Computing the Supremum of the Real Roots of a Parametric Univariate Polynomial

Changbo Chen, Marc Moreno Maza \& Yuzhen Xie

MACSI 2013
Nanning, China
12 December 2013

Plan

(1) The problem

(2) A motivation problem from control theory
(3) The problem again

- Border polynomials and discriminant varieties
(5) Solving the problem: non-parametric case
- Real comprehensive triangular decomposition
(7) Solving the problem: parametric case
- Applications and software demo
(9) Concluding remarks

Supremum of the Real Roots of a Parametric Polynomial

Input

- Let $W=W_{1}, \ldots, W_{m}$ and $H=H_{1}, \ldots, H_{n}$ be two (disjoint) sets of variables.
- Let $p \in \mathbb{R}[W, H][X]$ be univariate in X.

Output

- The supremum $x_{\text {sup }}(h)$ of the set

$$
\begin{equation*}
\Pi_{h}=\left\{x \in \mathbb{R} \mid\left(\exists\left(w_{1}, \ldots, w_{m}\right) \in \mathbb{R}^{m}\right) \quad p_{w, h}(x)=0\right\} \tag{1}
\end{equation*}
$$

where $p_{w, h}$ is the polynomial of $\mathbb{R}[X]$ obtained by evaluating p at $W=w$ and $H=h$, for $h \in \mathbb{R}^{n}$ and $w \in \mathbb{R}^{m}$.

- That is, in a more compact form:

$$
\begin{equation*}
x_{\sup }(h)=\sup _{w, p(w, h, x)=0} x \tag{2}
\end{equation*}
$$

Examples

Recall the problem
Compute $x_{\text {sup }}(h)=\sup _{w, p(w, h, x)=0} x$.

Example

For $p_{1}=h_{1} x-w_{1}$, we have $x_{\text {sup }}\left(h_{1}\right)=+\infty$ for all $h_{1} \in \mathbb{R}$.

Example

For $p_{2}=h_{1}^{2} x-w_{1}^{2}-1$, we have $x_{\text {sup }}\left(h_{1}\right)=+\infty$ if $h_{1} \neq 0$ and $-\infty$ otherwise.

Example

Finally for $p_{3}=x+h_{1} w_{1}^{2}-h_{1}-1$, we have

Examples

Recall the problem
Compute $x_{\text {sup }}(h)=\sup _{w, p(w, h, x)=0} x$.

Example

For $p_{1}=h_{1} x-w_{1}$, we have $x_{\text {sup }}\left(h_{1}\right)=+\infty$ for all $h_{1} \in \mathbb{R}$.

Example

For $p_{2}=h_{1}^{2} x-w_{1}^{2}-1$, we have $x_{\text {sup }}\left(h_{1}\right)=+\infty$ if $h_{1} \neq 0$ and $-\infty$ otherwise.

Example

Finally for $p_{3}=x+h_{1} w_{1}^{2}-h_{1}-1$, we have

$$
x_{\text {sup }}\left(h_{1}\right)=\left\{\begin{array}{cc}
+\infty & h_{1}<0 \\
h_{1}+1 & h_{1} \geq 0
\end{array}\right.
$$

Plan

(1) The problem
(2) A motivation problem from control theory
(3) The problem again
(4) Border polynomials and discriminant varieties
(5) Solving the problem: non-parametric case
(6) Real comprehensive triangular decomposition
(7) Solving the problem: parametric case
8. Applications and software demo
(9) Concluding remarks

Linear dynamical systems

Notations

- Let A, B, C, D be real matrices with respective formats $n \times n, n \times m$, $p \times n, p \times m$.
- Consider the linear dynamical system:

$$
\left\{\begin{array}{l}
\dot{x}=A x+B u \tag{3}\\
y=C x+D u
\end{array}\right.
$$

- x, y, u are the state vector, output vector and control vector, respectively.
- We assume A stable, that is, when all its eigenvalues of A have negative real part.
- The transfer matrix is $G(s)=C\left(s I_{n}-A\right)^{-1} B+D$.

\mathcal{H}_{∞} Norm

Definition

The \mathcal{H}_{∞} norm of the transfer matrix is

$$
\begin{equation*}
\|G(s)\|_{\infty}=\sup _{\Re(s)>0} \sigma_{\max }(G(s))=\sup _{\omega \in \mathbb{R}} \sigma_{\max }(G(\imath \omega)) \tag{4}
\end{equation*}
$$

Here we have $\sigma_{\max }(F)=\lambda_{\max }^{1 / 2}\left(F^{*} F\right)$, where $\sigma_{\max }(\cdot)$ and $\lambda_{\max }(\cdot)$ denote respectively the maximum singular value and maximum eigenvalue of a real square matrix.

Comments

- In robust control, $\|G(s)\|_{\infty}$ takes the role of a robustness measure.
- In model order reduction, $\|G(s)\|_{\infty}$ is used as an error measure.
- Many methods (all numerical) exist and are limited to linear systems free of parameters.
- Among them, (Kanno \& Smith, JSC 2006) achieve validated numerical computation through univariate polynomial real root isolation.
- Observe that, indeed, $\|G(s)\|_{\infty}$ is the supremum (of the square root) of the (real) root of the characterisitic polynomial of $G(\imath \omega)$.

Plan

(1) The problem
(2) A motivation problem from control theory
(3) The problem again
(4) Border polynomials and discriminant varieties
(5) Solving the problem: non-parametric case

- Real comprehensive triangular decomposition
(7) Solving the problem: parametric case
(3) Applications and software demo
(9) Concluding remarks

Supremum of the Real Roots of a Parametric Polynomial

Input

- Let $W=W_{1}, \ldots, W_{m}$ and $H=H_{1}, \ldots, H_{n}$ be two (disjoint) sets of variables.
- Let $p \in \mathbb{R}[W, H][X]$ be univariate in X.

Output

- The supremum $x_{\text {sup }}(h)$ of the set

$$
\begin{equation*}
\Pi_{h}=\left\{x \in \mathbb{R} \mid\left(\exists\left(w_{1}, \ldots, w_{m}\right) \in \mathbb{R}^{m}\right) \quad p_{w, h}(x)=0\right\} \tag{5}
\end{equation*}
$$

where $p_{w, h}$ is the polynomial of $\mathbb{R}[X]$ obtained by evaluating p at $W=w$ and $H=h$, for $h \in \mathbb{R}^{n}$ and $w \in \mathbb{R}^{m}$.

- That is, in a more compact form:

$$
\begin{equation*}
x_{\sup }(h)=\sup _{w, p(w, h, x)=0} x \tag{6}
\end{equation*}
$$

Intuition

Non-parametric case

- Assume also $m=1$ and write $W=W_{1}$, so $p \in \mathbb{R}[W, X]$ is bivariate.
- We view $p \in[X][W]$ as a parametric polynomial with parameter X.
- Intuitively, $x_{\text {sup }}$ must have a special relation to $p \in[X][W]$.
- In fact, the theory of the border polynomial suggests that $x_{\text {sup }}$ should be one of the roots of the border polynomial of $p \in[X][W]$.

Parametric case

- Assume $m=1, n=1$ and write $W=W_{1}, H=H_{1}$ so $p \in \mathbb{R}[H][W, X]$ is bivariate over $\mathbb{R}[H]$.
- Intuitively, computing $x_{\text {sup }}(h)$ should reduce to compute $x_{\text {sup }}$ by means of a case discussion.
- In fact, the theory of the border polynomial will support that idea modulo some technical difficulties, which can be
handled in theory at some expense or, ignored in practice at no cost.

Plan

(1) The problem
(2) A motivation problem from control theory
(3) The problem again
(4) Border polynomials and discriminant varieties
(5) Solving the problem: non-parametric case
(6) Real comprehensive triangular decomposition
(2) Solving the problem: parametric case
(8) Applications and software demo
(9) Concluding remarks

Solving parametric polynomial systems

Intuition

- "Generically", the properties of solutions depend on the parameter values continuously. By properties, we mean number, shape.
- "Generically", the points related to "discontinuity" are few.
- In the figure below, we view a polynomial $p(W, X)$ defining a curve $p(W, X)=0$ as univariate in W over $\mathbb{R}[X]$.

Parametric polynomial systems

Notations

- Let $F, H \subset \mathbb{R}[H, X]$ be two sets of polynomials in variables $X=X_{1}, \ldots, X_{s}$ and parameters $H=H_{1}, \ldots, H_{n}$.
- The polynomials $f \in F$ and $h \in H$ define the equations and inequations of a parametric polynomial system S.
- We consider the standard projection on the parameter space:

$$
\begin{gather*}
\Pi_{\mathrm{H}}: Z(S) \subset \mathbb{C}^{s+n} \mapsto \mathbb{C}^{n} \\
\Pi_{\mathrm{H}}\left(x_{1}, \ldots, x_{s}, h_{1}, \ldots, h_{n}\right)=\left(h_{1}, \ldots, h_{n}\right) \tag{7}
\end{gather*}
$$

Technical assumption

The saturated ideal $\mathcal{I}:=\langle F\rangle:\left(\prod_{h \in H} h\right)^{\infty}$ is of dimension n and H is maximally algebraically independent modulo \mathcal{I}.

Two notions of continuity

Definition

Let $\alpha \in \mathbb{C}^{d}$. We say that S is
(1) Z-continuous at α : if there exists an open ball \mathcal{O}_{α} centered at α s.t. for any $\beta \in \mathcal{O}_{\alpha}$ we have $\#(Z(S(\beta))=\#(Z(S(\alpha))$.
(2) Π_{H}-continuous at α : if there exists an open ball \mathcal{O}_{α} centered at α and a finite partition, say $\left\{C_{1}, \ldots, C_{k}\right\}$ of $\Pi_{\mathrm{H}}^{-1}\left(\mathcal{O}_{\alpha}\right) \cap Z(S)$ such that for each $j \in\{1, \ldots, k\} \Pi_{H} \mid c_{j}: C_{j} \xrightarrow{\Pi_{H}} \mathcal{O}_{\alpha}$ is a diffeomorphism.

Border polynomial and discriminant variety

We formulate these two concepts using the previous continuity notions.
Border polynomial (Yang, Xia and Hou, 1999)
A non-zero polynomial b in $\mathbb{Q}[U]$ is called a border polynomial (BP) of the parametric polynomial system S if the zero set $V(b)$ of b in \mathbb{C}^{d} contains all the points at which S is not Z-continuous.

Discriminant variety (Lazard and Rouillier, 2007)
An algebraic set $\mathcal{W} \subsetneq \mathbb{C}^{d}$ is a discriminant variety of the parametric polynomial system S if \mathcal{W} contains all the points at which S is not Π_{H}-continuous.

Border polynomial and discriminant variety

We formulate these two concepts using the previous continuity notions.
Border polynomial (Yang, Xia and Hou, 1999)
A non-zero polynomial b in $\mathbb{Q}[U]$ is called a border polynomial (BP) of the parametric polynomial system S if the zero set $V(b)$ of b in \mathbb{C}^{d} contains all the points at which S is not Z-continuous.

Discriminant variety (Lazard and Rouillier, 2007)

An algebraic set $\mathcal{W} \subsetneq \mathbb{C}^{d}$ is a discriminant variety of the parametric polynomial system S if \mathcal{W} contains all the points at which S is not Π_{H}-continuous.

Useful properties toward computing

Proposition

Π_{H}-continuity implies Z-continuity.

Proposition

If S consists of a single equation $f \in \mathbb{R}[H, X]$, with $X=X_{1}$, then $\operatorname{discrim}(f, X) \operatorname{lcoeff}(f, X)$ is a border polynomial for S.

Proposition

If S consists of a single equation and b is a border polynomial of S then $Z(b)$ is (the minimal) discriminant variety of S.

Corollary

If S consists of a single equation $f \in \mathbb{R}[H, X]$, with $X=X_{1}$, then the number of X-roots of S is constant above each connected component of the complement of $Z(b)$, with b as above.

See the details in (M3, B. Xia \& R. Xiao, MCS 2012)

Plan

(1) The problem
(2. A motivation problem from control theory
(3) The problem again
(4) Border polynomials and discriminant varieties
(5) Solving the problem: non-parametric case
(6) Real comprehensive triangular decomposition
(7) Solving the problem: parametric case
(3) Applications and software demo
(9) Concluding remarks

SupRealRoot: non-parametric case

Setting

Let $\xi_{1}<\cdots<\xi_{e}$ be the real roots of f, with

$$
\begin{equation*}
f=\operatorname{lcoeff}_{W}(p) \cdot \operatorname{discrim}_{W}(p), \tag{8}
\end{equation*}
$$

Define $\xi_{0}=-\infty$ and $\xi_{e+1}=+\infty$. The algorithm below computes $x_{\text {sup }}=\sup \{x \in \mathbb{R} \mid \exists w \in \mathbb{R} p(w, x)=0\}$.

SupRealRoot(p) begin
for $i=e+1$ downto 1 by -1 do $\{$
let q be a rational number s.t. $\xi_{i-1}<q<\xi_{i}$
if $p(q, W)=0$ has real roots in W then return ξ_{i}
if $i \leq e$ and $p\left(\xi_{i}, W\right)=0$ has real roots in W then return ξ_{i}
\}
return ξ_{0}
end

SupRealRoot: non-parametric case

From the non-parametric case to the parametric one From now on the polynomial

$$
f=\operatorname{lcoeff}_{W}(p) \cdot \operatorname{discrim}_{W}(p)
$$

depends on H and X

New difficulties

(1) The zeros of f depend on H : their number may depend on H as well!
(2) Moreover, the zero set $Z(f)$ is no longer a finite set of points: it contains higher dimensional components.

Solutions

(1) Decompose the H-space into regions above which the zeros of f are given by disjoint (and continuous) graphs.
(2) Back-up to a more general tool (based on CAD) when things go wrong.

Plan

(1) The problem
2. A motivation problem from control theory
(3) The problem again
(4) Border polynomials and discriminant varieties
(5) Solving the problem: non-parametric case

6 Real comprehensive triangular decomposition
(7) Solving the problem: parametric case
(8) Applications and software demo

- Concluding remarks

Real comprehensive triangular decomposition (RCTD)

Input

A parametric semi-algebraic system $S \subset \mathbb{Q}[H][X]$.

Output

- A partition of the whole parameter space into connected cells, such that above each cell, the constructible system associated to S
(1) either has infinitely many complex solutions,
(2) or S has no real solutions
(3) or S has finitely many real solutions which are continuous functions of parameters with disjoint graphs
- A description of the solutions of S as functions of parameters by triangular systems in case of finitely many complex solutions.

Example

A RCTD of the system

$$
\left\{\begin{array}{l}
x\left(1+y^{2}\right)-s=0 \\
y\left(1+x^{2}\right)-s=0 \\
x>0, y>0, s>0
\end{array}\right.
$$

is as follows
(1) $s \leq 0, \longrightarrow\{ \}$
(2) $s>0, s \leq 2 \longrightarrow\left\{T_{1}\right\}$
(3) $s>2 \longrightarrow\left\{T_{1}, T_{2}\right\}$
where

$$
T_{1}=\left\{\begin{array}{l}
\left(x^{2}+1\right) y-s=0 \\
x^{3}+x-s=0 \\
x>0 \\
y>0
\end{array} \quad T_{2}=\left\{\begin{array}{l}
x y-1=0 \\
x^{2}-s x+1=0 \\
x>0 \\
y>0
\end{array}\right.\right.
$$

Plan

(1) The problem
2. A motivation problem from control theory
(3) The problem again
(4) Border polynomials and discriminant varieties
(5) Solving the problem: non-parametric case
(5) Real comprehensive triangular decomposition
(7) Solving the problem: parametric case
(8) Applications and software demo
(9) Concluding remarks

ParametricSupRealRoot

Regarding H as parameters, apply RealComprehensiveTriangularize to

$$
f=\operatorname{lcoeff}_{w}(p) \times \operatorname{discrim}_{W}(p) \in \mathbb{R}[H, X] .
$$

For each cell C_{i} which is full-dimensional:
(1) Obtain a sample point v_{i} of the cell C_{i}
(2) Call the command SupRealRoot at $h=v_{i}$. Three cases arise.
(2.1) If SupRealRoot returns a pair of the form $[\xi, m]$ with $\xi \in\{+\infty,-\infty\}$ then the function ParametricMaxRealRoot returns $\left[\xi, C_{i}\right]$.
(2.2) If SupRealRoot returns a pair of the form $[\xi, m]$ where $m>0$ holds, then we compute the polynomial g which has ξ as its j-th real root at $h=v_{i}$ and returns $\left.[j, g], C_{i}\right]$.
(2.3) In all other cases, apply a CAD-based approach, say computing a CAD of $p(x, w, h)=0$ for $h<x<w$.

Plan

(1) The problem
(2. A motivation problem from control theory
(3) The problem again
(4) Border polynomials and discriminant varieties
(5) Solving the problem: non-parametric case
(5) Real comprehensive triangular decomposition
(7) Solving the problem: parametric case
(8) Applications and software demo
(9) Concluding remarks

Example 1

```
> Gs := Matrix ([1/((s^2+2* C*s+1)*(s+1))]);
\[
G s:=\left[\frac{1}{\left(s^{2}+2 c s+1\right)(s+1)}\right]
\]
```

$>$ Hs := ParametricHinfinityNorm(Gs), 's', [c>0, c<=1]); A $H s:=[[[[1$, squarefree_semi_algebraic_system $],[$ cad_cell]], [[1, squarefree_semi_algebraic_system $],[$ cad_cell $]],[[1$,
squarefree_semi_algebraic_system], [cad_cell]], [[2, squarefree_semi_algebraic_system], [cad_cell]]], polynomial_ring]
> Display(Hs [1] [1], Hs[-1]);

$$
[[1, x-1=0],[c=1]]
$$

[> Display(Hs [1] [2], Hs[-1]);

$$
\left[[1, x-1=0],\left[\operatorname{And}\left(\frac{1}{2}<c, c<1\right)\right]\right]
$$

Display(Hs [1] [3], Hs [-1]);

$$
\left[[1, x-1=0],\left[c=\frac{1}{2}\right]\right]
$$

$>$ Display(Hs [1] [4], Hs [-1]);

$$
\left[\left[2,\left(256 c^{8}-768 c^{6}+768 c^{4}-256 c^{2}\right) x^{2}+\left(256 c^{6}+32-480 c^{4}+192 c^{2}\right) x-27=0\right],\left[\text { And }\left(0<c, c<\frac{1}{2}\right)\right]\right]
$$

Example 2

$>A:=\operatorname{Matrix}([[0,1],[-k / m,-b / m]]): B:=\operatorname{Matrix}([[0],[1 / m]]): C:=\operatorname{Matrix}([1,0]):$
T := DynamicSystems:-TransferFunction(A, B, C):
T:-tf;

$$
\left[\frac{1}{m s^{2}+b s+k}\right]
$$

[$>\mathrm{Hm}$:= ParametricHinfinityNorm(T:-tf, ' s ', $[m>0, k>0, b>0]$);
Hm: = [[["Not full-dimension, not processed", [cad_cell, cad_cell]], [[1, squarefree_semi_algebraic_system], [cad_cell, cad_cell]], [[1, squarefree_semi_algebraic_system], [cad_cell]]], polynomial_ring]
= Disp1 ay (Hm[1] [1], Hm[-1]);

$$
\left[\text { Not full-dimension, not processed", } \left[\left\{\begin{array}{c}
k=\frac{1}{4} \frac{b^{2}}{m} \\
0<m \\
0<b
\end{array} \quad,\left\{\begin{array}{c}
k=\frac{1}{2} \frac{b^{2}}{m} \\
0<m \\
0<b
\end{array}\right]\right]\right.\right.
$$

Display (Hm[1] [2], Hm[-1]);

$$
\left[1, k^{2} x-1=0\right],\left[\left\{\begin{array}{c}
\text { And }\left(0<k, k<\frac{1}{4} \frac{b^{2}}{m}\right) \\
0<m \\
0<b
\end{array},\left\{\begin{array}{c}
\text { And }\left(\frac{1}{4} \frac{b^{2}}{m}<k, k<\frac{1}{2} \frac{b^{2}}{m}\right) \\
0<m \\
0<b
\end{array}\right]\right]\right.
$$

Disp1 ay (Hm[1][3], Hm[-1]);

$$
\left[\left[1,\left(-b^{4}+4 m k b^{2}\right) x-4 m^{2}=0\right],\left[\left\{\begin{array}{c}
\frac{1}{2} \frac{b^{2}}{m}<k \\
0<m \\
0<b
\end{array}\right]\right]\right.
$$

Plan

(1) The problem
(2) A motivation problem from control theory
(3) The problem again
(4) Border polynomials and discriminant varieties

5 Solving the problem: non-parametric case
(6) Real comprehensive triangular decomposition
(7) Solving the problem: parametric case

8 Applications and software demo
(9) Concluding remarks

Concludng remarks

- Taking advantage of the notion of border polynomial and triangular decomposition techniques, we have presented an algorithm and its implementation for computing the supremum of the real roots of a parametric univariate polynomial.
- The precise formulation of this problem (with the bivariate polynomial $p(W, X)$ whose coefficients are real polynomials in H) targets the computation of the \mathcal{H}_{∞} norm of the transfer matrix of a linear dynamical system with parametric uncertainty.
- Our implementation allows us to solve the vast majority of the examples that we have found in the literature. A few examples (like the 2-mass-2-spring-2-dampler system) cannot be solved by our code without specializing some of the parameters. However, our preliminary implementation offers several opportunities for optimization. Work is in progress!

