 turned out to be infeasible in practice.

l l I I I max planck institut
informatik



Introduction Previous Work Current Work Future Work and Summary
00 (] Yo} 000 000

Our Approach (2)

= |nstantiation of a leads to many SMT problems, e.g., a=1,...,2.

= Direct use of Z3 turned out to be infeasible in practice.

modulo elimination as a preprocessing step: Systematically apply
modas(x) — a — adiva(x) before SMT-solving.

= solving 2'¢ instances by Z3 (v4.3.1):

w Timeouts CPU Time Elim Timeouts Elim CPU Time Speedup
4 361 14 h 0 4 min 210x
8 3,331 97 h 0 5 min 1164 x
16 10,294 256 h 312 334 min 46

l l I I I max planck institut
informatik



Introduction Previous Work Current Work Future Work and Summary
(e} (o] lo} [e]e]e} 000

Our Approach (2)

= |nstantiation of a leads to many SMT problems, e.g., a=1,...,2.
= Direct use of Z3 turned out to be infeasible in practice.

modulo elimination as a preprocessing step: Systematically apply
modas(x) — a — adiva(x) before SMT-solving.

= solving 2'¢ instances by Z3 (v4.3.1):

w Timeouts CPU Time Elim Timeouts Elim CPU Time Speedup
4 361 14 h 0 4 min 210x
8 3,331 97 h 0 5 min 1164 x
16 10,294 256 h 312 334 min 46

= performance gain: The generated code is from 1.03 to 2 times faster.

l l I I I max planck institut
informatik



Future Work and Summary
000

Current Work
[e]e]e}

Previous Work
(o] lo}

Our Approach (2)

= |nstantiation of a leads to many SMT problems, e.g., a=1,...,2.
= Direct use of Z3 turned out to be infeasible in practice.

Introduction
(e}

modulo elimination as a preprocessing step: Systematically apply
modas(x) — a — adiva(x) before SMT-solving.

= solving 2'¢ instances by Z3 (v4.3.1):

w Timeouts CPU Time Elim Timeouts Elim CPU Time Speedup
4 361 14 h 0 4 min 210x
8 3,331 97 h 0 5 min 1164 x
16 10,294 256 h 312 334 min 46

= performance gain: The generated code is from 1.03 to 2 times faster.
= significant advantage of our approach: performance can not be worse

l l I I I max planck institut
informatik



Previous Work Current Work Future Work and Summary
(o] lo} [e]e]e} 000

Our Approach (2)

= |nstantiation of a leads to many SMT problems, e.g., a=1,...,2.
= Direct use of Z3 turned out to be infeasible in practice.

Introduction
(e}

modulo elimination as a preprocessing step: Systematically apply
modas(x) — a — adiva(x) before SMT-solving.

= solving 2'¢ instances by Z3 (v4.3.1):

w Timeouts CPU Time Elim Timeouts Elim CPU Time Speedup
4 361 14 h 0 4 min 210x
8 3,331 97 h 0 5 min 1164 x
16 10,294 256 h 312 334 min 46

= performance gain: The generated code is from 1.03 to 2 times faster.
= significant advantage of our approach: performance can not be worse

= better performance than any state-of-the-art compilers including Intel and
AMD on examples from AMD APP SDK

l l I I I max planck institut
informatik



Introduction Previous Work Current Work Future Work and Summary
(e} ooe [e]e]e} 000

Proof of Concept “System”

input formula generation files L output as a
S solving in
% modulo elimination 73 %
expression in Redlog set of integers

Drawbacks

= redundant combination of two systems

= communication through files
® scripting needed to make it work

= no library available — Usage within a more complex system is not possible.

Advantages

= flexible environment for rapid prototyping

l l I I I max planck institut
informatik



Introduction Previous Work Current Work Future Work and Summary
00 000 000 000
Current Work in Progress
input formula generation output set
% modulo elimination %
expression SMT solving compactly represented
Z3
. threads
library P

Design Aims

= multithreading for the e.g. 2'® instances of a

= directly linkable to a compiler with a suitable API
= minimal infrastructure needed

= fast and portable

l l I I I max planck institut
informatik



Introduction Previous Work Current Work

Future Work and Summary
(e} [e]e]e} oeo

000

Short System Description

Solving Process

Input: a memory access expression e(x, a) and interval [u; /]
Output: a sorted list of disjoint periodic sets
1. Construct the formula ¢(w, a) and divide [u; /] into n parts.
2. Spawn n working threads.
3. Collect and merge partial solutions.

l l I I I max planck institut
informatik



Introduction Previous Work Current Work Future Work and Summary
(e} [e]e]e} oeo 000

Short System Description

Solving Process

Input: a memory access expression e(x, a) and interval [u; /]
Output: a sorted list of disjoint periodic sets
1. Construct the formula ¢(w, a) and divide [u; /] into n parts.
2. Spawn n working threads.
3. Collect and merge partial solutions.

Problem with Threads
= The real running time does not scale!

= Reason for this is unacceptable increase in the user time.
= We are in contact with Z3 developers about this issue.

l l I I I max planck institut
informatik



Introduction Previous Work Current Work Future Work and Summary
(e} [e]e]e} oeo 000

Short System Description

Solving Process
Input: a memory access expression e(x, a) and interval [u; /]
Output: a sorted list of disjoint periodic sets
1. Construct the formula ¢(w, a) and divide [u; /] into n parts.
2. Spawn n working threads.
3. Collect and merge partial solutions.

Problem with Threads
= The real running time does not scale!

= Reason for this is unacceptable increase in the user time.
= We are in contact with Z3 developers about this issue.

Workaround Solution
Each thread spawns a process, which carries the actual computation.

l l I I I max planck institut
informatik



Introduction Previous Work Current Work Future Work and Summary
(e} [e]e]e} ooe 000

Compact Representation of the Answer Set

At present we restrict ourselves to sorted lists of disjoint periodic sets:
® Aperiodicsetis {x | x e ZANa<x <bAX=nc}.

= straightforward representation

® Implemented operations: add_point and merge (union).

l l I I I max planck institut
informatik



Introduction Previous Work Current Work Future Work and Summary
(e} [e]e]e} ooe 000

Compact Representation of the Answer Set

At present we restrict ourselves to sorted lists of disjoint periodic sets:
® Aperiodicsetis {x | x e ZANa<x <bAX=nc}.

= straightforward representation

® Implemented operations: add_point and merge (union).

= |imited expressive power

(in practice) constant space

® add_point and merge operations " possible generalizations:
take constant time — non-disjoint sets in the list
= compatible with concurrency — incremental automata
minimization

l l I I I max planck institut
informatik



Introduction Previous Work Current Work Future Work and Summary
(e} [e]e]e} [e]e]e} 000

SMT vs. ILP

Characteristics of our formulas
= simple Boolean structure

= numerous different but comparatively simple instances

= |inear integer arithmetic with division and modulo by constants

l l I I I max planck institut
informatik



Introduction Previous Work Current Work Future Work and Summary
(e} [e]e]e} [e]e]e} 000

SMT vs. ILP

Characteristics of our formulas
= simple Boolean structure

= numerous different but comparatively simple instances

= |inear integer arithmetic with division and modulo by constants

® This can be transformed into ILP.
® Surprise: Gurobi v5.5 cannot compete with Z3.

l l I I I max planck institut
informatik



Introduction Previous Work Current Work Future Work and Summary
(e} [e]e]e} [e]e]e} 000

SMT vs. ILP

Characteristics of our formulas
= simple Boolean structure

= numerous different but comparatively simple instances

= |inear integer arithmetic with division and modulo by constants

® This can be transformed into ILP.
® Surprise: Gurobi v5.5 cannot compete with Z3.

Key Observation
= |LP solver: better performance in SAT cases
= SMT solver: outperforms ILP in UNSAT cases

l l I I I max planck institut
informatik



Introduction Previous Work Current Work Future Work and Summary
(e} [e]e]e} [e]e]e} (o] le]

Future Work

= combination with a compiler (cooperation with S. Hack and R. Karrenberg at
Saarland University)

® study possible combinations of ILP and SMT
= consider other theories than integers to the extent supported by SMT solvers
® more experiments

® more expressive and still efficient representation of the answer set

l l I I I max planck institut
informatik



Introduction Previous Work Current Work Future Work and Summary

(e}

[e]e]e} [e]e]e} oe] )

Summary

a ~ WO N =

. Introduced memory access optimization problem.

. Formalized the consecutivity question.

. Described the old “system”, which was used for some experimentation.
. Current work: Development of a monolithic system.

. Properties: Parallelism, compact answer sets representation, and

easy-to-use in combination with a compiler.

. Reported on implementation issues, which need to be resolved.

l l I I I max planck institut
informatik



Introduction Previous Work Current Work Future Work and Summary

(e} [e]e]e} [e]e]e} 000

Additional Kernel Example

__kernel void
bitonicSort(__global uint * tArray,
const uint stage,
const uint passOfStage,
const uint width,
const uint direction) {
uint tid = get_global_id();
uint pairDistance = 1 << (stage - passO0fStage);
uint blockWidth = 2 x pairDistance;
uint leftId = (tid % pairDistance) + (tid / pairDistance) * blockWidth;
uint rightId = leftId + pairDistance;
uint leftElement = tArray[leftId];
uint rightElement = tArray[rightId];

i Lo

tArray[leftId] = lesser;
tArray[rightId] = greater;
} else

Memory access expression

e(x,a) = 23" ® divpa(x) + modaa(x) + 22

l l I I I max planck institut
informatik



	Introduction
	Previous Work
	Current Work
	Future Work and Summary

