

SMT-Based Compiler Support for Memory Access Optimization for Data-Parallel Languages

Marek Košta

Max Planck Institute for Informatics

MACIS 2013, Nanning, China December 12, 2013

Introduction	Previous Work	Current Work	Future Work and Summary
•0	000	000	000

Our Memory Access Optimization Problem

What are we doing?

- SIMD paradigm, vectorization
- data-parallel languages: OpenCL, CUDA, etc. focusing on GPUs
- goal: compile OpenCL for SIMD capable CPUs

Definition

kernel = function to be compiled to vectorized code **work item** = one entity executing "one coordinate" of the vectorized code **SIMD width** w = number of entities **ID** = unique identifier of an entity

One central problem when switching from GPUs to SIMD CPUs

- vectorized CPU instructions resemble to GPU instructions
- but: CPUs lack hardware support for recognizing aligned memory accesses
- our idea: solve this consecutivity question in software at compile time

Introduction	Previous Work	Current Work	Future Work and Summary
•0	000	000	000

Our Memory Access Optimization Problem

What are we doing?

- SIMD paradigm, vectorization
- data-parallel languages: OpenCL, CUDA, etc. focusing on GPUs
- goal: compile OpenCL for SIMD capable CPUs

Definition

kernel = function to be compiled to vectorized code **work item** = one entity executing "one coordinate" of the vectorized code **SIMD width** w = number of entities **ID** = unique identifier of an entity

One central problem when switching from GPUs to SIMD CPUs

- vectorized CPU instructions resemble to GPU instructions
- but: CPUs lack hardware support for recognizing aligned memory accesses
- our idea: solve this consecutivity question in software at compile time

Introduction	Previous Work	Current Work	Future Work and Summary
•0	000	000	000

Our Memory Access Optimization Problem

What are we doing?

- SIMD paradigm, vectorization
- data-parallel languages: OpenCL, CUDA, etc. focusing on GPUs
- goal: compile OpenCL for SIMD capable CPUs

Definition

kernel = function to be compiled to vectorized code **work item** = one entity executing "one coordinate" of the vectorized code **SIMD width** w = number of entities **ID** = unique identifier of an entity

One central problem when switching from GPUs to SIMD CPUs

- vectorized CPU instructions resemble to GPU instructions
- but: CPUs lack hardware support for recognizing aligned memory accesses
- our idea: solve this consecutivity question in software at compile time

Introduction	Previous Work	Current Work	Future Work and Summary
00	000	000	000

A Standard OpenCL Benchmark Kernel

One arithmetically non-trivial memory access expression

 $e(x, a) = 2a \odot \operatorname{div}_a(x) + \operatorname{mod}_a(x)$ x - the ID of a work item a - the function argument

Introduction	Previous Work	Current Work	Future Work and Summary
00	000	000	000

A Standard OpenCL Benchmark Kernel

One arithmetically non-trivial memory access expression

 $e(x, a) = 2a \odot div_a(x) + mod_a(x)$ x - the ID of a work item a - the function argument

1. Formalize the consecutivity question:

$$\varphi(w,a) = \forall x \Big(x \ge 0 \land x \equiv_w 0 \longrightarrow \bigwedge_{i=0}^{w-2} e(x+i,a) + 1 = e(x+i+1,a) \Big)$$

- **2.** Solve it, obtaining a set of values *a*, for which $\varphi(w, a)$ holds.
- **3.** Generate code: More efficient code is executed when the consecutivity question is true for the value of the input parameter.

The input parameter is treated as a constant and instantiated.

1. Formalize the consecutivity question:

$$\varphi(w,a) = \forall x \Big(x \ge 0 \land x \equiv_w 0 \longrightarrow \bigwedge_{i=0}^{w-2} e(x+i,a) + 1 = e(x+i+1,a) \Big)$$

- 2. Solve it, obtaining a set of values *a*, for which $\varphi(w, a)$ holds.
- 3. Generate code: More efficient code is executed when the consecutivity question is true for the value of the input parameter.

The input parameter is treated as a constant and instantiated.

1. Formalize the consecutivity question:

$$\varphi(w,a) = \forall x \Big(x \ge 0 \land x \equiv_w 0 \longrightarrow \bigwedge_{i=0}^{w-2} e(x+i,a) + 1 = e(x+i+1,a) \Big)$$

- 2. Solve it, obtaining a set of values *a*, for which $\varphi(w, a)$ holds.
- 3. Generate code: More efficient code is executed when the consecutivity question is true for the value of the input parameter.

The input parameter is treated as a constant and instantiated.

1. Formalize the consecutivity question:

$$\varphi(w,a) = \forall x \Big(x \ge 0 \land x \equiv_w 0 \longrightarrow \bigwedge_{i=0}^{w-2} e(x+i,a) + 1 = e(x+i+1,a) \Big)$$

- 2. Solve it, obtaining a set of values *a*, for which $\varphi(w, a)$ holds.
- 3. Generate code: More efficient code is executed when the consecutivity question is true for the value of the input parameter.

The input parameter is treated as a constant and instantiated.

Introduction	Previous Work	Current Work	Future Work and Summary
00	000	000	000

- Instantiation of a leads to many SMT problems, e.g., a = 1,..., 2¹⁶.
- Direct use of Z3 turned out to be infeasible in practice.

Our Solution

modulo elimination as a preprocessing step: Systematically apply $mod_a(x) \rightarrow a - a \operatorname{div}_a(x)$ before SMT-solving.

Ŵ	Timeouts	CPU Time	Elim Timeouts	Elim CPU Time	
4	361	14 h		4 min	210×
	3,331	97 h		5 min	1164×
16	10,294	256 h	312	334 min	46×

- performance gain: The generated code is from 1.03 to 2 times faster.
- significant advantage of our approach: performance can not be worse
- better performance than any state-of-the-art compilers including Intel and AMD on examples from AMD APP SDK

Introduction	Previous Work	Current Work	Future Work and Summary
00	000	000	000

- Instantiation of a leads to many SMT problems, e.g., a = 1,..., 2¹⁶.
- Direct use of Z3 turned out to be infeasible in practice.

Our Solution

modulo elimination as a preprocessing step: Systematically apply $mod_a(x) \rightarrow a - a \operatorname{div}_a(x)$ before SMT-solving.

W	Timeouts	CPU Time	Elim Timeouts	Elim CPU Time	Speedup
4	361	14 h	0	4 min	210×
8	3,331	97 h	0	5 min	1164×
16	10,294	256 h	312	334 min	46×

- performance gain: The generated code is from 1.03 to 2 times faster.
- significant advantage of our approach: performance can not be worse
- better performance than any state-of-the-art compilers including Intel and AMD on examples from AMD APP SDK

Introduction	Previous Work	Current Work	Future Work and Summary
00	000	000	000

- Instantiation of a leads to many SMT problems, e.g., a = 1,..., 2¹⁶.
- Direct use of Z3 turned out to be infeasible in practice.

Our Solution

modulo elimination as a preprocessing step: Systematically apply $mod_a(x) \rightarrow a - a \operatorname{div}_a(x)$ before SMT-solving.

W	Timeouts	CPU Time	Elim Timeouts	Elim CPU Time	Speedup
4	361	14 h	0	4 min	210×
8	3,331	97 h	0	5 min	1164×
16	10,294	256 h	312	334 min	4 6×

- performance gain: The generated code is from 1.03 to 2 times faster.
- significant advantage of our approach: performance can not be worse
- better performance than any state-of-the-art compilers including Intel and AMD on examples from AMD APP SDK

Introduction	Previous Work	Current Work	Future Work and Summary
00	000	000	000

- Instantiation of a leads to many SMT problems, e.g., a = 1,..., 2¹⁶.
- Direct use of Z3 turned out to be infeasible in practice.

Our Solution

modulo elimination as a preprocessing step: Systematically apply $mod_a(x) \rightarrow a - a \operatorname{div}_a(x)$ before SMT-solving.

W	Timeouts	CPU Time	Elim Timeouts	Elim CPU Time	Speedup
4	361	14 h	0	4 min	210×
8	3,331	97 h	0	5 min	1164×
16	10,294	256 h	312	334 min	46×

- performance gain: The generated code is from 1.03 to 2 times faster.
- significant advantage of our approach: performance can not be worse
- better performance than any state-of-the-art compilers including Intel and AMD on examples from AMD APP SDK

Introduction	Previous Work	Current Work	Future Work and Summary
00	000	000	000

- Instantiation of a leads to many SMT problems, e.g., a = 1,..., 2¹⁶.
- Direct use of Z3 turned out to be infeasible in practice.

Our Solution

modulo elimination as a preprocessing step: Systematically apply $mod_a(x) \rightarrow a - a \operatorname{div}_a(x)$ before SMT-solving.

W	Timeouts	CPU Time	Elim Timeouts	Elim CPU Time	Speedup
4	361	14 h	0	4 min	210×
8	3,331	97 h	0	5 min	1164×
16	10,294	256 h	312	334 min	4 6×

- performance gain: The generated code is from 1.03 to 2 times faster.
- significant advantage of our approach: performance can not be worse
- better performance than any state-of-the-art compilers including Intel and AMD on examples from AMD APP SDK

Proof of Concept "System"

Drawbacks

- redundant combination of two systems
- communication through files
- scripting needed to make it work
- $\hfill no$ library available \rightarrow Usage within a more complex system is not possible.

Advantages

flexible environment for rapid prototyping

Introduction 00	Previous Work	Current Work ●○○	Future Work and Summary
•			

Current Work in Progress

Design Aims

- multithreading for the e.g. 2¹⁶ instances of a
- directly linkable to a compiler with a suitable API
- minimal infrastructure needed
- fast and portable

Introduction	Previous Work	Current Work	Future Work and Summary
00	000	000	000

Short System Description

Solving Process

Input: a memory access expression e(x, a) and interval [u; l]

Output: a sorted list of disjoint periodic sets

- 1. Construct the formula $\varphi(w, a)$ and divide [u; l] into *n* parts.
- 2. Spawn *n* working threads.
- 3. Collect and merge partial solutions.

Problem with Threads

- The real running time does not scale!
- Reason for this is unacceptable increase in the user time.
- We are in contact with Z3 developers about this issue.

Workaround Solution

Each thread spawns a process, which carries the actual computation.

Introduction	Previous Work	Current Work	Future Work and Summary
00	000	000	000

Short System Description

Solving Process

Input: a memory access expression e(x, a) and interval [u; l]

Output: a sorted list of disjoint periodic sets

- 1. Construct the formula $\varphi(w, a)$ and divide [u; l] into *n* parts.
- 2. Spawn *n* working threads.
- 3. Collect and merge partial solutions.

Problem with Threads

- The real running time does not scale!
- Reason for this is unacceptable increase in the user time.
- We are in contact with Z3 developers about this issue.

Workaround Solution

Each thread spawns a process, which carries the actual computation.

Introduction	Previous Work	Current Work	Future Work and Summary
00	000	000	000

Short System Description

Solving Process

Input: a memory access expression e(x, a) and interval [u; l]

Output: a sorted list of disjoint periodic sets

- 1. Construct the formula $\varphi(w, a)$ and divide [u; l] into *n* parts.
- 2. Spawn *n* working threads.
- 3. Collect and merge partial solutions.

Problem with Threads

- The real running time does not scale!
- Reason for this is unacceptable increase in the user time.
- We are in contact with Z3 developers about this issue.

Workaround Solution

Each thread spawns a process, which carries the actual computation.

Introduction	Previous Work	Current Work	Future Work and Summary
00	000	000	000

Compact Representation of the Answer Set

At present we restrict ourselves to sorted lists of disjoint periodic sets:

- A periodic set is $\{x \mid x \in \mathbb{Z} \land a \le x \le b \land x \equiv_m c\}$.
- straightforward representation
- Implemented operations: add_point and merge (union).

Pros

- (in practice) constant space
- add_point and merge operations
 take constant time
- compatible with concurrency

Cons

- Iimited expressive power
- possible generalizations:
 - non-disjoint sets in the list
 - incremental automata minimization

Introduction	Previous Work	Current Work	Future Work and Summary
00	000	000	000

Compact Representation of the Answer Set

At present we restrict ourselves to sorted lists of disjoint periodic sets:

- A periodic set is $\{x \mid x \in \mathbb{Z} \land a \le x \le b \land x \equiv_m c\}$.
- straightforward representation
- Implemented operations: add_point and merge (union).

Pros

- (in practice) constant space
- add_point and merge operations
 take constant time
- compatible with concurrency

Cons

- Iimited expressive power
- possible generalizations:
 - non-disjoint sets in the list
 - incremental automata minimization

SMT vs. ILP

Characteristics of our formulas

- simple Boolean structure
- numerous different but comparatively simple instances
- Inear integer arithmetic with division and modulo by constants
- This can be transformed into ILP.
- Surprise: Gurobi v5.5 cannot compete with Z3.

Key Observation

- ILP solver: better performance in SAT cases
- SMT solver: outperforms ILP in UNSAT cases

SMT vs. ILP

Characteristics of our formulas

- simple Boolean structure
- numerous different but comparatively simple instances
- Inear integer arithmetic with division and modulo by constants
- This can be transformed into ILP.
- Surprise: Gurobi v5.5 cannot compete with Z3.

Key Observation

- ILP solver: better performance in SAT cases
- SMT solver: outperforms ILP in UNSAT cases

SMT vs. ILP

Characteristics of our formulas

- simple Boolean structure
- numerous different but comparatively simple instances
- Inear integer arithmetic with division and modulo by constants
- This can be transformed into ILP.
- Surprise: Gurobi v5.5 cannot compete with Z3.

Key Observation

- ILP solver: better performance in SAT cases
- SMT solver: outperforms ILP in UNSAT cases

Introduction	Previous Work	Current Work	Future Work and Summary
OO	000	000	

Future Work

- combination with a compiler (cooperation with S. Hack and R. Karrenberg at Saarland University)
- study possible combinations of ILP and SMT
- consider other theories than integers to the extent supported by SMT solvers
- more experiments
- more expressive and still efficient representation of the answer set

Summary

- 1. Introduced memory access optimization problem.
- 2. Formalized the consecutivity question.
- 3. Described the old "system", which was used for some experimentation.
- 4. Current work: Development of a monolithic system.
- 5. Properties: Parallelism, compact answer sets representation, and easy-to-use in combination with a compiler.
- 6. Reported on implementation issues, which need to be resolved.

Introduction OO	Previous Work	Current Work	Future Work and Summary
Additiona	al Kernel Example		
kernel vo	id		

```
bitonicSort(__global uint * tArray,
               const uint stage,
               const uint passOfStage,
               const uint width.
               const wint direction) {
 uint tid = get_global_id();
 uint pairDistance = 1 << (stage - passOfStage);</pre>
 uint blockWidth = 2 * pairDistance;
 uint leftId = (tid % pairDistance) + (tid / pairDistance) * blockWidth;
 uint rightId = leftId + pairDistance;
 uint leftElement = tArray[leftId];
 uint rightElement = tArray[rightId];
 if (. . .) {
    tArrav[leftId] = lesser:
    tArray[rightId] = greater;
 } else
3
```

Memory access expression

$$e(x, a) = 2^{a+1} \odot \operatorname{div}_{2^a}(x) + \operatorname{mod}_{2^a}(x) + 2^a$$

