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Why this problem?

S- and R-graphs: easier for detecting

Can the same S- and R-graphs lead to different SR-graphs?

What do these SR-graphs mean?

CRR (Compound-Reaction-Reconstruction) problem

[Fagerberg et. al. 2013]

Existence / NP-hard / SAT, SMT, ILP

=⇒ CRR+ problem: all the potential SR-graphs
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Why Polynomial System Solving (PoSSo)?

CRR problem

Existence Hilbert’s Nullstellensatz
NP-hardness PoSSo is also NP-hard [Garey & Johnson 1979]

SAT, SMT, ILP Polynomial system solvers

All the solutions
feasible natural

Complexity:
 Worst: doubly exponential (in #var)

[Mayr & Meyer 1982]

 Dedicated complexity (structured): bidegree (1,1)
[Faugère, Safey El Din, Spaenlehauer 2010]
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Matrix representation

R: a reaction =⇒ Input species: I(R); Output species: O(R);

SR-graph � two Boolean matrices

Em×n such that Pn×m such that

Ei,k :=

{
1, Si ∈ I(Rk)
0, Otherwise

Pk,j :=

{
1, Sj ∈ O(Rk)
0, Otherwise
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FIGURE 1. A directed hypergraph, consisting of two reactions {R1, R2} and six
chemical species {A, B, . . . , F}. Hyperarc R1 has t(R1) = {A,B} and h(R1) =
{C,D}, hyperarc R2 has t(R2) = {C} and h(R2) = {E,F}.

More formally, a directed hypergraph H is a pair H = (V,A), with a set of vertices V and a
set of hyperarcs A, where each hyperarc a ∈ A is an ordered pair (t(a), h(a)). The tail t(a) = a− of
the hyperarc in our setting refers to the reactants, while its head f(a) = a+ identifies the products
[17, 3]. Fig. 1 illustrates the hypergraph of a small chemical reaction network with two reactions.

2.2. Hypergraphs as Matrices
The stoichiometric matrix Σ with entries

σia = βia − αia (2.2)

provides a complete description of the mass balance of the each reaction in the chemical reaction
network. Each row of the matrix Σ corresponds to a species, while each column is identified with
a reaction. The stoichiometric matrix is a complete encoding of the chemical reaction network, and
hence of the directed hypergraph defined in Sec. 2.1, provided t(a) ∩ h(a) = ∅ for all reactions
a ∈ A. Note that σia < 0 if i is consumed by reaction a while σia > 0 if i is produced.

In the following we will ignore the multi-set character of tail and head and instead treat them
as simple sets. This corresponds to replacing σia by its sign. Instead of using this reduced version of
Σ, however, it will be more convenient to use two binary incidence matrices, E and P, defined by

eia =

{
1 iff i ∈ t(a)
0 otherwise

pai =

{
1 iff i ∈ h(a)
0 otherwise

(2.3)

Here, eia is sgnαia and pai is sgnβia. The n × m matrix E contains the reactants of each reac-
tion, while the m × n matrix P contains the products. The matrices E and P corresponding to the
hypergraph of Fig. 1 are shown in Table 1.

In the S-graph (species graph), two species i and j are adjacent iff there is a reaction that has
species i as reactant and species j as product. Correspondingly, the R-graph (reaction graph) two
reactions a and b are adjacent iff there is a species v that is a product of a and a reactant of b. In
symbols, we have

sij =

{
1 iff ∃a ∈ A : i ∈ t(a) ∧ j ∈ h(a)
0 otherwise

rab =

{
1 iff ∃v ∈ V : v ∈ h(a) ∧ v ∈ t(b)
0 else

(2.4)
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Matrix representation

S-graphs: Boolean matrix Sm×m such that

Si,j :=

{
1, ∃Rk s.t. Si ∈ I(Rk) and Sj ∈ O(Rk)
0, Otherwise

R-graphs: Boolean matrix Rn×n such that

Rk,l :=

{
1, ∃Si s.t. Si ∈ O(Rk) and Si ∈ I(Rk)
0, Otherwise

Input: S, R =⇒ Output: E, P

CRR: existence of E and P

CRR+: all the possible E and P
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Relationship

S, R, E, and P

Si,j =
∧

k=1,...,n

(Ei,k ∨Pk,j), Rk,l =
∧

i=1,...,m

(Pk,i ∨Ei,l).

Direct translation to PoSSo problem

Background

Boolean polynomial ring F2[E1,1, . . . ,Em,n,P1,1, . . . ,Pn,m]

⇓
x ∧ y = x · y and x ∨ y = x+ y + x · y

⇓
Boolean polynomial system
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Structure

Si,j =
∧

k=1,...,n(Ei,k ∨Pk,j)

x ∧ y = x · y and x ∨ y = x+ y + x · y

Si,j = 1 =⇒ 1 polynomial equation (degree 2n; variable 2n)
=⇒ of type s (or r if Ri,j = 1)

Si,j = 0 =⇒ n bivariate quadratic equations
=⇒ of type 0

Structure (p and q: #zeros in S and R)

type 0: np+mq

type s: m2 − p

type r: n2 − q

#Solutions ≥ #Variables =⇒ overdefined
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PoSSo

Methods

Gröbner bases [Buchberger 1965, Faugère 1999, 2002]

triangular sets [Wang 2001, Moreno Maza 2000, Gao & Huang 2012]

XL (overdefined) e.g., [Ars et. al. 2004]

Polynomial system =⇒ in a better form =⇒ solutions

Complexity (Gröbner bases): O(
(
n+dreg

n

)ω
)[Bardet, Faugère,

Salvy 2004]

Over F2: add the field equations (x2k + xk = 0).
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PoSSo

Implementation

Gröbner bases:

Buchberger algorithm: almost in all Computer Algebra Systems

F4, F5: FGb, MAGMA...
=⇒ MAGMA: optimization for over F2 (since V2.15)

Triangular sets:

Epsilon, RegularChains (in Maple) ...
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Randomly generated S and R

MAGMA V2.17-1 (F4 implementation)
=⇒ V2.20 (released yesterday, F4 updated)

m,n P Density (%) #Var #F Time #Solutions

8 0.9 3.13/15.63 128 940 0.27 0
8 0.9 9.38/9.38 128 940 36.77 0
8 0.9 3.12/9.38 128 968 >1000 unknown
9 0.9 11.11/6.17 162 1346 8.25 0
9 0.9 12.35/6.17 162 1338 0.62 0
9 0.9 9.88/8.64 162 1338 >1000 unknown

10 0.9 10/8 200 1838 1.21 0
10 0.9 9/12 200 1811 1.17 0
11 0.9 14.05/10.74 242 2362 2.17 0

5 0.95 8/8 50 234 0.06 296
5 0.95 4/8 50 238 0.70 7759
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Remarks on the experiments

General one: no optimization is made

for CRR:
(1) Experimentally, not comparable to SMT / SAT in efficiency
(with optimization)
(2) Problem generation (VS CNF generation)

There exist instances with more than 1 solution (not trivial)

For real-world examples (Biology): size (m,n ≥ 40), sparsity
≥ 98%
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Future work

Structure =⇒ simplify the problem / dedicated algorithm

Complexity analyses: better?

CRR: NP-hardness by PoSSo?
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