Reconstructing Chemical Reaction Networks by Solving Boolean Polynomial Systems

Chenqi Mou

Wei Niu

LMIB-School of Mathematics École Centrale Pékin and Systems Science

Beihang University, Beijing 100191, China

chenqi.mou, wei.niu@buaa.edu.cn

December 12, 2013 · Nanning, China

The problem

The problem

Reduction to PoSSo

Experiments

Future Work

The problem

The problem

Problem

Reduction to PoSSo

Experiments

Future Work

Reconstructing Chemical Reaction Networks

Problem

Why this problem?

- S- and R-graphs: easier for detecting
- Can the same S- and R-graphs lead to different SR-graphs?
- What do these SR-graphs mean?

Why this problem?

- S- and R-graphs: easier for detecting
- Can the same S- and R-graphs lead to different SR-graphs?
- What do these SR-graphs mean?

CRR (Compound-Reaction-Reconstruction) problem

[Fagerberg et. al. 2013] Existence / NP-hard / SAT, SMT, ILP

Why this problem?

- S- and R-graphs: easier for detecting
- Can the same S- and R-graphs lead to different SR-graphs?
- What do these SR-graphs mean?

CRR (Compound-Reaction-Reconstruction) problem

[Fagerberg et. al. 2013] Existence / NP-hard / SAT, SMT, ILP

 \implies CRR⁺ problem: all the potential SR-graphs

Problem

Why Polynomial System Solving (PoSSo)?

CRR problem

Existence	Hilbert's Nullstellensatz
NP-hardness	PoSSo is also NP-hard [Garey & Johnson 1979]
SAT, SMT, ILP	Polynomial system solvers

Problem

Why Polynomial System Solving (PoSSo)?

CRR problem

Existence NP-hardness	Hilbert's Nullstellensatz PoSSo is also NP-hard [Garey & Johnson 1979]
SAT, SMT, ILP	Polynomial system solvers
All the solutions	
feasible	natural
	Complexity:
	\rightsquigarrow Worst: doubly exponential (in $\#$ var)
	[Mayr & Meyer 1982]
	\rightsquigarrow Dedicated complexity (structured): bidegree (1,1)
	[Faugère, Safey El Din, Spaenlehauer 2010]

Matrix representation

R: a reaction \implies Input species: I(R); Output species: O(R);

 $\mathsf{SR}\text{-}\mathsf{graph}\rightleftarrows\mathsf{two}\ \mathsf{Boolean}\ \mathsf{matrices}$

Matrix representation

R: a reaction \implies Input species: I(R); Output species: O(R);

SR-graph \rightleftharpoons two Boolean matrices

Problem	Formulation	Reduction to PoSSo	Experiments	Future Work
Matrix re	epresentatio	n		

 \bullet S-graphs: Boolean matrix $\mathbf{S}_{m\times m}$ such that

$$\mathbf{S}_{i,j} := \left\{ \begin{array}{ll} \mathsf{1}, & \exists R_k \text{ s.t. } S_i \in I(R_k) \text{ and } S_j \in O(R_k) \\ \mathsf{0}, & \mathsf{Otherwise} \end{array} \right.$$

• R-graphs: Boolean matrix $\mathbf{R}_{n imes n}$ such that

$$\mathbf{R}_{k,l} := \left\{ \begin{array}{ll} 1, & \exists S_i \text{ s.t. } S_i \in O(R_k) \text{ and } S_i \in I(R_k) \\ \mathbf{0}, & \text{Otherwise} \end{array} \right.$$

Problem	Formulation	Reduction to PoSSo	Experiments	Future Work
Matrix re	presentatio	n		

 \bullet S-graphs: Boolean matrix $\mathbf{S}_{m\times m}$ such that

$$\mathbf{S}_{i,j} := \left\{ \begin{array}{ll} \mathsf{1}, & \exists R_k \text{ s.t. } S_i \in I(R_k) \text{ and } S_j \in O(R_k) \\ \mathsf{0}, & \mathsf{Otherwise} \end{array} \right.$$

• R-graphs: Boolean matrix $\mathbf{R}_{n imes n}$ such that

$$\mathbf{R}_{k,l} := \left\{ \begin{array}{ll} 1, & \exists S_i \text{ s.t. } S_i \in O(R_k) \text{ and } S_i \in I(R_k) \\ \mathbf{0}, & \text{Otherwise} \end{array} \right.$$

Input: S, $\mathbf{R} \Longrightarrow \mathsf{Output}$: E, P

- $\bullet~\mathsf{CRR}:$ existence of $\mathbf E$ and $\mathbf P$
- $\bullet~\mathsf{CRR^+}:$ all the possible $\mathbf E$ and $\mathbf P$

Problem	Formulation	Reduction to PoSSo	Experiments	Future Work
Relationsh	in			

${f S},\,{f R},\,{f E},\,{\hbox{and}}\,{f P}$

$$\mathbf{S}_{i,j} = \bigwedge_{k=1,\dots,n} (\mathbf{E}_{i,k} \vee \mathbf{P}_{k,j}), \qquad \mathbf{R}_{k,l} = \bigwedge_{i=1,\dots,m} (\mathbf{P}_{k,i} \vee \mathbf{E}_{i,l}).$$

• Direct translation to PoSSo problem

Background

Problem	Formulation	Reduction to PoSSo	Experiments	Future Work
Structure				

$$\begin{split} \mathbf{S}_{i,j} &= \bigwedge_{k=1,\dots,n} (\mathbf{E}_{i,k} \lor \mathbf{P}_{k,j}) \\ x \land y &= x \cdot y \text{ and } x \lor y = x + y + x \cdot y \end{split}$$

• $\mathbf{S}_{i,j} = 1 \implies 1$ polynomial equation (degree 2n; variable 2n) \implies of type s (or r if $\mathbf{R}_{i,j} = 1$)

• $\mathbf{S}_{i,j} = 0 \implies n$ bivariate quadratic equations \implies of type 0

Problem	Formulation	Reduction to PoSSo	Experiments	Future Work
Structure				

$$\mathbf{S}_{i,j} = igwedge_{k=1,\dots,n} (\mathbf{E}_{i,k} \lor \mathbf{P}_{k,j})$$

 $x \land y = x \cdot y \text{ and } x \lor y = x + y + x \cdot y$

• $\mathbf{S}_{i,j} = 1 \implies 1$ polynomial equation (degree 2n; variable 2n) \implies of type s (or r if $\mathbf{R}_{i,j} = 1$)

• $\mathbf{S}_{i,j} = 0 \implies n$ bivariate quadratic equations \implies of type 0

Structure (p and q: #zeros in S and R)

• type 0:
$$np + mq$$

 $\# \mathsf{Solutions} \geq \# \mathsf{Variables} \Longrightarrow \mathsf{overdefined}$

Methods

- Gröbner bases [Buchberger 1965, Faugère 1999, 2002] triangular sets [Wang 2001, Moreno Maza 2000, Gao & Huang 2012] XL (overdefined) e.g., [Ars et. al. 2004] Polynomial system ⇒ in a better form ⇒ solutions
- Complexity (Gröbner bases): $O(\binom{n+d_{reg}}{n}^{\omega})$ [Bardet, Faugère, Salvy 2004]
- Over \mathbb{F}_2 : add the field equations $(x_k^2 + x_k = 0)$.

Implementation

Gröbner bases:

- Buchberger algorithm: almost in all Computer Algebra Systems
- F_4, F_5 : FGb, MAGMA...
 - \implies MAGMA: optimization for over \mathbb{F}_2 (since V2.15)

Triangular sets:

• Epsilon, RegularChains (in Maple) ...

Randomly generated ${\bf S}$ and ${\bf R}$

MAGMA V2.17-1 (F_4 implementation) \implies V2.20 (released yesterday, F_4 updated)

$\overline{m,n}$	P	Density (%)	#Var	#F	Time	#Solutions
8	0.9	3.13/15.63	128	940	0.27	0
8	0.9	9.38/9.38	128	940	36.77	0
8	0.9	3.12/9.38	128	968	> 1000	unknown
9	0.9	11.11/6.17	162	1346	8.25	0
9	0.9	12.35/6.17	162	1338	0.62	0
9	0.9	9.88/8.64	162	1338	> 1000	unknown
10	0.9	10/8	200	1838	1.21	0
10	0.9	9/12	200	1811	1.17	0
11	0.9	14.05/10.74	242	2362	2.17	0
5	0.95	8/8	50	234	0.06	296
5	0.95	4/8	50	238	0.70	7759

Remarks on the experiments

- General one: no optimization is made
- for CRR:
 - (1) Experimentally, not comparable to SMT / SAT in efficiency (with optimization)
 - (2) Problem generation (VS CNF generation)
- There exist instances with more than 1 solution (not trivial)
- For real-world examples (Biology): size ($m,n\geq 40$), sparsity $\geq 98\%$

Future work

- $\bullet~Structure \Longrightarrow$ simplify the problem / dedicated algorithm
- Complexity analyses: better?
- CRR: NP-hardness by PoSSo?