

BDI A New Decidable First-Order Clause Class

Manuel Lamotte-Schubert & Christoph Weidenbach

presented by Uwe Waldmann

Motivation

Since the beginning of the 20th century there is an interest in decidable first-order classes:

- Bernays-Schönfinkel: $\exists^* \forall^* \phi$
- Ramsey: $\exists^* \forall^* \phi$ + Equality
- Ackermann: $\exists^* \forall \exists^* \phi$
- Gödel, Kalmar, Schutte: $\exists^* \forall^2 \exists^* \phi$

Decidable Clause Classes:

- \mathcal{PVD} : $P(f(x,y)), Q(y) \to R(x,y)$
- Guarded Fragment: $Q(y), R(x,y) \to P(g(x))$

Motivation for BDI (Bounded Depth Increase)

Modelling Business Processes:

$$\begin{aligned} & \text{User}(y), \text{BusReq}(x), \text{Auth}(y, \text{PurchReq}) \rightarrow \boxed{\text{ToBeReleased}(\text{preq}(y, x))} \\ & \text{User}(y), \boxed{\text{ToBeReleased}(\text{preq}(y, x)), \text{Auth}(y, \text{PurchRel}) \rightarrow \boxed{\text{Released}(\text{preq}(y, x))} \\ & \vdots \end{aligned}$$

Modelling Business Process Properties:

The Clauses do not Belong to any Known Decidable Clause Class.

Undecidability is Close

Post Correspondence Problem: (aa, ba, bba) (a, aba, abb)

Solution: 1,3,2 aabbaba

Straight Forward PCP Encoding: $(u_1, u_2, ..., u_k)$ $(v_1, v_2, ..., v_k)$ code words by monadic functions: aba coded by $f_a(f_b(f_a(x)))$ abbreviate $f_a(f_b(f_a(x)))$ by $f_{aba}(x)$ then the overall problem is coded by

Undecidability is Close

Straight Forward PCP Encoding: (u_1, u_2, \dots, u_k) (v_1, v_2, \dots, v_k)

Contained in BDI:

- · recursive definition of P
- depth increasing clauses

Forbidden by BDI:

- more than one depth increasing position
- · unlimited depth increasing derivations

A Sketch of BDI

$$P(x, g(y)), Q(z) \to R(x, x), Q(y)$$
 $P(x, y), Q(z)$ $R(x, g(x)), Q(v)$ variables right must occur left, no increase (\mathcal{PVD})

$$P(x,y), Q(z) \to R(x, f(y,g(x))), Q(y)$$
 $R(x,y) \to R(x,g(x)), Q(y)$ all R atoms are of shape $R(*,f(*,g(*)))$

$$P(x,y), Q(z) \to R(x,g(x)), Q(y)$$
 $R(x,y)$ $R(x,g(y)), Q(y)$ no depth increase in P atoms and R first argument

Hyper-Resolution on BDI

$$\begin{array}{c} \rightarrow P(g(a),a) \\ \rightarrow Q(a) \\ P(x,y),Q(z) \rightarrow R(x,f(x,z)),Q(y) \end{array}$$

yields
$$\to R(g(a), f(g(a), a)), Q(a)$$

in general

- hyper resolvents are ground
- \bullet depth bounded by $2 * \max$ clause depth

but prolific

$$\rightarrow P(t_1, s_1) \qquad \cdots \qquad \rightarrow P(t_n, s_n)$$

 $\rightarrow Q(r_1) \qquad \cdots \qquad \rightarrow Q(r_m)$

yield already n * m hyper-resolvents in one step

Ordered Resolution on BDI

restrict resolution to maximal literals and selection

$$P(g(a), a)$$

$$\rightarrow Q(a)$$

$$P(x, y), Q(z) \rightarrow R(x, f(x, z)), Q(y)$$

no inference needed at all

in general termination of ordered resolution through

- cutting off clauses that violate depth bound
- condensing clauses that contain too many variables

Summary

- new decidable clause class BDI
 - BDI enables recursive definitions
 - BDI enables depth increase
 - BDI enables non-linear atoms and terms
- decidable by hyper-resolution, but prolific
- · decidable by ordered resolution, works well in practice
- successfully tested on SAP authorization problems
 - thousands of users
 - thousands of authorizations

Thanks for your attention!

