
Proving and inferring invariants

David Monniaux

CNRS / VERIMAG
Grenoble, France

December 13, 2013

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 1 / 54



Grenoble

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 2 / 54



VERIMAG

VERIMAG is a joint research laboratory of CNRS, Université Joseph
Fourier (Grenoble-1) and Grenoble-INP

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 3 / 54



Plan

1 Safety properties

2 Inductive invariants

3 Policy iteration
Min-policy iteration
Max-policy iteration
Implicit graphs

4 Unknown template shape

5 Conclusion

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 4 / 54



Safety properties

Proving properties of programs :

safety : the program never enters an undesirable state (crash,
variable too large for specification, assertion violation. . . )

liveness : the program progresses (no entering into deadlocks or
neverending loops)

In this talk, focus on safety (liveness often uses safety properties).

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 5 / 54



Safety properties

Proving properties of programs :

safety : the program never enters an undesirable state (crash,
variable too large for specification, assertion violation. . . )

liveness : the program progresses (no entering into deadlocks or
neverending loops)

In this talk, focus on safety (liveness often uses safety properties).

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 5 / 54



Proofs on programs

A program written in a real programmming language
⇓
Its semantics: its “meaning” in mathematical terms

For real languages (C, C++, PHP. . . ), very difficult and fraught with
errors.
We’ll bravely assume the problem solved and suppose a toy language with
well-defined mathematical semantics.

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 6 / 54



Proofs on programs

A program written in a real programmming language
⇓
Its semantics: its “meaning” in mathematical terms

For real languages (C, C++, PHP. . . ), very difficult and fraught with
errors.
We’ll bravely assume the problem solved and suppose a toy language with
well-defined mathematical semantics.

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 6 / 54



Properties to prove

A property in natural language (e.g. “the program sorts the array”)
⇓
A mathematical property (e.g. definition of the total order on array
elements, the output is sorted, it is a permutation of the input. . . )

Again, fraught with errors.
We’ll bravely assume mathematically defined properties.

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 7 / 54



Properties to prove

A property in natural language (e.g. “the program sorts the array”)
⇓
A mathematical property (e.g. definition of the total order on array
elements, the output is sorted, it is a permutation of the input. . . )

Again, fraught with errors.
We’ll bravely assume mathematically defined properties.

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 7 / 54



The setting

A set C of control points:

instructions

heads of control blocks

lines of program

Memory state as a vector of variables in S (can be Zn (or Qn, or Bm ×Qn

where B = {0, 1} Booleans)

For i , j ∈ C, a transition relation τi ,j ⊆ S × S (often expressed with
x , y , . . . variables before and x ′, y ′, . . . after)

A starting state q0 ∈ C and a “bad” state qB ∈ C.

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 8 / 54



Concrete example

j = 0;
for(int i=0; i<100; i++) {
j = j+2;

}

q0 q1 q2

i ′ = 0
j ′ = 0

i < 100
i ′ = i + 1
j ′ = j + 2

i ≥ 100
i ′ = i
j ′ = j

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 9 / 54



Concrete example with an assertion

j = 0;
for(int i=0; i<100; i++) {
j = j+2;

}
assert(j < 210);

q0 q1 q2 q3

qB

i ′ = 0
j ′ = 0

i < 100
i ′ = i + 1
j ′ = j + 2

i ≥ 100
i ′ = i
j ′ = j

i ′ = i
j ′ = j
j < 210

i ′ = i
j ′ = j
j ≥ 210

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 10 / 54



Proving safety

Whether qB is reachable. . .

Is an undecidable problem (halting problem)

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 11 / 54



Proving safety

Whether qB is reachable. . .
Is an undecidable problem (halting problem)

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 11 / 54



Plan

1 Safety properties

2 Inductive invariants

3 Policy iteration
Min-policy iteration
Max-policy iteration
Implicit graphs

4 Unknown template shape

5 Conclusion

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 12 / 54



Floyd-Hoare-like proofs

(Ideas dating back to at least Robert Floyd and C.A.R Hoare, late 1960s,
and even to Turing):

Adorn each state qi in the automaton with a formula φi

Show that these formulas are inductive: if φi (x) and τi ,j(x, x′) then
φj(x)

Check that the formula φ0 for q0 (initial state) is “true”

Check that the formula φB for qB (bad state) is “false”

By induction on the length of the computation, the system state
(c, x) ∈ S × S can never exit the φi “invariant”:
For any reachable (c , x), x satifies φc .

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 13 / 54



Floyd-Hoare-like proofs

(Ideas dating back to at least Robert Floyd and C.A.R Hoare, late 1960s,
and even to Turing):

Adorn each state qi in the automaton with a formula φi

Show that these formulas are inductive: if φi (x) and τi ,j(x, x′) then
φj(x)

Check that the formula φ0 for q0 (initial state) is “true”

Check that the formula φB for qB (bad state) is “false”

By induction on the length of the computation, the system state
(c, x) ∈ S × S can never exit the φi “invariant”:
For any reachable (c , x), x satifies φc .

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 13 / 54



Direct induction does not necessarily work

Program initialization: −1 ≤ x ≤ 1 ∧ y = 0
Operation: (x ′, y ′) = rotate((x , y), 45)

−1 ≤ x ≤ 1 ∧ −1 ≤ y ≤ 1 is always true. . .

But not by induction! Need some stronger inductive property e.g.
x2 + y2 ≤ 1.

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 14 / 54



Direct induction does not necessarily work

Program initialization: −1 ≤ x ≤ 1 ∧ y = 0
Operation: (x ′, y ′) = rotate((x , y), 45)

−1 ≤ x ≤ 1 ∧ −1 ≤ y ≤ 1 is always true. . .
But not by induction! Need some stronger inductive property e.g.
x2 + y2 ≤ 1.

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 14 / 54



With invariants

j = 0;
for(int i=0; i<100; i++) {
j = j+2;

}
assert(j < 210);

true
i = j
i ≤ 100

i = 100
j = 200

true

false

i ′ = 0
j ′ = 0

i < 100
i ′ = i + 1
j ′ = j + 2

i ≥ 100
i ′ = i
j ′ = j

i ′ = i
j ′ = j
j < 210

i ′ = i
j ′ = j
j ≥ 210

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 15 / 54



Checking inductive invariants

A tool requires the user to provide invariants, and checks that they are
inductive.

Possible if the invariants φi and the transition relations τi ,j are within a
decidable theory:

Check that φi ∧ τi ,j ∧ ¬φj is unsatisfiable for all i , j .

Various degrees of automation

Tools : Frama-C, Why, B-Method, Frama-C. . .

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 16 / 54



Inferring inductive invariants

More ambitious: complete automation!

The problem:

exhibit φc at all control state c ∈ C
so that the φc are inductive

and φ0 is “true” and φB is “false”

But what is φc? An arbitrary first-order formula?

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 17 / 54



Abstract domains

So as to automatize the task: look for φc in a particular class (or domain)
of properties: e.g.

propositional formulas over the Boolean variables

conjunctions of linear inequalities over rational/integer variables
(convex polyhedra)

intervals over rational/integer variables

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 18 / 54



Example of an inductive polyhedron

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 19 / 54



Abstract interpretation in convex polyhedra

j = 0;
for(int i=0; i<100; i++) {
j = j+2;

}

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 20 / 54



Abstract interpretation in convex polyhedra

j = 0;
for(int i=0; i<100; i++) {
j = j+2;

}

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 20 / 54



Abstract interpretation in convex polyhedra

j = 0;
for(int i=0; i<100; i++) {
j = j+2;

}

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 20 / 54



Abstract interpretation in convex polyhedra

j = 0;
for(int i=0; i<100; i++) {
j = j+2;

}

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 20 / 54



Idea

(Cousot / Halbwachs, 1978)

All φc are (possibly empty) convex polyhedra (conjunctions of linear
inequalities)

“Push” these polyhedra through control edges: compute the image
(or over-approximation of image) of the polyhedron by the edge, add
(convex hull) to target polyhedron

Stop when inductive (saturation: no edge modifies the target
polyhedron)

Check that φB is an empty polyhedron

Is termination guaranteed?

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 21 / 54



Slow termination

j = 0;
for(int i=0; i<100; i++) {
j = j+2;

}

With the above method, needs 100 iterations. Still tolerable... but what if
it had been 109?

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 22 / 54



Widenings

Iteration 0: i = 0 ∧ j = 0
Iteration 1: 0 ≤ i ≤ 1 ∧ j = 2i
Iteration 2: 0 ≤ i ≤ 2 ∧ j = 2i
Iteration 3: 0 ≤ i ≤ 3 ∧ j = 2i
...

Widen (extrapolate) to 0 ≤ i ∧ j = 2i
Is it inductive?
YES! WE WON!
One can even narrow down (refine) to 0 ≤ i ≤ 100 ∧ j = 2i .

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 23 / 54



Widenings

Iteration 0: i = 0 ∧ j = 0
Iteration 1: 0 ≤ i ≤ 1 ∧ j = 2i
Iteration 2: 0 ≤ i ≤ 2 ∧ j = 2i
Iteration 3: 0 ≤ i ≤ 3 ∧ j = 2i
...
Widen (extrapolate) to 0 ≤ i ∧ j = 2i
Is it inductive?

YES! WE WON!
One can even narrow down (refine) to 0 ≤ i ≤ 100 ∧ j = 2i .

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 23 / 54



Widenings

Iteration 0: i = 0 ∧ j = 0
Iteration 1: 0 ≤ i ≤ 1 ∧ j = 2i
Iteration 2: 0 ≤ i ≤ 2 ∧ j = 2i
Iteration 3: 0 ≤ i ≤ 3 ∧ j = 2i
...
Widen (extrapolate) to 0 ≤ i ∧ j = 2i
Is it inductive?
YES! WE WON!

One can even narrow down (refine) to 0 ≤ i ≤ 100 ∧ j = 2i .

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 23 / 54



Widenings

Iteration 0: i = 0 ∧ j = 0
Iteration 1: 0 ≤ i ≤ 1 ∧ j = 2i
Iteration 2: 0 ≤ i ≤ 2 ∧ j = 2i
Iteration 3: 0 ≤ i ≤ 3 ∧ j = 2i
...
Widen (extrapolate) to 0 ≤ i ∧ j = 2i
Is it inductive?
YES! WE WON!
One can even narrow down (refine) to 0 ≤ i ≤ 100 ∧ j = 2i .

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 23 / 54



Problems with widenings and CEGAR

Widenings are brittle

Sometimes (as in this example) they work well

Sometimes they give very bad invariants (e.g. “true”)

Sometimes knowing more information on the system leads to worse
invariants (non-monotonicity)

Sometimes they work well on a program and not well on a similar
program. . .

Similar problems hold for predicate abstraction with CEGAR
(counterexample-guided abstraction refinement) using Craig interpolants.

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 24 / 54



Gratuitous advertisement: Astrée
Intervals + widenings + “octahedra” + many domain-specific analyses
(linear filters, quaternions. . . ) =

Astrée static analysis tool used in avionic industry.
Proves the absence of runtime errors and assertion violations.
Capable of analyzing full fly-by-wire control-code, hundreds of kLOC,
thousands of variables
with few or none false alarms (unproved true properties)
http://www.astree.ens.fr
http://www.absint.com/astree/
David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 25 / 54

http://www.astree.ens.fr
http://www.absint.com/astree/


An ideal case

What if we could find the strongest inductive invariant in the domain?
E.g.

The smallest inductive polyhedra (definition problem: does not
necessarily exist)

The smallest inductive intervals

. . .

Recall: denoting by the P property to prove, and by I the invariant, we
must have I ⇒ P, so stronger I is better.

Also leads to a decision problem: is there an inductive invariant in the
chosen domain capable of proving the unreachability of the bad state?

computability

complexity

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 26 / 54



An ideal case

What if we could find the strongest inductive invariant in the domain?
E.g.

The smallest inductive polyhedra (definition problem: does not
necessarily exist)

The smallest inductive intervals

. . .

Recall: denoting by the P property to prove, and by I the invariant, we
must have I ⇒ P, so stronger I is better.

Also leads to a decision problem: is there an inductive invariant in the
chosen domain capable of proving the unreachability of the bad state?

computability

complexity

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 26 / 54



Plan

1 Safety properties

2 Inductive invariants

3 Policy iteration
Min-policy iteration
Max-policy iteration
Implicit graphs

4 Unknown template shape

5 Conclusion

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 27 / 54



A very simple loop

i=0;
while (i < 100) {

i=i+1;
}

Find an inductive loop invariant as an interval [−l , h]:

[−l , h] must contain the initial state: l ≥ 0, h ≥ 0

[−l , h] must be stable by “pushing the interval through the loop”
I test maps [−l , h] to [−l ,min(h, 99)]
I then i = i + 1 maps [−l ,min(h, 99)] to [−(l − 1),min(h, 99) + 1]

Thus inclusion: l ≥ l − 1 and h ≥ min(h, 99) + 1

Thus the least solution satisfies

l = max(0, l − 1)

h = max(0,min(h, 99) + 1)

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 28 / 54



How to solve min-max equations

We end with equations with “min”, “max”, and monotone affine-linear
expressions

h = max(0,min(h, 99) + 1)

How to solve them?

Naive approach:

Enumerate all argument choices for “min” and “max”

For each choice, compute solution of linear equation system

Discard if not a solution of the original problem (wrong choices of
arguments of “min” and “max”)

Take the least one

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 29 / 54



How to solve min-max equations

We end with equations with “min”, “max”, and monotone affine-linear
expressions

h = max(0,min(h, 99) + 1)

How to solve them?

Naive approach:

Enumerate all argument choices for “min” and “max”

For each choice, compute solution of linear equation system

Discard if not a solution of the original problem (wrong choices of
arguments of “min” and “max”)

Take the least one

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 29 / 54



Solving the naive way

h = max(0,min(h, 99) + 1) (1)

Turned into 3 different equations:

h = max(0,min(h, 99) + 1)  h = 0 (left-arg to “max”), solution
h = 0, but not solution of (1): max(0,min(0, 99) + 1), the right
argument of “max” is greater ⇒ discarded

h = max(0,min(h, 99) + 1)  h = h + 1 (right-arg to “max”, left-arg
to “min”), solution h = +∞, but not solution of (1): min(+∞, 99),
the argument of “min” is smaller ⇒ discarded

h = max(0,min(h, 99) + 1)  h = 99 + 1 = 100 (right-arg to “max”,
right-arg to “min”), solution of the original problem.

But exponential blowup.

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 30 / 54



Min-policy iteration

Only choose for “min”:

h = max(0,min(h, 99) + 1)  h = max(0, h + 1)  find least
solution of h ≥ 0 ∧ h ≥ h + 1 (linear programming)  h = +∞
min(+∞, 99) = 99, so flip to right argument of “min”

h = max(0,min(h, 99) + 1)  h = max(0, 100)  find least solution
of h ≥ 0 ∧ h ≥ 100 (linear programming)  h = 100

Solution: h = 100
Always the least one?

In general, the min-policy iteration process may stop on a solution of the
system of min-max equation that is not the least one.

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 31 / 54



Min-policy iteration

Only choose for “min”:

h = max(0,min(h, 99) + 1)  h = max(0, h + 1)  find least
solution of h ≥ 0 ∧ h ≥ h + 1 (linear programming)  h = +∞
min(+∞, 99) = 99, so flip to right argument of “min”

h = max(0,min(h, 99) + 1)  h = max(0, 100)  find least solution
of h ≥ 0 ∧ h ≥ 100 (linear programming)  h = 100

Solution: h = 100
Always the least one?

In general, the min-policy iteration process may stop on a solution of the
system of min-max equation that is not the least one.

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 31 / 54



Min-policy iteration: explainer

Was introduced into program verification by Éric Goubault’s group.

Why “policy”? Because of a similar problem and resolution method in
game theory, where the “policy” or “strategy” is how the “min player”
plays.

Produces a sequence of systems of max-equations whose solutions form a
descending sequence upper bounds on the least solution of the original
system.
These solutions give inductive invariants.
Can stop the descending sequence at any point and still get an inductive
invariant!

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 32 / 54



Min-policy iteration: generalization

Let Ac be a family of constant matrices, find invariants φc of the form
AcX ≤ Bc where X the program variables.

Programs with linear affine assignments, linear affine inequalities in tests.
Restrict τi ,j to

∨
∃y

∧
linear − inequality(x, x′, y)

Includes, with appropriate choice for Ac :

intervals

“difference bounds”: intervals and x − y ≤ bx ,y

How to compute least Bc = (bc,1, . . . , bc,m) (coordinate-wise)?

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 33 / 54



Example of an inductive “octahedron”

Some specific choice for A:

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 34 / 54



Min-max equations with linear programming

Obtain a system of equations

bc,i = max(LP(b), . . . , LP(b))

with LP some linear programming problems of the form

sup{l · x | Ax ≤ b}

Why min-max equations?

The LP can be rewritten by linear duality into

min(h1 · b, . . . ,hN · b)

(where N may be exponential in the size of the original problem)

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 35 / 54



Min-max equations with linear programming

Obtain a system of equations

bc,i = max(LP(b), . . . , LP(b))

with LP some linear programming problems of the form

sup{l · x | Ax ≤ b}

Why min-max equations?

The LP can be rewritten by linear duality into

min(h1 · b, . . . ,hN · b)

(where N may be exponential in the size of the original problem)

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 35 / 54



Min-policy iteration: executive summary

1 Start with a problem with explicit or implicit “min” operators in the
right-hand side

2 For each min(a1, . . . , an), pick an ai and replace min(a1, . . . , an) by ai
in the equation

3 Solve the resulting system (perhaps with overapproximation)

4 For each min(a1, . . . , an), check that the value of picked ai from the
solution is really the minimum; if not, change to aj minimal and go
back to point 3

5 Otherwise, terminate (not necessarily with best inductive invariant in
domain)

If everything affine linear, each intermediate problem is just linear
programming.
Each intermediate result is an inductive invariant.

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 36 / 54



Max-policy iteration

(Developed by H. Seidl, T. Gawlitza)

h = max(−∞, 0,min(h, 99) + 1)

Pick an argument for “max”:

Initial value for h = −∞
h = max(−∞, 0,min(h, 99) + 1); h = −∞; replace:
max(−∞, 0,−∞), found higher argument h = 0

h = max(−∞, 0,min(h, 99) + 1); h = 0; replace: max(−∞, 0, 1),
found higher argument h = 1

h = max(−∞, 0,min(h, 99) + 1); solve h = min(h, 99) + 1 for
solution h ≥ 1:
Solve h ≤ h + 1 ∧ h ≤ 99 + 1 for maximal finite h: h = 100.

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 37 / 54



High level view
Transforms the original problem (with “max”) into a sequence of problems
(without “max”) with increasing “value”.

Intuition: solution is maximum of “order-concave” functions

It’s like solving h = F (h) by infinite ascending sequence
−∞,F (−∞),F ◦ F (−∞),F ◦ F ◦ F (−∞). . .
but taking “big strides”!
David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 38 / 54



Executive summary

Produces a sequence of problems without “max”

Continue iterating until an inductive invariant is found

If everything affine linear, each intermediate problem is just linear
programming

Terminates on least (strongest) inductive invariant in domain

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 39 / 54



Scaling issues

Currently, does not scale to the kind of large-scale application
targeted by e.g. Astrée.

Complexity upper bound on policy iteration algorithms is exponential
(two choices per binary “max” or “min”, consider all combinations).

Complexity as a decision problem is unclear (in NP; seems to be in
PPAD and PLS?).

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 40 / 54



Nonlinear stuff

Policy iteration can be adapted to nonlinear problems

By linearization

Using semidefinite programming instead of linear programming

(I won’t talk about this here.)

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 41 / 54



Motivation

void rate_limiter() {
int x_old = 0;
while (1) {
int x = input(-100000, 100000);
if (x > x_old+10) x = x_old+10;
if (x < x_old-10) x = x_old-10;
x_old = x;

} }

To analyze this program and get good results

Consider a single inductive invariant at loop head

. . . but not at intermediate points inside the loop

Consider separately paths inside the loop

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 42 / 54



Distinguishing paths

void rate_limiter() {
int x_old = 0;
while (1) {

int x = input(-100000, 100000);
if (x > x_old+10) x = x_old+10;
if (x < x_old-10) x = x_old-10;
x_old = x;

} }

s

e

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 43 / 54



Distinguishing paths

void rate_limiter() {
int x_old = 0;
while (1) {

int x = input(-100000, 100000);
if (x > x_old+10) x_old = x_old+10;
else if (x < x_old-10) x_old = x_old-10;
else x_old = x;

} }

s

e

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 44 / 54



Edge-implicit graphs

Instead of considering all program points C (or heads of blocks), consider a
cut-set H: set of nodes such that removing them breaks all cycles (like
heads of loops).

Edges between nodes in H are the paths between these nodes in the
original graph.

There may be an exponential number of them.

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 45 / 54



Algorithm for max-policy iteration on edge-implicit graphs

(Gawlitza & Monniaux)

Invariants of the form Ax ≤ B, A fixed matrix, unknown B

No exponential expansion

Enumerates paths “as needed” using a SMT-solver

Exponential worst-case complexity

Decision problem (“is there an invariant in the domain proving the
unreachability of the bad state”) is Σp

2-complete (NP-complete with
a co-NP-complete oracle)

(Fully implicit graphs, with compact representation of an exponential
number of control nodes, in forthcoming Monniaux & Schrammel)

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 46 / 54



Plan

1 Safety properties

2 Inductive invariants

3 Policy iteration
Min-policy iteration
Max-policy iteration
Implicit graphs

4 Unknown template shape

5 Conclusion

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 47 / 54



Linear template

So far we have supposed A fixed, looked for inductive invariants Ax ≤ b
such that bB = −∞ (“bad state is unreachable”)
and b0 = +∞ (“starting point” has any value)

What if A is left unknown? (Generic convex polyhedron with fixed number
of constraints.)

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 48 / 54



The unknown template problem

Find Ac and bc such that for all c , c ′:

∀x∀x ′∀y Acx ≤ bc ∧ Dx + Ex′ + Fy ≤ g⇒ Ac ′x ≤ Bc′

(and bB = −∞ and b0 = +∞)

If everything is linear, Farkas’ lemma enables us to turn the universal
∀x∀x ′ . . . into an existential with unknowns Λ, M, s:

Ac ′ = ΛE

MAc + ΛD = 0

Bc ′ = Λg + Mbc + s

(and still bB = −∞ and b0 = +∞)

Unfortunately the terms in red are nonlinear.

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 49 / 54



Executive summary

Looking for a convex polyhedron Ax ≤ b with unknown A and b, stable by
linear transitions. . .

is reduced to solving a big system of nonlinear equations!

Does not scale. . .
Current methods (Barcelogic group) involve e.g. looking for “small integer
coefficients” in A.

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 50 / 54



Extensions

Nonlinear constraints?
Nonlinear transitions?

Even more costly!

See work by e.g. Deepak Kapur

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 51 / 54



Plan

1 Safety properties

2 Inductive invariants

3 Policy iteration
Min-policy iteration
Max-policy iteration
Implicit graphs

4 Unknown template shape

5 Conclusion

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 52 / 54



Finding inductive invariants

Is the major method for proving safety properties on programs (and
circuits etc.)

Is hard

If restricted to certain geometrical classes, can be reduced to solving
systems of numerical equations

In certain cases, systems solvable (in exponential time) by
combinations of linear programming and iterations

Systems can be implicitly represented (for implicit control-flow
graphs)

In other cases, nonlinear equations ensue

In practice, most tools do not use these “precise” methods and use
widening (extrapolation) and/or predicate abstraction with Craig
interpolation

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 53 / 54



Gratuitous advertisement

The ERC (European Research Council) project STATOR
is looking for

PhD students

interns

post-docs

http://stator.imag.fr/

David Monniaux (CNRS / VERIMAG) Proving and inferring invariants December 13, 2013 54 / 54

http://stator.imag.fr/

	Safety properties
	Inductive invariants
	Policy iteration
	Min-policy iteration
	Max-policy iteration
	Implicit graphs

	Unknown template shape
	Conclusion

