Reconstructing Chemical Reaction Networks by Solving Boolean Polynomial Systems

Chenqi Mou
LMIB-School of Mathematics École Centrale Pékin and Systems Science
Beihang University, Beijing 100191, China
chenqi.mou, wei.niu@buaa.edu.cn
December 12, 2013 • Nanning, China

The problem

Chemical reaction networks

The problem

Chemical reaction networks

The problem

Chemical reaction networks

R-graph

The problem

Chemical reaction networks

Reconstructing Chemical Reaction Networks

Chemical reaction networks

Why this problem?

- S- and R-graphs: easier for detecting
- Can the same S- and R-graphs lead to different SR-graphs?
- What do these SR-graphs mean?

Why this problem?

- S- and R-graphs: easier for detecting
- Can the same S- and R-graphs lead to different SR-graphs?
- What do these SR-graphs mean?

CRR (Compound-Reaction-Reconstruction) problem

[Fagerberg et. al. 2013]
Existence / NP-hard / SAT, SMT, ILP

Why this problem?

- S- and R-graphs: easier for detecting
- Can the same S- and R-graphs lead to different SR-graphs?
- What do these SR-graphs mean?

CRR (Compound-Reaction-Reconstruction) problem

[Fagerberg et. al. 2013]
Existence / NP-hard / SAT, SMT, ILP
$\Longrightarrow \mathrm{CRR}^{+}$problem: all the potential SR-graphs

Why Polynomial System Solving (PoSSo)?

CRR problem

Existence
NP-hardness
SAT, SMT, ILP

Hilbert's Nullstellensatz
PoSSo is also NP-hard [Garey \& Johnson 1979]
Polynomial system solvers

Why Polynomial System Solving (PoSSo)?

CRR problem

Existence
NP-hardness
SAT, SMT, ILP
Polynomial system solvers
Hilbert's Nullstellensatz
PoSSo is also NP-hard [Garey \& Johnson 1979]

All the solutions
feasible
natural
Complexity:
\rightsquigarrow Worst: doubly exponential (in \#var)
[Mayr \& Meyer 1982]
\rightsquigarrow Dedicated complexity (structured): bidegree $(1,1)$
[Faugère, Safey El Din, Spaenlehauer 2010]

Matrix representation

R : a reaction \Longrightarrow Input species: $I(R)$; Output species: $O(R)$; SR-graph \rightleftarrows two Boolean matrices

Matrix representation

R : a reaction \Longrightarrow Input species: $I(R)$; Output species: $O(R)$;

SR-graph \rightleftarrows two Boolean matrices

$$
\mathbf{E}_{i, k}:=\left\{\begin{array}{ll}
1, & S_{i} \in I\left(R_{k}\right) \\
0, & \text { Otherwise }
\end{array} \quad \mathbf{P}_{k, j}:= \begin{cases}1, & S_{j} \in O\left(R_{k}\right) \\
0, & \text { Otherwise }\end{cases}\right.
$$

Matrix representation

- S-graphs: Boolean matrix $\mathbf{S}_{m \times m}$ such that

$$
\mathbf{S}_{i, j}:= \begin{cases}1, & \exists R_{k} \text { s.t. } S_{i} \in I\left(R_{k}\right) \text { and } S_{j} \in O\left(R_{k}\right) \\ 0, & \text { Otherwise }\end{cases}
$$

- R-graphs: Boolean matrix $\mathbf{R}_{n \times n}$ such that

$$
\mathbf{R}_{k, l}:= \begin{cases}1, & \exists S_{i} \text { s.t. } S_{i} \in O\left(R_{k}\right) \text { and } S_{i} \in I\left(R_{k}\right) \\ 0, & \text { Otherwise }\end{cases}
$$

Matrix representation

- S-graphs: Boolean matrix $\mathbf{S}_{m \times m}$ such that

$$
\mathbf{S}_{i, j}:= \begin{cases}1, & \exists R_{k} \text { s.t. } S_{i} \in I\left(R_{k}\right) \text { and } S_{j} \in O\left(R_{k}\right) \\ 0, & \text { Otherwise }\end{cases}
$$

- R-graphs: Boolean matrix $\mathbf{R}_{n \times n}$ such that

$$
\mathbf{R}_{k, l}:= \begin{cases}1, & \exists S_{i} \text { s.t. } S_{i} \in O\left(R_{k}\right) \text { and } S_{i} \in I\left(R_{k}\right) \\ 0, & \text { Otherwise }\end{cases}
$$

Input: $\mathbf{S}, \mathbf{R} \Longrightarrow$ Output: \mathbf{E}, \mathbf{P}

- CRR: existence of \mathbf{E} and \mathbf{P}
- CRR^{+}: all the possible \mathbf{E} and \mathbf{P}

Relationship

$\mathbf{S}, \mathbf{R}, \mathbf{E}$, and \mathbf{P}

$$
\mathbf{S}_{i, j}=\bigwedge_{k=1, \ldots, n}\left(\mathbf{E}_{i, k} \vee \mathbf{P}_{k, j}\right), \quad \mathbf{R}_{k, l}=\bigwedge_{i=1, \ldots, m}\left(\mathbf{P}_{k, i} \vee \mathbf{E}_{i, l}\right) .
$$

- Direct translation to PoSSo problem

Background

Boolean polynomial ring $\mathbb{F}_{2}\left[\mathbf{E}_{1,1}, \ldots, \mathbf{E}_{m, n}, \mathbf{P}_{1,1}, \ldots, \mathbf{P}_{n, m}\right]$ \Downarrow

$$
\begin{gathered}
x \wedge y=x \cdot y \text { and } x \vee y=x+y+x \cdot y \\
\Downarrow
\end{gathered}
$$

Boolean polynomial system

Structure

$$
\begin{gathered}
\mathbf{S}_{i, j}=\bigwedge_{k=1, \ldots, n}\left(\mathbf{E}_{i, k} \vee \mathbf{P}_{k, j}\right) \\
x \wedge y=x \cdot y \text { and } x \vee y=x+y+x \cdot y
\end{gathered}
$$

- $\mathbf{S}_{i, j}=1 \Longrightarrow 1$ polynomial equation (degree $2 n$; variable $2 n$) \Longrightarrow of type s (or r if $\mathbf{R}_{i, j}=1$)
- $\mathbf{S}_{i, j}=0 \Longrightarrow n$ bivariate quadratic equations \Longrightarrow of type 0

Structure

$$
\begin{gathered}
\mathbf{S}_{i, j}=\bigwedge_{k=1, \ldots, n}\left(\mathbf{E}_{i, k} \vee \mathbf{P}_{k, j}\right) \\
x \wedge y=x \cdot y \text { and } x \vee y=x+y+x \cdot y
\end{gathered}
$$

- $\mathbf{S}_{i, j}=1 \Longrightarrow 1$ polynomial equation (degree $2 n$; variable $2 n$) \Longrightarrow of type s (or r if $\mathbf{R}_{i, j}=1$)
- $\mathbf{S}_{i, j}=0 \Longrightarrow n$ bivariate quadratic equations \Longrightarrow of type 0

Structure (p and q : \#zeros in S and R)

- type 0: $n p+m q$
- type $s: m^{2}-p$
- type $r: n^{2}-q$
\#Solutions \geq \#Variables \Longrightarrow overdefined

PoSSo

Methods

- Gröbner bases [Buchberger 1965, Faugère 1999, 2002] triangular sets [Wang 2001, Moreno Maza 2000, Gao \& Huang 2012] XL (overdefined) e.g., [Ars et. al. 2004] Polynomial system \Longrightarrow in a better form \Longrightarrow solutions
- Complexity (Gröbner bases): $O\left(\binom{n+d_{r e g}}{n}^{\omega}\right)$ [Bardet, Faugère, Salvy 2004]
- Over \mathbb{F}_{2} : add the field equations $\left(x_{k}^{2}+x_{k}=0\right)$.

PoSSo

Implementation

Gröbner bases:

- Buchberger algorithm: almost in all Computer Algebra Systems
- F_{4}, F_{5} : FGb, MAGMA...
\Longrightarrow MAGMA: optimization for over \mathbb{F}_{2} (since V2.15)
Triangular sets:
- Epsilon, RegularChains (in Maple) ...

Randomly generated \mathbf{S} and \mathbf{R}

```
MAGMA V2.17-1 ( }\mp@subsup{F}{4}{}\mathrm{ implementation)
     V2.20 (released yesterday, F4 updated)
```

m, n	P	Density (\%)	\#Var	$\# F$	Time	\#Solutions
8	0.9	$3.13 / 15.63$	128	940	0.27	0
8	0.9	$9.38 / 9.38$	128	940	36.77	0
8	0.9	$3.12 / 9.38$	128	968	>1000	unknown
9	0.9	$11.11 / 6.17$	162	1346	8.25	0
9	0.9	$12.35 / 6.17$	162	1338	0.62	0
9	0.9	$9.88 / 8.64$	162	1338	>1000	unknown
10	0.9	$10 / 8$	200	1838	1.21	0
10	0.9	$9 / 12$	200	1811	1.17	0
11	0.9	$14.05 / 10.74$	242	2362	2.17	0
5	0.95	$8 / 8$	50	234	0.06	296
5	0.95	$4 / 8$	50	238	0.70	7759

Remarks on the experiments

- General one: no optimization is made
- for CRR:
(1) Experimentally, not comparable to SMT / SAT in efficiency (with optimization)
(2) Problem generation (VS CNF generation)
- There exist instances with more than 1 solution (not trivial)
- For real-world examples (Biology): size ($m, n \geq 40$), sparsity
$\geq 98 \%$

Future work

- Structure \Longrightarrow simplify the problem / dedicated algorithm
- Complexity analyses: better?
- CRR: NP-hardness by PoSSo?

